Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices
In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propag...
Saved in:
Published in | Neural computing & applications Vol. 31; no. 11; pp. 8101 - 8116 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-018-3659-y |
Cover
Abstract | In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron network, we evaluate the learning performance according to various conductance responses of electronic synapse devices and weight-updating methods. It is shown that the learning accuracy is comparable to that obtained when using a software-based BP algorithm when the electronic synapse device has a linear conductance response with a high dynamic range. Furthermore, the proposed unidirectional weight-updating method is suitable for electronic synapse devices which have nonlinear and finite conductance responses. Because this weight-updating method can compensate the demerit of asymmetric weight updates, we can obtain better accuracy compared to other methods. This adaptive learning rule, which can be applied to full hardware implementation, can also compensate the degradation of learning accuracy due to the probable device-to-device variation in an actual electronic synapse device. |
---|---|
AbstractList | In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron network, we evaluate the learning performance according to various conductance responses of electronic synapse devices and weight-updating methods. It is shown that the learning accuracy is comparable to that obtained when using a software-based BP algorithm when the electronic synapse device has a linear conductance response with a high dynamic range. Furthermore, the proposed unidirectional weight-updating method is suitable for electronic synapse devices which have nonlinear and finite conductance responses. Because this weight-updating method can compensate the demerit of asymmetric weight updates, we can obtain better accuracy compared to other methods. This adaptive learning rule, which can be applied to full hardware implementation, can also compensate the degradation of learning accuracy due to the probable device-to-device variation in an actual electronic synapse device. |
Author | Eum, Jai-Ho Lim, Suhwan Park, Byung-Gook Kwon, Dongseok Bae, Jong-Ho Lee, Jong-Ho Lee, Sungtae Kim, Chul-Heung |
Author_xml | – sequence: 1 givenname: Suhwan surname: Lim fullname: Lim, Suhwan organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University – sequence: 2 givenname: Jong-Ho surname: Bae fullname: Bae, Jong-Ho organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University – sequence: 3 givenname: Jai-Ho surname: Eum fullname: Eum, Jai-Ho organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University – sequence: 4 givenname: Sungtae surname: Lee fullname: Lee, Sungtae organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University – sequence: 5 givenname: Chul-Heung surname: Kim fullname: Kim, Chul-Heung organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University – sequence: 6 givenname: Dongseok surname: Kwon fullname: Kwon, Dongseok organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University – sequence: 7 givenname: Byung-Gook surname: Park fullname: Park, Byung-Gook organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University – sequence: 8 givenname: Jong-Ho orcidid: 0000-0003-3559-9802 surname: Lee fullname: Lee, Jong-Ho email: jhl@snu.ac.kr organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University |
BookMark | eNp9kE1LxDAQhoOs4K76A7wFPEcnSdOP47L4BQte9BzSdLp2rWlN2l36782ygiDoaQ7zPvMOz4LMXOeQkCsONxwguw0ASnAGPGcyVQWbTsicJ1IyCSqfkTkUSdymiTwjixC2AJCkuZoTvaxMPzQ7pC0a7xq3oX5skdadp2_GV3vjkZUmYEUrxJ46HL1p4xj2nX8PdAwHBFu0g-9cY2mYnOkDxvSusRguyGlt2oCX3_OcvN7fvawe2fr54Wm1XDMreTqwPMvyUigu0ioVUFqT5CYBhSnYWqRGSahUkkFVFFLUXAqsSwMSyjwrpM0KlOfk-ni3993niGHQ2270LlZqISGmeKZkTPFjyvouBI-17n3zYfykOeiDR330qKNHffCop8hkvxjbDGZoOjd407T_kuJIhtjiNuh_fvob-gLPLYpR |
CitedBy_id | crossref_primary_10_1002_adfm_202213064 crossref_primary_10_1109_LED_2022_3225168 crossref_primary_10_3390_biomimetics9060335 crossref_primary_10_1038_s41467_020_17849_3 crossref_primary_10_1021_acsnano_3c05337 crossref_primary_10_1088_1361_6528_abf0cc crossref_primary_10_1089_big_2020_0153 crossref_primary_10_3389_felec_2022_825077 crossref_primary_10_1007_s00521_020_05388_3 crossref_primary_10_1007_s40042_024_01257_7 crossref_primary_10_1007_s11042_024_18783_y crossref_primary_10_1002_adfm_202416309 crossref_primary_10_1016_j_chaos_2022_111999 crossref_primary_10_1007_s40042_023_00950_3 crossref_primary_10_1021_acsnano_3c05493 crossref_primary_10_1109_TED_2023_3237670 crossref_primary_10_1007_s12200_022_00025_4 crossref_primary_10_1109_JPROC_2020_3004543 crossref_primary_10_1016_j_nantod_2024_102534 crossref_primary_10_1021_acsami_2c20925 crossref_primary_10_1038_s41928_023_01020_z crossref_primary_10_1002_adts_202200226 crossref_primary_10_1002_smll_202407612 crossref_primary_10_31642_JoKMC_2018_080105 crossref_primary_10_1002_aisy_202100064 crossref_primary_10_1016_j_apmt_2021_101024 crossref_primary_10_1088_1361_6528_aae975 crossref_primary_10_1007_s00521_021_05699_z crossref_primary_10_1088_1674_1056_ac4f4e crossref_primary_10_1016_j_neucom_2022_04_008 crossref_primary_10_1088_1361_6528_ab34da crossref_primary_10_1016_j_chaos_2023_113359 crossref_primary_10_1038_s41928_023_01056_1 crossref_primary_10_1126_sciadv_ado8999 crossref_primary_10_1021_acsami_0c10796 crossref_primary_10_1016_j_snb_2020_129258 crossref_primary_10_1039_D4NR03464C crossref_primary_10_1002_aisy_202300125 crossref_primary_10_1002_aisy_202300763 crossref_primary_10_1002_aisy_202100237 crossref_primary_10_1002_adma_202303664 crossref_primary_10_1109_ACCESS_2020_3036088 crossref_primary_10_3389_fnins_2020_00423 crossref_primary_10_1109_JEDS_2019_2913146 crossref_primary_10_1109_TED_2021_3081610 crossref_primary_10_1039_D1RA07728G crossref_primary_10_1109_TNNLS_2023_3327906 crossref_primary_10_1002_inf2_12367 crossref_primary_10_1039_D3NH00532A crossref_primary_10_1109_TED_2021_3134601 crossref_primary_10_1002_adma_202102980 crossref_primary_10_1016_j_neucom_2020_11_016 |
Cites_doi | 10.1021/nl201040y 10.1109/iedm.2014.7047135 10.1109/LED.2017.2713460 10.1109/IJCNN.2015.7280658 10.1109/led.2016.2521863 10.1109/ted.2016.2615648 10.1109/TNNLS.2016.2582924 10.1021/nl904092h 10.1109/ISCAS.2015.7169048 10.1002/adma.201101060 10.1038/nature14441 10.3389/fnins.2011.00108 10.3389/fnins.2016.00333 10.1109/ted.2012.2197951 10.1109/MC.2016.312 10.1038/nmat3054 10.1109/LED.2015.2418342 10.1016/j.neucom.2012.12.027 10.1109/IEDM.2012.6479018 10.1038/nmat3415 10.1109/5.726791 10.1002/adma.201604310 10.1561/2200000006 10.3389/fnins.2017.00324 10.1063/1.4773300 10.1109/tfuzz.2016.2574915 10.1109/ICRC.2016.7738684 10.1109/16.543035 10.1109/TNANO.2013.2250995 10.1109/IMW.2012.6213663 10.1109/IEDM.2011.6131488 10.1109/TNNLS.2016.2522401 10.1088/0957-4484/24/38/382001 10.3115/v1/D14-1179 |
ContentType | Journal Article |
Copyright | The Natural Computing Applications Forum 2018 Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: The Natural Computing Applications Forum 2018 – notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00521-018-3659-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 8116 |
ExternalDocumentID | 10_1007_s00521_018_3659_y |
GrantInformation_xml | – fundername: Korea Institute of Science and Technology grantid: 2E27810-18-P040 funderid: http://dx.doi.org/10.13039/501100003693 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-8778b25126d620bca48a405e60cf26a530d5470d9932f132efba030b8793c79e3 |
IEDL.DBID | 8FG |
ISSN | 0941-0643 |
IngestDate | Fri Aug 29 04:52:16 EDT 2025 Wed Oct 01 02:25:52 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Fri Feb 21 02:35:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Hardware-based deep neural networks (HW-DNNs) Neuromorphic Classification accuracy Back-propagation Synapse device Deep neural networks (DNNs) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-8778b25126d620bca48a405e60cf26a530d5470d9932f132efba030b8793c79e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3559-9802 |
PQID | 2307931753 |
PQPubID | 2043988 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2307931753 crossref_primary_10_1007_s00521_018_3659_y crossref_citationtrail_10_1007_s00521_018_3659_y springer_journals_10_1007_s00521_018_3659_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191100 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191100 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2019 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | CR19 Gokmen, Vlasov (CR33) 2016; 10 CR38 Merkel, Hasan, Soures, Kudithipudi, Taha, Agarwal, Marinella (CR26) 2016; 49 CR36 CR13 CR35 Wright, Liu, Kohary, Aziz, Hicken (CR3) 2011; 23 Diorio, Hasler, Minch, Mead (CR10) 1996; 43 Ziegler, Oberländer, Schroeder, Krautschneider, Kohlstedt (CR11) 2012; 101 Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (CR23) 2017; 28 Wu, Yu, Wong (CR7) 2012 Kuzum, Jeyasingh, Lee, Wong (CR4) 2012; 12 Deng, Bao, Kong, Ren, Dai (CR25) 2017; 28 Bengio (CR41) 2009; 2 Kim, Park, Kwon, Lee, Park (CR12) 2016; 37 Jo, Chang, Ebong, Bhadviya, Mazumder, Lu (CR5) 2010; 10 Burr, Shelby, di Nolfo, Jang, Shenoy, Narayanan, Virwani, Giacometti, Kurdi, Hwang (CR15) 2014 Kuzum, Yu, Wong (CR14) 2013; 24 Merrikh-Bayat, Guo, Om’mani, Do, Likharev, Strukov (CR18) 2015 Fuller, Gabaly, Leonard, Agarwal, Plimpton, Jacobs-Gedrim, James, Marinella, Talin (CR31) 2017; 29 Ohno, Hasegawa, Tsuruoka, Terabe, Gimzewski, Aono (CR6) 2011; 10 Bichler, Suri, Querlioz, Vuillaume, DeSalvo, Gamrat (CR37) 2012; 59 Fumarola, Narayana, Sanches, Sidler, Jang, Moon, Shelby, Hwang, Burr (CR34) 2016 Woo, Moon, Song, Kwak, Park, Hwang (CR30) 2016; 63 Yu, Gao, Fang (CR8) 2012 Bae, Lim, Park, Lee (CR32) 2017; 38 Poon, Zhou (CR1) 2011; 5 Nair, Dudek (CR16) 2015 Prezioso, Merrikh-Bayat, Hoskins, Adam, Likharev, Strukov (CR17) 2015; 521 CR22 CR21 Neftci, Augustine, Paul, Detorakis (CR27) 2017; 11 CR43 CR20 CR42 Merrikh Bayat, Bagheri Shouraki, Esmaili Paeen Afrakoti (CR28) 2013; 115 Lecun, Bottou, Bengio, Haffner (CR39) 1998; 86 Suri, Bichler, Querlioz, Cueto, Perniola, Sousa, Vuillaume, Gamrat, DeSalvo (CR2) 2011 Querlioz, Bichler, Dollfus, Gamrat (CR40) 2013; 12 Jang, Park, Burr, Hwang, Jeong (CR29) 2015; 36 Chanthbouala, Garcia, Cherifi, Bouzehouane, Fusil, Moya, Xavier, Yamada, Deranlot, Mathur, Bibes, Barthelemy, Grollier (CR9) 2012; 11 Deng, Ren, Kong, Bao, Dai (CR24) 2017; 25 H Kim (3659_CR12) 2016; 37 F Merrikh-Bayat (3659_CR18) 2015 D Querlioz (3659_CR40) 2013; 12 MV Nair (3659_CR16) 2015 Y Bengio (3659_CR41) 2009; 2 A Chanthbouala (3659_CR9) 2012; 11 F Merrikh Bayat (3659_CR28) 2013; 115 A Fumarola (3659_CR34) 2016 3659_CR21 3659_CR43 3659_CR22 J-W Jang (3659_CR29) 2015; 36 3659_CR20 3659_CR42 EJ Fuller (3659_CR31) 2017; 29 CS Poon (3659_CR1) 2011; 5 CD Wright (3659_CR3) 2011; 23 Y Deng (3659_CR25) 2017; 28 C Diorio (3659_CR10) 1996; 43 K Greff (3659_CR23) 2017; 28 EO Neftci (3659_CR27) 2017; 11 D Kuzum (3659_CR4) 2012; 12 T Gokmen (3659_CR33) 2016; 10 3659_CR36 O Bichler (3659_CR37) 2012; 59 SH Jo (3659_CR5) 2010; 10 3659_CR13 3659_CR35 3659_CR19 3659_CR38 Y Lecun (3659_CR39) 1998; 86 M Ziegler (3659_CR11) 2012; 101 C Merkel (3659_CR26) 2016; 49 GW Burr (3659_CR15) 2014 Y Wu (3659_CR7) 2012 J Woo (3659_CR30) 2016; 63 M Prezioso (3659_CR17) 2015; 521 T Ohno (3659_CR6) 2011; 10 Y Deng (3659_CR24) 2017; 25 S Yu (3659_CR8) 2012 M Suri (3659_CR2) 2011 D Kuzum (3659_CR14) 2013; 24 J-H Bae (3659_CR32) 2017; 38 |
References_xml | – volume: 12 start-page: 2179 year: 2012 end-page: 2186 ident: CR4 article-title: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing publication-title: Nano Lett doi: 10.1021/nl201040y – ident: CR22 – ident: CR43 – year: 2014 ident: CR15 article-title: Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element publication-title: IEEE Electron Devices Meeting doi: 10.1109/iedm.2014.7047135 – volume: 38 start-page: 1153 year: 2017 end-page: 1156 ident: CR32 article-title: High-density and near-linear synaptic device based on a reconfigurable gated Schottky diode publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2017.2713460 – year: 2015 ident: CR16 article-title: Gradient-descent-based learning in memristive crossbar arrays publication-title: IEEE Int Joint Conf Neural Netw doi: 10.1109/IJCNN.2015.7280658 – volume: 37 start-page: 249 year: 2016 end-page: 252 ident: CR12 article-title: Silicon-based floating-body synaptic transistor with frequency-dependent short- and long-term memories publication-title: IEEE Electron Device Lett doi: 10.1109/led.2016.2521863 – volume: 63 start-page: 5064 year: 2016 end-page: 5067 ident: CR30 article-title: Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic systems publication-title: IEEE Trans Electron Devices doi: 10.1109/ted.2016.2615648 – volume: 28 start-page: 2222 issue: 10 year: 2017 end-page: 2232 ident: CR23 article-title: LSTM: a search space odyssey publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2582924 – ident: CR35 – volume: 10 start-page: 1297 year: 2010 end-page: 1301 ident: CR5 article-title: Nanoscale memristor device as synapse in neuromorphic systems publication-title: Nano Lett doi: 10.1021/nl904092h – year: 2015 ident: CR18 article-title: Redesigning commercial floating-gate memory for analog computing applications publication-title: IEEE Int Symp Circuits Syst doi: 10.1109/ISCAS.2015.7169048 – ident: CR42 – volume: 23 start-page: 3408 year: 2011 end-page: 3413 ident: CR3 article-title: Arithmetic and biologically-inspired computing using phase-change materials publication-title: Adv Mater doi: 10.1002/adma.201101060 – volume: 521 start-page: 61 year: 2015 end-page: 64 ident: CR17 article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors publication-title: Nature doi: 10.1038/nature14441 – volume: 5 start-page: 108 year: 2011 ident: CR1 article-title: Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities publication-title: Front Neurosci doi: 10.3389/fnins.2011.00108 – ident: CR21 – volume: 10 start-page: 333 year: 2016 ident: CR33 article-title: Acceleration of deep neural network training with resistive cross-point devices: design considerations publication-title: Front Neurosci doi: 10.3389/fnins.2016.00333 – volume: 59 start-page: 2206 year: 2012 end-page: 2214 ident: CR37 article-title: Visual pattern extraction using energy-efficient “2-PCM Synapse” neuromorphic architecture publication-title: IEEE Trans Electron Devices doi: 10.1109/ted.2012.2197951 – volume: 49 start-page: 56 year: 2016 end-page: 64 ident: CR26 article-title: Neuromemristive systems: boosting efficiency through brain-inspired computing publication-title: Computer doi: 10.1109/MC.2016.312 – ident: CR19 – volume: 10 start-page: 591 year: 2011 end-page: 595 ident: CR6 article-title: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses publication-title: Nat Mater doi: 10.1038/nmat3054 – volume: 36 start-page: 457 year: 2015 end-page: 459 ident: CR29 article-title: Optimization of conductance change in PrCaMnO based synaptic devices for neuromorphic systems publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2015.2418342 – volume: 115 start-page: 166 year: 2013 end-page: 168 ident: CR28 article-title: Bottleneck of using a single memristive device as a synapse publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.027 – ident: CR38 – year: 2012 ident: CR8 article-title: A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling publication-title: IEEE Electron Devices Meeting doi: 10.1109/IEDM.2012.6479018 – volume: 11 start-page: 860 year: 2012 end-page: 864 ident: CR9 article-title: A ferroelectric memristor publication-title: Nat Mater doi: 10.1038/nmat3415 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR39 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 29 start-page: 1604310 issue: 4 year: 2017 ident: CR31 article-title: Li-ion synaptic transistor for low power analog computing publication-title: Adv Mater doi: 10.1002/adma.201604310 – ident: CR13 – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: CR41 article-title: Learning deep architectures for AI publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – volume: 11 start-page: 324 year: 2017 ident: CR27 article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines publication-title: Front Neurosci doi: 10.3389/fnins.2017.00324 – ident: CR36 – volume: 101 start-page: 263504 year: 2012 ident: CR11 article-title: Memristive operation mode of floating gate transistors: a two-terminal MemFlash-cell publication-title: Appl Phys Lett doi: 10.1063/1.4773300 – volume: 25 start-page: 1006 year: 2017 end-page: 1012 ident: CR24 article-title: A hierarchical fused fuzzy deep neural network for data classification publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/tfuzz.2016.2574915 – year: 2016 ident: CR34 article-title: Accelerating machine learning with non-volatile memory: exploring device and circuit tradeoffs publication-title: IEEE Int Conf Rebooting Comput doi: 10.1109/ICRC.2016.7738684 – volume: 43 start-page: 1972 year: 1996 end-page: 1980 ident: CR10 article-title: A single-transistor silicon synapse publication-title: IEEE Trans Electron Devices doi: 10.1109/16.543035 – volume: 12 start-page: 288 year: 2013 end-page: 295 ident: CR40 article-title: Immunity to device variations in a spiking neural network with memristive nanodevices publication-title: IEEE Trans Nanotechnol doi: 10.1109/TNANO.2013.2250995 – year: 2012 ident: CR7 article-title: AlO -based resistive switching device with gradual resistance modulation for neuromorphic device application publication-title: IEEE Memory Workshop doi: 10.1109/IMW.2012.6213663 – year: 2011 ident: CR2 article-title: Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction publication-title: IEEE Electron Devices Meeting doi: 10.1109/IEDM.2011.6131488 – volume: 28 start-page: 653 year: 2017 end-page: 664 ident: CR25 article-title: Deep direct reinforcement learning for financial signal representation and trading publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2522401 – volume: 24 start-page: 382001 year: 2013 ident: CR14 article-title: Synaptic electronics: materials, devices and applications publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/382001 – ident: CR20 – year: 2012 ident: 3659_CR7 publication-title: IEEE Memory Workshop doi: 10.1109/IMW.2012.6213663 – year: 2012 ident: 3659_CR8 publication-title: IEEE Electron Devices Meeting doi: 10.1109/IEDM.2012.6479018 – volume: 11 start-page: 324 year: 2017 ident: 3659_CR27 publication-title: Front Neurosci doi: 10.3389/fnins.2017.00324 – ident: 3659_CR43 – volume: 23 start-page: 3408 year: 2011 ident: 3659_CR3 publication-title: Adv Mater doi: 10.1002/adma.201101060 – volume: 521 start-page: 61 year: 2015 ident: 3659_CR17 publication-title: Nature doi: 10.1038/nature14441 – year: 2014 ident: 3659_CR15 publication-title: IEEE Electron Devices Meeting doi: 10.1109/iedm.2014.7047135 – volume: 24 start-page: 382001 year: 2013 ident: 3659_CR14 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/382001 – year: 2015 ident: 3659_CR18 publication-title: IEEE Int Symp Circuits Syst doi: 10.1109/ISCAS.2015.7169048 – volume: 25 start-page: 1006 year: 2017 ident: 3659_CR24 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/tfuzz.2016.2574915 – volume: 10 start-page: 591 year: 2011 ident: 3659_CR6 publication-title: Nat Mater doi: 10.1038/nmat3054 – ident: 3659_CR36 – ident: 3659_CR38 – year: 2016 ident: 3659_CR34 publication-title: IEEE Int Conf Rebooting Comput doi: 10.1109/ICRC.2016.7738684 – volume: 2 start-page: 1 year: 2009 ident: 3659_CR41 publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – volume: 101 start-page: 263504 year: 2012 ident: 3659_CR11 publication-title: Appl Phys Lett doi: 10.1063/1.4773300 – ident: 3659_CR20 – volume: 29 start-page: 1604310 issue: 4 year: 2017 ident: 3659_CR31 publication-title: Adv Mater doi: 10.1002/adma.201604310 – year: 2015 ident: 3659_CR16 publication-title: IEEE Int Joint Conf Neural Netw doi: 10.1109/IJCNN.2015.7280658 – volume: 63 start-page: 5064 year: 2016 ident: 3659_CR30 publication-title: IEEE Trans Electron Devices doi: 10.1109/ted.2016.2615648 – volume: 11 start-page: 860 year: 2012 ident: 3659_CR9 publication-title: Nat Mater doi: 10.1038/nmat3415 – volume: 28 start-page: 2222 issue: 10 year: 2017 ident: 3659_CR23 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2582924 – volume: 36 start-page: 457 year: 2015 ident: 3659_CR29 publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2015.2418342 – year: 2011 ident: 3659_CR2 publication-title: IEEE Electron Devices Meeting doi: 10.1109/IEDM.2011.6131488 – volume: 12 start-page: 2179 year: 2012 ident: 3659_CR4 publication-title: Nano Lett doi: 10.1021/nl201040y – volume: 43 start-page: 1972 year: 1996 ident: 3659_CR10 publication-title: IEEE Trans Electron Devices doi: 10.1109/16.543035 – ident: 3659_CR21 – volume: 59 start-page: 2206 year: 2012 ident: 3659_CR37 publication-title: IEEE Trans Electron Devices doi: 10.1109/ted.2012.2197951 – ident: 3659_CR19 – volume: 12 start-page: 288 year: 2013 ident: 3659_CR40 publication-title: IEEE Trans Nanotechnol doi: 10.1109/TNANO.2013.2250995 – volume: 38 start-page: 1153 year: 2017 ident: 3659_CR32 publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2017.2713460 – volume: 5 start-page: 108 year: 2011 ident: 3659_CR1 publication-title: Front Neurosci doi: 10.3389/fnins.2011.00108 – volume: 49 start-page: 56 year: 2016 ident: 3659_CR26 publication-title: Computer doi: 10.1109/MC.2016.312 – volume: 115 start-page: 166 year: 2013 ident: 3659_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.027 – ident: 3659_CR13 – ident: 3659_CR35 – volume: 10 start-page: 1297 year: 2010 ident: 3659_CR5 publication-title: Nano Lett doi: 10.1021/nl904092h – volume: 86 start-page: 2278 year: 1998 ident: 3659_CR39 publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 28 start-page: 653 year: 2017 ident: 3659_CR25 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2522401 – ident: 3659_CR42 – ident: 3659_CR22 doi: 10.3115/v1/D14-1179 – volume: 37 start-page: 249 year: 2016 ident: 3659_CR12 publication-title: IEEE Electron Device Lett doi: 10.1109/led.2016.2521863 – volume: 10 start-page: 333 year: 2016 ident: 3659_CR33 publication-title: Front Neurosci doi: 10.3389/fnins.2016.00333 |
SSID | ssj0004685 |
Score | 2.4388776 |
Snippet | In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8101 |
SubjectTerms | Accuracy Adaptive learning Algorithms Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer simulation Data Mining and Knowledge Discovery Electronic devices Hardware Image Processing and Computer Vision Machine learning Neural networks Original Article Probability and Statistics in Computer Science Resistance Upgrading Weight |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLyIz4ii2YMnTUnpY9seiQGJJp4gwVOz2-5ykNSGlhj89c70AUrUhPNuJ-3Ozsw3nRfArWuiEQusnuEjmDcIEaPMWRSDd5QnfVs4skiQfeGjifM0dadVHXdWZ7vXIclCU6-L3egPJrm-vmFzNzBW-9B0yT9pQLP_-Po8-FYOWUziRMeFknocuw5m_kbkpznaYMytsGhhbYYtGNfvWSaZvHWXuexGn1stHHf8kCM4rNAn65fX5Rj2VHICrXqyA6sE_RTCfixSUoSsmioxY4vlXDFEuIzKtD7EQhlkAGMWK5Uy6oqJdJMypzxjlE0_Y5sROyxbJSLNFO4uNNMZTIaD8cPIqEYxGJHd4znyz_MlQSEec8uU1ApdINRT3Iy0xYVrm7HreGaMaMfS6OAqLQWqD-mj-EdeoOxzaCTviboAFmtTu7iKJLWjkVemEI7gWllKaGnzNpg1R8Ko6lNO4zLm4brDcnGAIR5gSAcYrtpwt34kLZt0_Le5U7M5rOQ1CykdPiAoZbfhvubaZvlPYpc77b6CA8RbQVnK2IFGvliqa8Q0ubyp7vAXmojtPA priority: 102 providerName: Springer Nature |
Title | Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices |
URI | https://link.springer.com/article/10.1007/s00521-018-3659-y https://www.proquest.com/docview/2307931753 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sAEinDzcJIJBdSHQKoQolKZLCexu6A0NK1Q_z13idMCEp0iJY6Hs-_us-_xEXLtMXBiod21AgDzFiJi0DkbY_Cu8uPAkW5cJsiO-HDsPk28iblwK0xaZW0TS0OdzhK8I7_DhOUQnZ1zn39ayBqF0VVDobFLml0bdhJWivcHP-oiS0pOOMFgdo_r1FFNVjYRBccFB-nAcrgXWqvffmkDNv_ER0u30z8k-wYv0qha4COyo7JjclBzMVCjmidERKnM0XRRwwMxpfPlh6KASSkWVn3JubLQZaU0VSqn2McS5s2qLPCCYv77lG5IcWixymReKBhd2pJTMu733h6HliFPsBKnyxcgcT-IEbzwlNssxublEsCZ4izRNpeew1LP9VkK-MTWcCRVOpag8HEAUk78UDlnpJHNMnVOaKqZ9uArTKldDUJlUrqSa2UrqWOHtwirRScS01kcCS4-xLonciltAdIWKG2xapGb9S951VZj2-B2vR7CaFghNvuhRW7rNdp8_neyi-2TXZI9gERhVW3YJo3FfKmuAHYs4k65tzqkGQ3en3vwfOiNXl7h7diOvgE7Fdcx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjShPD7CAItw4cZMBIQSUAqUTSGzGSewuVQhNEeqf4jdylwcFJNiY7Vyi8_m-u9wLYN_nCGKh23QCNOYdsojxzrkUg_dMKwqE9qIiQbYnOw_ezaP_OAXvdS0MpVXWOrFQ1MlzTP_IjylhOSSwE6fZi0NToyi6Wo_QKMXi1ozf0GXLT64v8HwPXLd9eX_ecaqpAk4smnKEn9IKIkJ1mUiXR9TVW6PVYiSPrSu1L3jiey2eIHC7Fn01YyONNyEK8PVxKzQC6U7DrCeEoF79QfvqSx1mMQIUPSbKJvJEHUXlRdNSBEp03ANHSD90xt9xcGLc_ojHFjDXXoKFyj5lZ6VALcOUSVdgsZ79wCpVsArqLNEZqUpWzZ3os-HrwDC0gRkVcr3poXEIIhOWGJMx6puJdNMy6zxnlG_fZ5MhPCwfpzrLDe4udNcaPPwLW9dhJn1OzQawxHLr4yqStJ5FpnKtPS2tcY22kZAN4DXrVFx1MqeBGgP12YO54LZCbivitho34PDzkaxs4_HX5u36PFR1o3M1kb8GHNVnNFn-ldjm38T2YK5zf9dV3eve7RbMozkWlpWO2zAzGr6aHTR5RtFuIWcMnv5bsD8AWFUOPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMTKGqIHScZK6AqD1UMVOpm2YndpQpRkwr133OXRwsIkJjt3HDO-b7zPT5CLn0XnFjk3TghgHkHETHYnIc5eG4CHTLFdVkgOxSDEX8c--Oa5zRvqt2blGTV04BTmtKimyW2u2x8w9dMDINDhwk_chbrZIODq8boa-T1PjVGlpycEMJgeQ9nTVrzJxFfHdMKbX5LkJZ-p79LtmvASHvVCe-RNZPuk52GjIHWtnlAZC9RGd5dtCaCmNDZfGoogFKKnVXvamYc9FkJTYzJKA6yBLlpVQaeUyyAn9AVKw7NF6nKcgO7y8vkkIz696-3A6dmT3BidiMKUHkQakQvIhGeq3F6uQJ0ZoQbW08on7mJzwM3AYDiWYhJjdUKLF6HYLFxEBl2RFrpW2qOCU2sa31YBZGWW1CqqxRXwhrPKKuZaBO3UZ2M69HiyHAxlcuhyKW2JWhborblok2ulp9k1VyNvzZ3mvOQtYnlEivYI0Q_rE2umzNaLf8q7ORfuy_I5stdXz4_DJ9OyRagpahqROyQVjGbmzNAJIU-L_-6D4rX12E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+learning+rule+for+hardware-based+deep+neural+networks+using+electronic+synapse+devices&rft.jtitle=Neural+computing+%26+applications&rft.au=Lim%2C+Suhwan&rft.au=Jong-Ho%2C+Bae&rft.au=Jai-Ho+Eum&rft.au=Lee%2C+Sungtae&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=11&rft.spage=8101&rft.epage=8116&rft_id=info:doi/10.1007%2Fs00521-018-3659-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |