3D elasticity solution for uniformly loaded elliptical plates of functionally graded materials using complex variables method

Based on the generalized England’s method, the three-dimensional elastic response in a transversely isotropic functionally graded elliptical plate with clamped edge subject to uniform load is investigated. The material properties can arbitrarily vary along the thickness direction of the plate. The e...

Full description

Saved in:
Bibliographic Details
Published inArchive of applied mechanics (1991) Vol. 88; no. 10; pp. 1829 - 1841
Main Authors Yang, Y. W., Zhang, Y., Chen, W. Q., Yang, B., Yang, Q. Q.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0939-1533
1432-0681
DOI10.1007/s00419-018-1407-5

Cover

Abstract Based on the generalized England’s method, the three-dimensional elastic response in a transversely isotropic functionally graded elliptical plate with clamped edge subject to uniform load is investigated. The material properties can arbitrarily vary along the thickness direction of the plate. The expressions of the mid-plane displacements of the plate are constructed to meet the clamped boundary conditions in which the unknown constants are determined from the governing equations. The expressions of four analytic functions α ( ζ ) , β ( ζ ) , ϕ ( ζ ) and ψ ( ζ ) corresponding to this problem are then obtained using the complex variables method. As a result, the three-dimensional elasticity solution of a functionally graded elliptical plate with clamped boundary subject to uniform load is derived. Finally, numerical examples are presented to verify the proposed method and discuss the effects of different factors on the deformation and stresses in the plate.
AbstractList Based on the generalized England’s method, the three-dimensional elastic response in a transversely isotropic functionally graded elliptical plate with clamped edge subject to uniform load is investigated. The material properties can arbitrarily vary along the thickness direction of the plate. The expressions of the mid-plane displacements of the plate are constructed to meet the clamped boundary conditions in which the unknown constants are determined from the governing equations. The expressions of four analytic functions α(ζ), β(ζ), ϕ(ζ) and ψ(ζ) corresponding to this problem are then obtained using the complex variables method. As a result, the three-dimensional elasticity solution of a functionally graded elliptical plate with clamped boundary subject to uniform load is derived. Finally, numerical examples are presented to verify the proposed method and discuss the effects of different factors on the deformation and stresses in the plate.
Based on the generalized England’s method, the three-dimensional elastic response in a transversely isotropic functionally graded elliptical plate with clamped edge subject to uniform load is investigated. The material properties can arbitrarily vary along the thickness direction of the plate. The expressions of the mid-plane displacements of the plate are constructed to meet the clamped boundary conditions in which the unknown constants are determined from the governing equations. The expressions of four analytic functions α ( ζ ) , β ( ζ ) , ϕ ( ζ ) and ψ ( ζ ) corresponding to this problem are then obtained using the complex variables method. As a result, the three-dimensional elasticity solution of a functionally graded elliptical plate with clamped boundary subject to uniform load is derived. Finally, numerical examples are presented to verify the proposed method and discuss the effects of different factors on the deformation and stresses in the plate.
Author Yang, Y. W.
Chen, W. Q.
Yang, B.
Yang, Q. Q.
Zhang, Y.
Author_xml – sequence: 1
  givenname: Y. W.
  surname: Yang
  fullname: Yang, Y. W.
  organization: Department of Civil Engineering, Zhejiang Agriculture and Forestry University
– sequence: 2
  givenname: Y.
  surname: Zhang
  fullname: Zhang, Y.
  organization: Department of Civil Engineering, Zhejiang Sci-Tech University
– sequence: 3
  givenname: W. Q.
  surname: Chen
  fullname: Chen, W. Q.
  organization: Department of Engineering Mechanics, Zhejiang University
– sequence: 4
  givenname: B.
  surname: Yang
  fullname: Yang, B.
  email: bo.young@163.com
  organization: Department of Civil Engineering, Zhejiang Sci-Tech University
– sequence: 5
  givenname: Q. Q.
  surname: Yang
  fullname: Yang, Q. Q.
  organization: Jiangsu Province Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology
BookMark eNp9kE1LBCEYgCU2aHfrB3QTOls6OjPOMbZPCLrUWRx1NhdnnHQm2kP_PacJgqBOL-jz6MuzAovOdwaAU4LPCcblRcSYkQphwhFhuET5AVgSRjOEC04WYIkrWiGSU3oEVjHucMLzDC_BB72Cxsk4WGWHPYzejYP1HWx8gGNn02jdHjovtdEJdLZPpHSwd3IwEfoGNmOnJkW6BG7DF9imy2Cli3CMtttC5dvemXf4JtNp7ZLYmuHF62Nw2CTKnHzPNXi-uX7a3KGHx9v7zeUDUpQUA-JK50yXBVcZNrxgBstKE04yTpisWcNrI0ucaUXL3GjKm7xSxmBaayZZU0u6Bmfzu33wr6OJg9j5MaSVo8gIKRgtOWeJIjOlgo8xmEb0wbYy7AXBYqos5soiVRZTZZEnp_zlpI5y6jEEad2_ZjabMf3SbU342elv6RP-q5Zf
CitedBy_id crossref_primary_10_1016_j_compstruct_2020_112590
crossref_primary_10_1007_s00419_021_01885_6
crossref_primary_10_1016_j_compstruct_2020_112124
Cites_doi 10.1016/j.apm.2011.07.020
10.1007/s00707-015-1460-x
10.1016/S0997-7538(99)80011-4
10.1016/j.compstruct.2012.11.021
10.1016/j.compstruct.2013.08.009
10.1016/j.ijsolstr.2007.07.023
10.1016/S1359-8368(99)00069-4
10.1016/j.matcom.2010.07.029
10.1007/s00707-007-0498-9
10.1115/1.4007968
10.1631/jzus.2006.A1324
10.1016/j.compstruct.2009.12.002
10.1016/j.compstruct.2015.03.010
10.1007/s00707-017-1851-2
10.1007/s00707-014-1270-6
10.1007/s00707-016-1743-x
10.1007/s00707-017-1839-y
10.1007/s00419-016-1124-x
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00419-018-1407-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-0681
EndPage 1841
ExternalDocumentID 10_1007_s00419_018_1407_5
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: No. LY18A020009
  funderid: http://dx.doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: No. 11202188; No. 11621062
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Science and Technology Project of Ministry of Housing and Urban and Rural Development
  grantid: No. 2016-K5-052
– fundername: Science Foundation of Zhejiang Sci-Tech University
  grantid: No. 16052188-Y
– fundername: the Research Fund for Commonwealth-Orientated Technology of Zhejiang Province
  grantid: No. 2016C33020
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
ZMTXR
ZY4
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c316t-8cd54d768c20e864e0a9d1812814ab4f8bea702dc375ed38f59cee03bd4a4fba3
IEDL.DBID U2A
ISSN 0939-1533
IngestDate Wed Sep 17 13:51:21 EDT 2025
Thu Apr 24 22:52:47 EDT 2025
Wed Oct 01 03:06:36 EDT 2025
Fri Feb 21 02:36:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Elasticity solutions
Elliptical plates
Functionally graded materials
Complex variables method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8cd54d768c20e864e0a9d1812814ab4f8bea702dc375ed38f59cee03bd4a4fba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116437884
PQPubID 2043580
PageCount 13
ParticipantIDs proquest_journals_2116437884
crossref_primary_10_1007_s00419_018_1407_5
crossref_citationtrail_10_1007_s00419_018_1407_5
springer_journals_10_1007_s00419_018_1407_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Archive of applied mechanics (1991)
PublicationTitleAbbrev Arch Appl Mech
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References TimoshenkoSPGoodierJNTheory of Elasticity19703New YorkMcGraw-Hill0266.73008
YangBChenWQDingHJEquilibrium of transversely isotropic FGM plates with elliptical holes: 3D elasticity solutionsArch. Appl. Mech.20168681391141410.1007/s00419-016-1124-x
LiXYDingHJChenWQLiPDThree-dimensional piezoelectricity solutions for uniformly loaded circular plates of functionally graded piezoelectric materials with transverse isotropyJ. Appl. Mech.2013800410071210.1115/1.4007968
LiXYDingHJChenWQPure bending of simply supported circular plate of transversely isotropic functionally graded materialJ. Zhejiang Univ. (Sci)2006781324132810.1631/jzus.2006.A1324
JiangJLHuangDJYangBChenWQDingHJElasticity solutions for a transversely isotropic functionally graded annular sector plateActa Mech.2017228726032621366731310.1007/s00707-017-1839-y
ThaiH-TKimS-EA review of theories for the modeling and analysis of functionally graded plates and shellsCompos. Struct.2015128708610.1016/j.compstruct.2015.03.010
ReddyJNWangCMKitipornchaiSAxisymmetric bending of functionally graded circular and annular platesEur. J. Mech. A/Solids199918218519910.1016/S0997-7538(99)80011-4
WangYXuRQDingHJThree-dimensional solution of axisymmetric bending of functionally graded circular platesCompos. Struct.2010921683169310.1016/j.compstruct.2009.12.002
AghdamMMShahmansouriNMohammadiMExtended Kantorovich method for static analysis of moderately thick functionally graded sector platesMath. Comput. Simul.201286118130303840810.1016/j.matcom.2010.07.029
XiangSKangGWStatic analysis of functionally graded plates by the various shear deformation theoryCompos. Struct.20139922423010.1016/j.compstruct.2012.11.021
ChengZQBatraRCThree-dimensional thermoelastic deformations of a functionally graded elliptic platesCompos. Part B Eng.20003129710610.1016/S1359-8368(99)00069-4
AdinehMKadkhodayanMThree-dimensional thermos-elastic analysis of multi-directional functionally graded rectangular plates on elastic foundationActa Mech.2017228881899361506310.1007/s00707-016-1743-x
FallahFKhakbazAOn an extended Kantorovich method for the mechanical behavior of functionally graded solid/annular sector plates with various boundary conditionsActa Mech.201722826552674366731610.1007/s00707-017-1851-2
YangBDingHJChenWQElasticity solutions for functionally graded rectangular plates with two opposite edges simply supportedAppl. Math. Model.201236488503283502610.1016/j.apm.2011.07.020
YangBChenWQDingHJ3D elasticity solutions for equilibrium problems of transversely isotropic FGM plates with holesActa Mech.201522615711590332326510.1007/s00707-014-1270-6
DingHJChenWQZhangLCElasticity of Transversely Isotropic Materials2006DordrechtSpringer1101.74001
TimoshenkoSPWoinowsky-KriegerSTheory of Plates and Shells19592New YorkMcGraw-Hill0114.40801
LiXYDingHJChenWQAxisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materialsActa Mech.200819613915910.1007/s00707-007-0498-9
LiXYDingHJChenWQElasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qr^{k}$$\end{document}Int. J. Solids Struct.20084519121010.1016/j.ijsolstr.2007.07.023
AlibeiglooAThree-dimensional thermo-elasticity solution of sandwich cylindrical panel with functionally graded coreCompos. Struct.201410745846810.1016/j.compstruct.2013.08.009
HuangDJYangBChenWQDingHJAnalytical solution for a transversely isotropic functionally graded sectorial plate subjected to a concentrated force or couple at the tipActa Mech.20162272495506345641410.1007/s00707-015-1460-x
JN Reddy (1407_CR3) 1999; 18
MM Aghdam (1407_CR5) 2012; 86
F Fallah (1407_CR6) 2017; 228
HJ Ding (1407_CR18) 2006
S Xiang (1407_CR4) 2013; 99
XY Li (1407_CR19) 2008; 45
XY Li (1407_CR21) 2008; 196
DJ Huang (1407_CR15) 2016; 227
JL Jiang (1407_CR16) 2017; 228
ZQ Cheng (1407_CR7) 2000; 31
XY Li (1407_CR8) 2006; 7
B Yang (1407_CR14) 2016; 86
A Alibeigloo (1407_CR10) 2014; 107
B Yang (1407_CR13) 2015; 226
B Yang (1407_CR12) 2012; 36
XY Li (1407_CR20) 2013; 80
M Adineh (1407_CR11) 2017; 228
SP Timoshenko (1407_CR1) 1970
Y Wang (1407_CR9) 2010; 92
H-T Thai (1407_CR2) 2015; 128
SP Timoshenko (1407_CR17) 1959
References_xml – reference: ChengZQBatraRCThree-dimensional thermoelastic deformations of a functionally graded elliptic platesCompos. Part B Eng.20003129710610.1016/S1359-8368(99)00069-4
– reference: JiangJLHuangDJYangBChenWQDingHJElasticity solutions for a transversely isotropic functionally graded annular sector plateActa Mech.2017228726032621366731310.1007/s00707-017-1839-y
– reference: WangYXuRQDingHJThree-dimensional solution of axisymmetric bending of functionally graded circular platesCompos. Struct.2010921683169310.1016/j.compstruct.2009.12.002
– reference: HuangDJYangBChenWQDingHJAnalytical solution for a transversely isotropic functionally graded sectorial plate subjected to a concentrated force or couple at the tipActa Mech.20162272495506345641410.1007/s00707-015-1460-x
– reference: YangBDingHJChenWQElasticity solutions for functionally graded rectangular plates with two opposite edges simply supportedAppl. Math. Model.201236488503283502610.1016/j.apm.2011.07.020
– reference: LiXYDingHJChenWQAxisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materialsActa Mech.200819613915910.1007/s00707-007-0498-9
– reference: LiXYDingHJChenWQElasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qr^{k}$$\end{document}Int. J. Solids Struct.20084519121010.1016/j.ijsolstr.2007.07.023
– reference: YangBChenWQDingHJ3D elasticity solutions for equilibrium problems of transversely isotropic FGM plates with holesActa Mech.201522615711590332326510.1007/s00707-014-1270-6
– reference: FallahFKhakbazAOn an extended Kantorovich method for the mechanical behavior of functionally graded solid/annular sector plates with various boundary conditionsActa Mech.201722826552674366731610.1007/s00707-017-1851-2
– reference: ReddyJNWangCMKitipornchaiSAxisymmetric bending of functionally graded circular and annular platesEur. J. Mech. A/Solids199918218519910.1016/S0997-7538(99)80011-4
– reference: AdinehMKadkhodayanMThree-dimensional thermos-elastic analysis of multi-directional functionally graded rectangular plates on elastic foundationActa Mech.2017228881899361506310.1007/s00707-016-1743-x
– reference: ThaiH-TKimS-EA review of theories for the modeling and analysis of functionally graded plates and shellsCompos. Struct.2015128708610.1016/j.compstruct.2015.03.010
– reference: LiXYDingHJChenWQPure bending of simply supported circular plate of transversely isotropic functionally graded materialJ. Zhejiang Univ. (Sci)2006781324132810.1631/jzus.2006.A1324
– reference: LiXYDingHJChenWQLiPDThree-dimensional piezoelectricity solutions for uniformly loaded circular plates of functionally graded piezoelectric materials with transverse isotropyJ. Appl. Mech.2013800410071210.1115/1.4007968
– reference: DingHJChenWQZhangLCElasticity of Transversely Isotropic Materials2006DordrechtSpringer1101.74001
– reference: XiangSKangGWStatic analysis of functionally graded plates by the various shear deformation theoryCompos. Struct.20139922423010.1016/j.compstruct.2012.11.021
– reference: AlibeiglooAThree-dimensional thermo-elasticity solution of sandwich cylindrical panel with functionally graded coreCompos. Struct.201410745846810.1016/j.compstruct.2013.08.009
– reference: AghdamMMShahmansouriNMohammadiMExtended Kantorovich method for static analysis of moderately thick functionally graded sector platesMath. Comput. Simul.201286118130303840810.1016/j.matcom.2010.07.029
– reference: YangBChenWQDingHJEquilibrium of transversely isotropic FGM plates with elliptical holes: 3D elasticity solutionsArch. Appl. Mech.20168681391141410.1007/s00419-016-1124-x
– reference: TimoshenkoSPWoinowsky-KriegerSTheory of Plates and Shells19592New YorkMcGraw-Hill0114.40801
– reference: TimoshenkoSPGoodierJNTheory of Elasticity19703New YorkMcGraw-Hill0266.73008
– volume: 36
  start-page: 488
  year: 2012
  ident: 1407_CR12
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.07.020
– volume: 227
  start-page: 495
  issue: 2
  year: 2016
  ident: 1407_CR15
  publication-title: Acta Mech.
  doi: 10.1007/s00707-015-1460-x
– volume: 18
  start-page: 185
  issue: 2
  year: 1999
  ident: 1407_CR3
  publication-title: Eur. J. Mech. A/Solids
  doi: 10.1016/S0997-7538(99)80011-4
– volume: 99
  start-page: 224
  year: 2013
  ident: 1407_CR4
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2012.11.021
– volume-title: Elasticity of Transversely Isotropic Materials
  year: 2006
  ident: 1407_CR18
– volume: 107
  start-page: 458
  year: 2014
  ident: 1407_CR10
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2013.08.009
– volume: 45
  start-page: 191
  year: 2008
  ident: 1407_CR19
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2007.07.023
– volume: 31
  start-page: 97
  issue: 2
  year: 2000
  ident: 1407_CR7
  publication-title: Compos. Part B Eng.
  doi: 10.1016/S1359-8368(99)00069-4
– volume: 86
  start-page: 118
  year: 2012
  ident: 1407_CR5
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2010.07.029
– volume: 196
  start-page: 139
  year: 2008
  ident: 1407_CR21
  publication-title: Acta Mech.
  doi: 10.1007/s00707-007-0498-9
– volume: 80
  start-page: 041007
  year: 2013
  ident: 1407_CR20
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4007968
– volume: 7
  start-page: 1324
  issue: 8
  year: 2006
  ident: 1407_CR8
  publication-title: J. Zhejiang Univ. (Sci)
  doi: 10.1631/jzus.2006.A1324
– volume: 92
  start-page: 1683
  year: 2010
  ident: 1407_CR9
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2009.12.002
– volume: 128
  start-page: 70
  year: 2015
  ident: 1407_CR2
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.03.010
– volume-title: Theory of Plates and Shells
  year: 1959
  ident: 1407_CR17
– volume: 228
  start-page: 2655
  year: 2017
  ident: 1407_CR6
  publication-title: Acta Mech.
  doi: 10.1007/s00707-017-1851-2
– volume: 226
  start-page: 1571
  year: 2015
  ident: 1407_CR13
  publication-title: Acta Mech.
  doi: 10.1007/s00707-014-1270-6
– volume-title: Theory of Elasticity
  year: 1970
  ident: 1407_CR1
– volume: 228
  start-page: 881
  year: 2017
  ident: 1407_CR11
  publication-title: Acta Mech.
  doi: 10.1007/s00707-016-1743-x
– volume: 228
  start-page: 2603
  issue: 7
  year: 2017
  ident: 1407_CR16
  publication-title: Acta Mech.
  doi: 10.1007/s00707-017-1839-y
– volume: 86
  start-page: 1391
  issue: 8
  year: 2016
  ident: 1407_CR14
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-016-1124-x
SSID ssj0004520
Score 2.169674
Snippet Based on the generalized England’s method, the three-dimensional elastic response in a transversely isotropic functionally graded elliptical plate with clamped...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1829
SubjectTerms Analytic functions
Boundary conditions
Classical Mechanics
Complex variables
Deformation effects
Elasticity
Elliptical plates
Engineering
Functionally gradient materials
Material properties
Original
Theoretical and Applied Mechanics
Title 3D elasticity solution for uniformly loaded elliptical plates of functionally graded materials using complex variables method
URI https://link.springer.com/article/10.1007/s00419-018-1407-5
https://www.proquest.com/docview/2116437884
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1432-0681
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: ADMLS
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: AFBBN
  dateStart: 19291201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPRgfEYUyR48aTZp2d3SPRIBiYoXJcFTs-1uuSAQQSMH_7sz2xbQqImnHjrdQ2fa-eb1DSHnacoDnkjDAGs0mEhjxVQifAbOXQexFxjP5SF790G3L24GcpDPcc-KbveiJOn-1MthN6SGwt4eiHogCmFyk5QlsnmBEffrzXWKcJdYUVwxBDNFKfOnI746oxXC_FYUdb6ms0t2cpBIm5lW98iGHe-T7TXqwAPywVvUAvLFpuj5ghYWRAGD0tcxjls9jxZ0NNHGGoqkm1OXtKbTEYJLOkkperQsEQiCwxcnCPA1s0iK_fBD6hrO7Tt9g4gaZ6xmNNs4fUj6nfbjVZflqxRYwv1gzsLESGEgtEjqng0DYT2tDDr30Bc6FmkYW93w6ibhDWkND1OpwHt6PDZCgwI1PyKl8WRsjwnliYp9YZTw0lCAfGyNDLQvGlyngD1VhXjFO42SnGcc112MoiVDslNDBGqIUA2RrJCL5SPTjGTjL-Fqoago_95mEYSxWIEMQ1Ehl4XyVrd_PezkX9KnZKvujAd7-aqkNH95tWeASeZxjZSbrd7dA16vn27bNWeTnw1V3SE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkRZfeAEMkpqJ42PiK2spyLBKfIWDpS2oikCJP6dsZOURYDEORMr8Uwyb7ZngO0sYzHTkaGINZqUZ0pQoXlI0bnLWAWxCXwe8vIqbl3zs5voppzjHlTd7lVJ0v-pR8NujhrK9fZg1INRCI3GYYJjfNKowcT-ye350WeScJ9aEUxQB2eqYuZPi3x1Rx8Y81tZ1Hub41loV89ZNJnc7w1ztadfv1E4_vNF5mCmRJ9kvzCXeRiz3QWY_sRJuAhv7JBYhNSu2zp_IZVpEgS3ZNh1c1wPnRfS6UljDXFsnn2fDSf9jkOtpJcR5yqLDCMK3j16QcTFhakT12h_R3wnu30mTxiqu-GtASmOsl6C6-Oj9kGLlmc0UM3COKeJNhE3GLPoRmCTmNtACuNQQxJyqXiWKCubQcNo1oysYUkWCXTLAVOGS7QMyZah1u117QoQpoUKuRE8yBKO8sqaKJYhbzKZIagVdQgqVaW6JDB352h00hH1st_ZFHc2dTubRnXYGd3SL9g7_hJer_Sflh_yIMX42JU2k4TXYbdS58flXxdb_Zf0Fky22pcX6cXp1fkaTDW8bbiGwXWo5Y9Du4HAJ1ebpaG_A7YG-aQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4SAgGxFOUpwcmkNWkdtJ4RJSqvCoGKnWLnNjuUtKKBgQD_507J2kLAiTmXDzku-i-e30m5NRaHvI00Ay4RpMJm0gmU-EzCO4qTLxQe64Oed8NOz1x0w_65T2nk2ravWpJFjsNqNKU5fWxtvXp4hvKROGcD2RAkJGwYJEsC9RJAIfuNS7m5cJdkUVyyZDYVG3Nn474GphmbPNbg9TFnfYGWS8JI70oEN4kCybbImtzMoLb5IO3qAEWjAPS-TutvIkCH6UvGa5ePQ3f6XCktNEUBTjHroBNx0MkmnRkKUa3oigIhoNnZwhUtvBOirPxA-qGz80bfYXsGvetJrS4fXqH9NpXj5cdVl6rwFLuhzmLUh0IDWlG2vBMFArjKakx0Ee-UImwUWJU02volDcDo3lkAwmR1OOJFgrAVHyXLGWjzOwRylOZ-EJL4dlIgH1idBAqXzS5ssBDZY141TeN01JzHK--GMZTtWQHQwwwxAhDHNTI2fSVcSG48ZfxYQVUXP57kxhSWuxGRpGokfMKvNnjXw_b_5f1CVl5aLXju-vu7QFZbTg_whG_Q7KUP7-YI6AqeXLs3PETbOXhIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+elasticity+solution+for+uniformly+loaded+elliptical+plates+of+functionally+graded+materials+using+complex+variables+method&rft.jtitle=Archive+of+applied+mechanics+%281991%29&rft.au=Yang%2C+Y.+W.&rft.au=Zhang%2C+Y.&rft.au=Chen%2C+W.+Q.&rft.au=Yang%2C+B.&rft.date=2018-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0939-1533&rft.eissn=1432-0681&rft.volume=88&rft.issue=10&rft.spage=1829&rft.epage=1841&rft_id=info:doi/10.1007%2Fs00419-018-1407-5&rft.externalDocID=10_1007_s00419_018_1407_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-1533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-1533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-1533&client=summon