Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices

In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propag...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 31; no. 11; pp. 8101 - 8116
Main Authors Lim, Suhwan, Bae, Jong-Ho, Eum, Jai-Ho, Lee, Sungtae, Kim, Chul-Heung, Kwon, Dongseok, Park, Byung-Gook, Lee, Jong-Ho
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-018-3659-y

Cover

Abstract In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron network, we evaluate the learning performance according to various conductance responses of electronic synapse devices and weight-updating methods. It is shown that the learning accuracy is comparable to that obtained when using a software-based BP algorithm when the electronic synapse device has a linear conductance response with a high dynamic range. Furthermore, the proposed unidirectional weight-updating method is suitable for electronic synapse devices which have nonlinear and finite conductance responses. Because this weight-updating method can compensate the demerit of asymmetric weight updates, we can obtain better accuracy compared to other methods. This adaptive learning rule, which can be applied to full hardware implementation, can also compensate the degradation of learning accuracy due to the probable device-to-device variation in an actual electronic synapse device.
AbstractList In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron network, we evaluate the learning performance according to various conductance responses of electronic synapse devices and weight-updating methods. It is shown that the learning accuracy is comparable to that obtained when using a software-based BP algorithm when the electronic synapse device has a linear conductance response with a high dynamic range. Furthermore, the proposed unidirectional weight-updating method is suitable for electronic synapse devices which have nonlinear and finite conductance responses. Because this weight-updating method can compensate the demerit of asymmetric weight updates, we can obtain better accuracy compared to other methods. This adaptive learning rule, which can be applied to full hardware implementation, can also compensate the degradation of learning accuracy due to the probable device-to-device variation in an actual electronic synapse device.
Author Eum, Jai-Ho
Lim, Suhwan
Park, Byung-Gook
Kwon, Dongseok
Bae, Jong-Ho
Lee, Jong-Ho
Lee, Sungtae
Kim, Chul-Heung
Author_xml – sequence: 1
  givenname: Suhwan
  surname: Lim
  fullname: Lim, Suhwan
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
– sequence: 2
  givenname: Jong-Ho
  surname: Bae
  fullname: Bae, Jong-Ho
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
– sequence: 3
  givenname: Jai-Ho
  surname: Eum
  fullname: Eum, Jai-Ho
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
– sequence: 4
  givenname: Sungtae
  surname: Lee
  fullname: Lee, Sungtae
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
– sequence: 5
  givenname: Chul-Heung
  surname: Kim
  fullname: Kim, Chul-Heung
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
– sequence: 6
  givenname: Dongseok
  surname: Kwon
  fullname: Kwon, Dongseok
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
– sequence: 7
  givenname: Byung-Gook
  surname: Park
  fullname: Park, Byung-Gook
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
– sequence: 8
  givenname: Jong-Ho
  orcidid: 0000-0003-3559-9802
  surname: Lee
  fullname: Lee, Jong-Ho
  email: jhl@snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University
BookMark eNp9kE1LxDAQhoOs4K76A7wFPEcnSdOP47L4BQte9BzSdLp2rWlN2l36782ygiDoaQ7zPvMOz4LMXOeQkCsONxwguw0ASnAGPGcyVQWbTsicJ1IyCSqfkTkUSdymiTwjixC2AJCkuZoTvaxMPzQ7pC0a7xq3oX5skdadp2_GV3vjkZUmYEUrxJ46HL1p4xj2nX8PdAwHBFu0g-9cY2mYnOkDxvSusRguyGlt2oCX3_OcvN7fvawe2fr54Wm1XDMreTqwPMvyUigu0ioVUFqT5CYBhSnYWqRGSahUkkFVFFLUXAqsSwMSyjwrpM0KlOfk-ni3993niGHQ2270LlZqISGmeKZkTPFjyvouBI-17n3zYfykOeiDR330qKNHffCop8hkvxjbDGZoOjd407T_kuJIhtjiNuh_fvob-gLPLYpR
CitedBy_id crossref_primary_10_1002_adfm_202213064
crossref_primary_10_1109_LED_2022_3225168
crossref_primary_10_3390_biomimetics9060335
crossref_primary_10_1038_s41467_020_17849_3
crossref_primary_10_1021_acsnano_3c05337
crossref_primary_10_1088_1361_6528_abf0cc
crossref_primary_10_1089_big_2020_0153
crossref_primary_10_3389_felec_2022_825077
crossref_primary_10_1007_s00521_020_05388_3
crossref_primary_10_1007_s40042_024_01257_7
crossref_primary_10_1007_s11042_024_18783_y
crossref_primary_10_1002_adfm_202416309
crossref_primary_10_1016_j_chaos_2022_111999
crossref_primary_10_1007_s40042_023_00950_3
crossref_primary_10_1021_acsnano_3c05493
crossref_primary_10_1109_TED_2023_3237670
crossref_primary_10_1007_s12200_022_00025_4
crossref_primary_10_1109_JPROC_2020_3004543
crossref_primary_10_1016_j_nantod_2024_102534
crossref_primary_10_1021_acsami_2c20925
crossref_primary_10_1038_s41928_023_01020_z
crossref_primary_10_1002_adts_202200226
crossref_primary_10_1002_smll_202407612
crossref_primary_10_31642_JoKMC_2018_080105
crossref_primary_10_1002_aisy_202100064
crossref_primary_10_1016_j_apmt_2021_101024
crossref_primary_10_1088_1361_6528_aae975
crossref_primary_10_1007_s00521_021_05699_z
crossref_primary_10_1088_1674_1056_ac4f4e
crossref_primary_10_1016_j_neucom_2022_04_008
crossref_primary_10_1088_1361_6528_ab34da
crossref_primary_10_1016_j_chaos_2023_113359
crossref_primary_10_1038_s41928_023_01056_1
crossref_primary_10_1126_sciadv_ado8999
crossref_primary_10_1021_acsami_0c10796
crossref_primary_10_1016_j_snb_2020_129258
crossref_primary_10_1039_D4NR03464C
crossref_primary_10_1002_aisy_202300125
crossref_primary_10_1002_aisy_202300763
crossref_primary_10_1002_aisy_202100237
crossref_primary_10_1002_adma_202303664
crossref_primary_10_1109_ACCESS_2020_3036088
crossref_primary_10_3389_fnins_2020_00423
crossref_primary_10_1109_JEDS_2019_2913146
crossref_primary_10_1109_TED_2021_3081610
crossref_primary_10_1039_D1RA07728G
crossref_primary_10_1109_TNNLS_2023_3327906
crossref_primary_10_1002_inf2_12367
crossref_primary_10_1039_D3NH00532A
crossref_primary_10_1109_TED_2021_3134601
crossref_primary_10_1002_adma_202102980
crossref_primary_10_1016_j_neucom_2020_11_016
Cites_doi 10.1021/nl201040y
10.1109/iedm.2014.7047135
10.1109/LED.2017.2713460
10.1109/IJCNN.2015.7280658
10.1109/led.2016.2521863
10.1109/ted.2016.2615648
10.1109/TNNLS.2016.2582924
10.1021/nl904092h
10.1109/ISCAS.2015.7169048
10.1002/adma.201101060
10.1038/nature14441
10.3389/fnins.2011.00108
10.3389/fnins.2016.00333
10.1109/ted.2012.2197951
10.1109/MC.2016.312
10.1038/nmat3054
10.1109/LED.2015.2418342
10.1016/j.neucom.2012.12.027
10.1109/IEDM.2012.6479018
10.1038/nmat3415
10.1109/5.726791
10.1002/adma.201604310
10.1561/2200000006
10.3389/fnins.2017.00324
10.1063/1.4773300
10.1109/tfuzz.2016.2574915
10.1109/ICRC.2016.7738684
10.1109/16.543035
10.1109/TNANO.2013.2250995
10.1109/IMW.2012.6213663
10.1109/IEDM.2011.6131488
10.1109/TNNLS.2016.2522401
10.1088/0957-4484/24/38/382001
10.3115/v1/D14-1179
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2018
Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Natural Computing Applications Forum 2018
– notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-018-3659-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 8116
ExternalDocumentID 10_1007_s00521_018_3659_y
GrantInformation_xml – fundername: Korea Institute of Science and Technology
  grantid: 2E27810-18-P040
  funderid: http://dx.doi.org/10.13039/501100003693
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-8778b25126d620bca48a405e60cf26a530d5470d9932f132efba030b8793c79e3
IEDL.DBID 8FG
ISSN 0941-0643
IngestDate Fri Aug 29 04:52:16 EDT 2025
Wed Oct 01 02:25:52 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Fri Feb 21 02:35:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Hardware-based deep neural networks (HW-DNNs)
Neuromorphic
Classification accuracy
Back-propagation
Synapse device
Deep neural networks (DNNs)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8778b25126d620bca48a405e60cf26a530d5470d9932f132efba030b8793c79e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3559-9802
PQID 2307931753
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2307931753
crossref_primary_10_1007_s00521_018_3659_y
crossref_citationtrail_10_1007_s00521_018_3659_y
springer_journals_10_1007_s00521_018_3659_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191100
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References CR19
Gokmen, Vlasov (CR33) 2016; 10
CR38
Merkel, Hasan, Soures, Kudithipudi, Taha, Agarwal, Marinella (CR26) 2016; 49
CR36
CR13
CR35
Wright, Liu, Kohary, Aziz, Hicken (CR3) 2011; 23
Diorio, Hasler, Minch, Mead (CR10) 1996; 43
Ziegler, Oberländer, Schroeder, Krautschneider, Kohlstedt (CR11) 2012; 101
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (CR23) 2017; 28
Wu, Yu, Wong (CR7) 2012
Kuzum, Jeyasingh, Lee, Wong (CR4) 2012; 12
Deng, Bao, Kong, Ren, Dai (CR25) 2017; 28
Bengio (CR41) 2009; 2
Kim, Park, Kwon, Lee, Park (CR12) 2016; 37
Jo, Chang, Ebong, Bhadviya, Mazumder, Lu (CR5) 2010; 10
Burr, Shelby, di Nolfo, Jang, Shenoy, Narayanan, Virwani, Giacometti, Kurdi, Hwang (CR15) 2014
Kuzum, Yu, Wong (CR14) 2013; 24
Merrikh-Bayat, Guo, Om’mani, Do, Likharev, Strukov (CR18) 2015
Fuller, Gabaly, Leonard, Agarwal, Plimpton, Jacobs-Gedrim, James, Marinella, Talin (CR31) 2017; 29
Ohno, Hasegawa, Tsuruoka, Terabe, Gimzewski, Aono (CR6) 2011; 10
Bichler, Suri, Querlioz, Vuillaume, DeSalvo, Gamrat (CR37) 2012; 59
Fumarola, Narayana, Sanches, Sidler, Jang, Moon, Shelby, Hwang, Burr (CR34) 2016
Woo, Moon, Song, Kwak, Park, Hwang (CR30) 2016; 63
Yu, Gao, Fang (CR8) 2012
Bae, Lim, Park, Lee (CR32) 2017; 38
Poon, Zhou (CR1) 2011; 5
Nair, Dudek (CR16) 2015
Prezioso, Merrikh-Bayat, Hoskins, Adam, Likharev, Strukov (CR17) 2015; 521
CR22
CR21
Neftci, Augustine, Paul, Detorakis (CR27) 2017; 11
CR43
CR20
CR42
Merrikh Bayat, Bagheri Shouraki, Esmaili Paeen Afrakoti (CR28) 2013; 115
Lecun, Bottou, Bengio, Haffner (CR39) 1998; 86
Suri, Bichler, Querlioz, Cueto, Perniola, Sousa, Vuillaume, Gamrat, DeSalvo (CR2) 2011
Querlioz, Bichler, Dollfus, Gamrat (CR40) 2013; 12
Jang, Park, Burr, Hwang, Jeong (CR29) 2015; 36
Chanthbouala, Garcia, Cherifi, Bouzehouane, Fusil, Moya, Xavier, Yamada, Deranlot, Mathur, Bibes, Barthelemy, Grollier (CR9) 2012; 11
Deng, Ren, Kong, Bao, Dai (CR24) 2017; 25
H Kim (3659_CR12) 2016; 37
F Merrikh-Bayat (3659_CR18) 2015
D Querlioz (3659_CR40) 2013; 12
MV Nair (3659_CR16) 2015
Y Bengio (3659_CR41) 2009; 2
A Chanthbouala (3659_CR9) 2012; 11
F Merrikh Bayat (3659_CR28) 2013; 115
A Fumarola (3659_CR34) 2016
3659_CR21
3659_CR43
3659_CR22
J-W Jang (3659_CR29) 2015; 36
3659_CR20
3659_CR42
EJ Fuller (3659_CR31) 2017; 29
CS Poon (3659_CR1) 2011; 5
CD Wright (3659_CR3) 2011; 23
Y Deng (3659_CR25) 2017; 28
C Diorio (3659_CR10) 1996; 43
K Greff (3659_CR23) 2017; 28
EO Neftci (3659_CR27) 2017; 11
D Kuzum (3659_CR4) 2012; 12
T Gokmen (3659_CR33) 2016; 10
3659_CR36
O Bichler (3659_CR37) 2012; 59
SH Jo (3659_CR5) 2010; 10
3659_CR13
3659_CR35
3659_CR19
3659_CR38
Y Lecun (3659_CR39) 1998; 86
M Ziegler (3659_CR11) 2012; 101
C Merkel (3659_CR26) 2016; 49
GW Burr (3659_CR15) 2014
Y Wu (3659_CR7) 2012
J Woo (3659_CR30) 2016; 63
M Prezioso (3659_CR17) 2015; 521
T Ohno (3659_CR6) 2011; 10
Y Deng (3659_CR24) 2017; 25
S Yu (3659_CR8) 2012
M Suri (3659_CR2) 2011
D Kuzum (3659_CR14) 2013; 24
J-H Bae (3659_CR32) 2017; 38
References_xml – volume: 12
  start-page: 2179
  year: 2012
  end-page: 2186
  ident: CR4
  article-title: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
  publication-title: Nano Lett
  doi: 10.1021/nl201040y
– ident: CR22
– ident: CR43
– year: 2014
  ident: CR15
  article-title: Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
  publication-title: IEEE Electron Devices Meeting
  doi: 10.1109/iedm.2014.7047135
– volume: 38
  start-page: 1153
  year: 2017
  end-page: 1156
  ident: CR32
  article-title: High-density and near-linear synaptic device based on a reconfigurable gated Schottky diode
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2017.2713460
– year: 2015
  ident: CR16
  article-title: Gradient-descent-based learning in memristive crossbar arrays
  publication-title: IEEE Int Joint Conf Neural Netw
  doi: 10.1109/IJCNN.2015.7280658
– volume: 37
  start-page: 249
  year: 2016
  end-page: 252
  ident: CR12
  article-title: Silicon-based floating-body synaptic transistor with frequency-dependent short- and long-term memories
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/led.2016.2521863
– volume: 63
  start-page: 5064
  year: 2016
  end-page: 5067
  ident: CR30
  article-title: Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic systems
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/ted.2016.2615648
– volume: 28
  start-page: 2222
  issue: 10
  year: 2017
  end-page: 2232
  ident: CR23
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2582924
– ident: CR35
– volume: 10
  start-page: 1297
  year: 2010
  end-page: 1301
  ident: CR5
  article-title: Nanoscale memristor device as synapse in neuromorphic systems
  publication-title: Nano Lett
  doi: 10.1021/nl904092h
– year: 2015
  ident: CR18
  article-title: Redesigning commercial floating-gate memory for analog computing applications
  publication-title: IEEE Int Symp Circuits Syst
  doi: 10.1109/ISCAS.2015.7169048
– ident: CR42
– volume: 23
  start-page: 3408
  year: 2011
  end-page: 3413
  ident: CR3
  article-title: Arithmetic and biologically-inspired computing using phase-change materials
  publication-title: Adv Mater
  doi: 10.1002/adma.201101060
– volume: 521
  start-page: 61
  year: 2015
  end-page: 64
  ident: CR17
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 5
  start-page: 108
  year: 2011
  ident: CR1
  article-title: Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2011.00108
– ident: CR21
– volume: 10
  start-page: 333
  year: 2016
  ident: CR33
  article-title: Acceleration of deep neural network training with resistive cross-point devices: design considerations
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00333
– volume: 59
  start-page: 2206
  year: 2012
  end-page: 2214
  ident: CR37
  article-title: Visual pattern extraction using energy-efficient “2-PCM Synapse” neuromorphic architecture
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/ted.2012.2197951
– volume: 49
  start-page: 56
  year: 2016
  end-page: 64
  ident: CR26
  article-title: Neuromemristive systems: boosting efficiency through brain-inspired computing
  publication-title: Computer
  doi: 10.1109/MC.2016.312
– ident: CR19
– volume: 10
  start-page: 591
  year: 2011
  end-page: 595
  ident: CR6
  article-title: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses
  publication-title: Nat Mater
  doi: 10.1038/nmat3054
– volume: 36
  start-page: 457
  year: 2015
  end-page: 459
  ident: CR29
  article-title: Optimization of conductance change in PrCaMnO based synaptic devices for neuromorphic systems
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2015.2418342
– volume: 115
  start-page: 166
  year: 2013
  end-page: 168
  ident: CR28
  article-title: Bottleneck of using a single memristive device as a synapse
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.027
– ident: CR38
– year: 2012
  ident: CR8
  article-title: A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling
  publication-title: IEEE Electron Devices Meeting
  doi: 10.1109/IEDM.2012.6479018
– volume: 11
  start-page: 860
  year: 2012
  end-page: 864
  ident: CR9
  article-title: A ferroelectric memristor
  publication-title: Nat Mater
  doi: 10.1038/nmat3415
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR39
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 29
  start-page: 1604310
  issue: 4
  year: 2017
  ident: CR31
  article-title: Li-ion synaptic transistor for low power analog computing
  publication-title: Adv Mater
  doi: 10.1002/adma.201604310
– ident: CR13
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: CR41
  article-title: Learning deep architectures for AI
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 11
  start-page: 324
  year: 2017
  ident: CR27
  article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00324
– ident: CR36
– volume: 101
  start-page: 263504
  year: 2012
  ident: CR11
  article-title: Memristive operation mode of floating gate transistors: a two-terminal MemFlash-cell
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4773300
– volume: 25
  start-page: 1006
  year: 2017
  end-page: 1012
  ident: CR24
  article-title: A hierarchical fused fuzzy deep neural network for data classification
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/tfuzz.2016.2574915
– year: 2016
  ident: CR34
  article-title: Accelerating machine learning with non-volatile memory: exploring device and circuit tradeoffs
  publication-title: IEEE Int Conf Rebooting Comput
  doi: 10.1109/ICRC.2016.7738684
– volume: 43
  start-page: 1972
  year: 1996
  end-page: 1980
  ident: CR10
  article-title: A single-transistor silicon synapse
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/16.543035
– volume: 12
  start-page: 288
  year: 2013
  end-page: 295
  ident: CR40
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Trans Nanotechnol
  doi: 10.1109/TNANO.2013.2250995
– year: 2012
  ident: CR7
  article-title: AlO -based resistive switching device with gradual resistance modulation for neuromorphic device application
  publication-title: IEEE Memory Workshop
  doi: 10.1109/IMW.2012.6213663
– year: 2011
  ident: CR2
  article-title: Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction
  publication-title: IEEE Electron Devices Meeting
  doi: 10.1109/IEDM.2011.6131488
– volume: 28
  start-page: 653
  year: 2017
  end-page: 664
  ident: CR25
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2522401
– volume: 24
  start-page: 382001
  year: 2013
  ident: CR14
  article-title: Synaptic electronics: materials, devices and applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/382001
– ident: CR20
– year: 2012
  ident: 3659_CR7
  publication-title: IEEE Memory Workshop
  doi: 10.1109/IMW.2012.6213663
– year: 2012
  ident: 3659_CR8
  publication-title: IEEE Electron Devices Meeting
  doi: 10.1109/IEDM.2012.6479018
– volume: 11
  start-page: 324
  year: 2017
  ident: 3659_CR27
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00324
– ident: 3659_CR43
– volume: 23
  start-page: 3408
  year: 2011
  ident: 3659_CR3
  publication-title: Adv Mater
  doi: 10.1002/adma.201101060
– volume: 521
  start-page: 61
  year: 2015
  ident: 3659_CR17
  publication-title: Nature
  doi: 10.1038/nature14441
– year: 2014
  ident: 3659_CR15
  publication-title: IEEE Electron Devices Meeting
  doi: 10.1109/iedm.2014.7047135
– volume: 24
  start-page: 382001
  year: 2013
  ident: 3659_CR14
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/382001
– year: 2015
  ident: 3659_CR18
  publication-title: IEEE Int Symp Circuits Syst
  doi: 10.1109/ISCAS.2015.7169048
– volume: 25
  start-page: 1006
  year: 2017
  ident: 3659_CR24
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/tfuzz.2016.2574915
– volume: 10
  start-page: 591
  year: 2011
  ident: 3659_CR6
  publication-title: Nat Mater
  doi: 10.1038/nmat3054
– ident: 3659_CR36
– ident: 3659_CR38
– year: 2016
  ident: 3659_CR34
  publication-title: IEEE Int Conf Rebooting Comput
  doi: 10.1109/ICRC.2016.7738684
– volume: 2
  start-page: 1
  year: 2009
  ident: 3659_CR41
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 101
  start-page: 263504
  year: 2012
  ident: 3659_CR11
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4773300
– ident: 3659_CR20
– volume: 29
  start-page: 1604310
  issue: 4
  year: 2017
  ident: 3659_CR31
  publication-title: Adv Mater
  doi: 10.1002/adma.201604310
– year: 2015
  ident: 3659_CR16
  publication-title: IEEE Int Joint Conf Neural Netw
  doi: 10.1109/IJCNN.2015.7280658
– volume: 63
  start-page: 5064
  year: 2016
  ident: 3659_CR30
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/ted.2016.2615648
– volume: 11
  start-page: 860
  year: 2012
  ident: 3659_CR9
  publication-title: Nat Mater
  doi: 10.1038/nmat3415
– volume: 28
  start-page: 2222
  issue: 10
  year: 2017
  ident: 3659_CR23
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2582924
– volume: 36
  start-page: 457
  year: 2015
  ident: 3659_CR29
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2015.2418342
– year: 2011
  ident: 3659_CR2
  publication-title: IEEE Electron Devices Meeting
  doi: 10.1109/IEDM.2011.6131488
– volume: 12
  start-page: 2179
  year: 2012
  ident: 3659_CR4
  publication-title: Nano Lett
  doi: 10.1021/nl201040y
– volume: 43
  start-page: 1972
  year: 1996
  ident: 3659_CR10
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/16.543035
– ident: 3659_CR21
– volume: 59
  start-page: 2206
  year: 2012
  ident: 3659_CR37
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/ted.2012.2197951
– ident: 3659_CR19
– volume: 12
  start-page: 288
  year: 2013
  ident: 3659_CR40
  publication-title: IEEE Trans Nanotechnol
  doi: 10.1109/TNANO.2013.2250995
– volume: 38
  start-page: 1153
  year: 2017
  ident: 3659_CR32
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2017.2713460
– volume: 5
  start-page: 108
  year: 2011
  ident: 3659_CR1
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2011.00108
– volume: 49
  start-page: 56
  year: 2016
  ident: 3659_CR26
  publication-title: Computer
  doi: 10.1109/MC.2016.312
– volume: 115
  start-page: 166
  year: 2013
  ident: 3659_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.027
– ident: 3659_CR13
– ident: 3659_CR35
– volume: 10
  start-page: 1297
  year: 2010
  ident: 3659_CR5
  publication-title: Nano Lett
  doi: 10.1021/nl904092h
– volume: 86
  start-page: 2278
  year: 1998
  ident: 3659_CR39
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 28
  start-page: 653
  year: 2017
  ident: 3659_CR25
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2522401
– ident: 3659_CR42
– ident: 3659_CR22
  doi: 10.3115/v1/D14-1179
– volume: 37
  start-page: 249
  year: 2016
  ident: 3659_CR12
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/led.2016.2521863
– volume: 10
  start-page: 333
  year: 2016
  ident: 3659_CR33
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00333
SSID ssj0004685
Score 2.4388776
Snippet In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8101
SubjectTerms Accuracy
Adaptive learning
Algorithms
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Data Mining and Knowledge Discovery
Electronic devices
Hardware
Image Processing and Computer Vision
Machine learning
Neural networks
Original Article
Probability and Statistics in Computer Science
Resistance
Upgrading
Weight
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLyIz4ii2YMnTUnpY9seiQGJJp4gwVOz2-5ykNSGlhj89c70AUrUhPNuJ-3Ozsw3nRfArWuiEQusnuEjmDcIEaPMWRSDd5QnfVs4skiQfeGjifM0dadVHXdWZ7vXIclCU6-L3egPJrm-vmFzNzBW-9B0yT9pQLP_-Po8-FYOWUziRMeFknocuw5m_kbkpznaYMytsGhhbYYtGNfvWSaZvHWXuexGn1stHHf8kCM4rNAn65fX5Rj2VHICrXqyA6sE_RTCfixSUoSsmioxY4vlXDFEuIzKtD7EQhlkAGMWK5Uy6oqJdJMypzxjlE0_Y5sROyxbJSLNFO4uNNMZTIaD8cPIqEYxGJHd4znyz_MlQSEec8uU1ApdINRT3Iy0xYVrm7HreGaMaMfS6OAqLQWqD-mj-EdeoOxzaCTviboAFmtTu7iKJLWjkVemEI7gWllKaGnzNpg1R8Ko6lNO4zLm4brDcnGAIR5gSAcYrtpwt34kLZt0_Le5U7M5rOQ1CykdPiAoZbfhvubaZvlPYpc77b6CA8RbQVnK2IFGvliqa8Q0ubyp7vAXmojtPA
  priority: 102
  providerName: Springer Nature
Title Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices
URI https://link.springer.com/article/10.1007/s00521-018-3659-y
https://www.proquest.com/docview/2307931753
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sAEinDzcJIJBdSHQKoQolKZLCexu6A0NK1Q_z13idMCEp0iJY6Hs-_us-_xEXLtMXBiod21AgDzFiJi0DkbY_Cu8uPAkW5cJsiO-HDsPk28iblwK0xaZW0TS0OdzhK8I7_DhOUQnZ1zn39ayBqF0VVDobFLml0bdhJWivcHP-oiS0pOOMFgdo_r1FFNVjYRBccFB-nAcrgXWqvffmkDNv_ER0u30z8k-wYv0qha4COyo7JjclBzMVCjmidERKnM0XRRwwMxpfPlh6KASSkWVn3JubLQZaU0VSqn2McS5s2qLPCCYv77lG5IcWixymReKBhd2pJTMu733h6HliFPsBKnyxcgcT-IEbzwlNssxublEsCZ4izRNpeew1LP9VkK-MTWcCRVOpag8HEAUk78UDlnpJHNMnVOaKqZ9uArTKldDUJlUrqSa2UrqWOHtwirRScS01kcCS4-xLonciltAdIWKG2xapGb9S951VZj2-B2vR7CaFghNvuhRW7rNdp8_neyi-2TXZI9gERhVW3YJo3FfKmuAHYs4k65tzqkGQ3en3vwfOiNXl7h7diOvgE7Fdcx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjShPD7CAItw4cZMBIQSUAqUTSGzGSewuVQhNEeqf4jdylwcFJNiY7Vyi8_m-u9wLYN_nCGKh23QCNOYdsojxzrkUg_dMKwqE9qIiQbYnOw_ezaP_OAXvdS0MpVXWOrFQ1MlzTP_IjylhOSSwE6fZi0NToyi6Wo_QKMXi1ozf0GXLT64v8HwPXLd9eX_ecaqpAk4smnKEn9IKIkJ1mUiXR9TVW6PVYiSPrSu1L3jiey2eIHC7Fn01YyONNyEK8PVxKzQC6U7DrCeEoF79QfvqSx1mMQIUPSbKJvJEHUXlRdNSBEp03ANHSD90xt9xcGLc_ojHFjDXXoKFyj5lZ6VALcOUSVdgsZ79wCpVsArqLNEZqUpWzZ3os-HrwDC0gRkVcr3poXEIIhOWGJMx6puJdNMy6zxnlG_fZ5MhPCwfpzrLDe4udNcaPPwLW9dhJn1OzQawxHLr4yqStJ5FpnKtPS2tcY22kZAN4DXrVFx1MqeBGgP12YO54LZCbivitho34PDzkaxs4_HX5u36PFR1o3M1kb8GHNVnNFn-ldjm38T2YK5zf9dV3eve7RbMozkWlpWO2zAzGr6aHTR5RtFuIWcMnv5bsD8AWFUOPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMTKGqIHScZK6AqD1UMVOpm2YndpQpRkwr133OXRwsIkJjt3HDO-b7zPT5CLn0XnFjk3TghgHkHETHYnIc5eG4CHTLFdVkgOxSDEX8c--Oa5zRvqt2blGTV04BTmtKimyW2u2x8w9dMDINDhwk_chbrZIODq8boa-T1PjVGlpycEMJgeQ9nTVrzJxFfHdMKbX5LkJZ-p79LtmvASHvVCe-RNZPuk52GjIHWtnlAZC9RGd5dtCaCmNDZfGoogFKKnVXvamYc9FkJTYzJKA6yBLlpVQaeUyyAn9AVKw7NF6nKcgO7y8vkkIz696-3A6dmT3BidiMKUHkQakQvIhGeq3F6uQJ0ZoQbW08on7mJzwM3AYDiWYhJjdUKLF6HYLFxEBl2RFrpW2qOCU2sa31YBZGWW1CqqxRXwhrPKKuZaBO3UZ2M69HiyHAxlcuhyKW2JWhborblok2ulp9k1VyNvzZ3mvOQtYnlEivYI0Q_rE2umzNaLf8q7ORfuy_I5stdXz4_DJ9OyRagpahqROyQVjGbmzNAJIU-L_-6D4rX12E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+learning+rule+for+hardware-based+deep+neural+networks+using+electronic+synapse+devices&rft.jtitle=Neural+computing+%26+applications&rft.au=Lim%2C+Suhwan&rft.au=Jong-Ho%2C+Bae&rft.au=Jai-Ho+Eum&rft.au=Lee%2C+Sungtae&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=11&rft.spage=8101&rft.epage=8116&rft_id=info:doi/10.1007%2Fs00521-018-3659-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon