Human gait recognition using localized Grassmann mean representatives with partial least squares regression
Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number of challenges. The performance of a gait recognition system is sensitive towards factors like viewing angle, clothing, shoe type, load carria...
Saved in:
| Published in | Multimedia tools and applications Vol. 77; no. 21; pp. 28457 - 28482 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.11.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-018-6045-y |
Cover
| Abstract | Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number of challenges. The performance of a gait recognition system is sensitive towards factors like viewing angle, clothing, shoe type, load carriage and speed changes. In this paper, the problems of gait are formulated on the Grassmann manifold. It is not difficult to obtain multiple snapshots of a walking subjects with the wide availability of camera networks. These sets of images can be modelled as low-dimensional subspaces, which can be realized naturally as points on the Grassmann manifold. Modelling image sets as low-dimensional subspaces provides not only possible clue of one’s gait, but also the common patterns of variation in the set. We present a method called Localized Grassmann Mean Representatives with Partial Least Squares Regression (LoGPLS) to infer a low-dimensional Euclidean approximation of the manifold. The notion of local mean representatives is introduced to construct multiple tangent spaces to better approximate the topological structure of the manifold. As the properties of the tangent spaces allows the Grassmann points to be evaluated in the vector space, partial least squares is applied to allow a more accurate classification of the points in a reduced space. Experiments have been conducted on four different publicly available gait databases. Empirical evidences demonstrate the effectiveness of the proposed approach in solving the various covariates in gait recognition. |
|---|---|
| AbstractList | Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number of challenges. The performance of a gait recognition system is sensitive towards factors like viewing angle, clothing, shoe type, load carriage and speed changes. In this paper, the problems of gait are formulated on the Grassmann manifold. It is not difficult to obtain multiple snapshots of a walking subjects with the wide availability of camera networks. These sets of images can be modelled as low-dimensional subspaces, which can be realized naturally as points on the Grassmann manifold. Modelling image sets as low-dimensional subspaces provides not only possible clue of one’s gait, but also the common patterns of variation in the set. We present a method called Localized Grassmann Mean Representatives with Partial Least Squares Regression (LoGPLS) to infer a low-dimensional Euclidean approximation of the manifold. The notion of local mean representatives is introduced to construct multiple tangent spaces to better approximate the topological structure of the manifold. As the properties of the tangent spaces allows the Grassmann points to be evaluated in the vector space, partial least squares is applied to allow a more accurate classification of the points in a reduced space. Experiments have been conducted on four different publicly available gait databases. Empirical evidences demonstrate the effectiveness of the proposed approach in solving the various covariates in gait recognition. |
| Author | Teoh, Andrew Beng Jin Connie, Tee Goh, Michael Kah Ong |
| Author_xml | – sequence: 1 givenname: Tee surname: Connie fullname: Connie, Tee organization: Faculty of Information Science and Technology, Multimedia University – sequence: 2 givenname: Michael Kah Ong surname: Goh fullname: Goh, Michael Kah Ong organization: Faculty of Information Science and Technology, Multimedia University – sequence: 3 givenname: Andrew Beng Jin orcidid: 0000-0001-5063-9484 surname: Teoh fullname: Teoh, Andrew Beng Jin email: bjteoh@yonsei.ac.kr organization: School of Electrical and Electronic Engineering, College of Engineering, Yonsei University |
| BookMark | eNp9kE9LwzAYh4NMcFM_gLeA52rSpE1zlKGbMPCi5_AuTWtml25JqsxPb0YFQdDT-x6e3_vnmaGJ651B6IqSG0qIuA2UEp5nhFZZSXiRHU7QlBaCZULkdJJ6VpFMFISeoVkIG0JoWeR8it6WwxYcbsFG7I3uW2ej7R0egnUt7noNnf00NV54CCGRDm9N4r3ZeROMixDtuwn4w8ZXvAMfLXS4MxAiDvsBEpPQNpWQhl6g0wa6YC6_6zl6ebh_ni-z1dPicX63yjSjZcwqKspGEgrpr1xrs6615HUuWQ1cawmVYKaRa16DZGUlOGnKohGsYUIyw4Cwc3Q9zt35fj-YENWmH7xLK1VOGKNc0qJKFB0p7fsQvGnUztst-IOiRB2dqtGpSk7V0ak6pIz4ldH2qKB30YPt_k3mYzKkLa41_uemv0NfUoiQNw |
| CitedBy_id | crossref_primary_10_3390_app15010043 crossref_primary_10_1007_s11042_020_09003_4 crossref_primary_10_1080_03772063_2024_2351563 crossref_primary_10_3390_biomimetics9060364 crossref_primary_10_1007_s11227_020_03409_5 |
| Cites_doi | 10.2307/2333955 10.1016/j.patcog.2015.08.011 10.1109/AFGR.1998.670968 10.1109/TIP.2013.2266578 10.1016/j.neucom.2014.10.079 10.1109/TPAMI.2007.1037 10.1016/j.patcog.2009.05.006 10.1007/11527923_8 10.1109/TIP.2011.2160956 10.1145/1390156.1390204 10.1109/CVPR.2006.50 10.1109/TCSVT.2012.2186744 10.1109/LSP.2008.2010819 10.1016/j.patcog.2015.11.016 10.1109/CVPR.2004.1315244 10.1109/TCSVT.2014.2305495 10.1109/TCSVT.2013.2280098 10.1007/s11042-017-4903-7 10.1109/TSMCB.2012.2197823 10.1007/11744078_12 10.1109/ICB.2016.7550060 10.1016/j.engappai.2010.07.004 10.2197/ipsjtcva.4.53 10.1109/TPAMI.2006.122 10.1186/s41074-018-0039-6 10.1109/TPAMI.2006.214 10.1109/TPAMI.2011.52 10.1109/TCSVT.2017.2760835 10.1016/j.neucom.2016.01.002 10.1186/1687-6180-2014-15 10.1109/TPAMI.2006.38 10.1109/TIFS.2013.2252342 10.1016/j.patrec.2016.05.009 10.1109/CVPR.2010.5540144 10.1109/TIP.2014.2371335 10.1007/11789239_33 10.1016/j.jvcir.2016.03.020 10.1016/j.patcog.2014.04.014 10.1109/TPAMI.2014.2366766 10.1016/j.jvlc.2014.10.004 10.1109/TSMCB.2010.2043526 10.1109/TSMCB.2009.2031091 10.1109/CVPR.2011.5995564 10.1109/LSP.2015.2507200 10.1007/s11042-012-1319-2 10.1007/s11042-013-1574-x 10.1109/TCSVT.2006.877418 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-018-6045-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 28482 |
| ExternalDocumentID | 10_1007_s11042_018_6045_y |
| GrantInformation_xml | – fundername: Fundamental Research Grant Scheme grantid: FRGS/1/2014/ICT02/MMU/02/2 – fundername: National Research Foundation of Korea (KR) |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c316t-8176f901a0072ccebdc94d293da4cc9a873ef9b4da9368740f65f73f3793e3a03 |
| IEDL.DBID | U2A |
| ISSN | 1380-7501 |
| IngestDate | Fri Jul 25 23:27:40 EDT 2025 Wed Oct 01 05:47:41 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Fri Feb 21 02:33:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | Grassmann means Tangent spaces Grassmann manifold Partial least squares regression Gait recognition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-8176f901a0072ccebdc94d293da4cc9a873ef9b4da9368740f65f73f3793e3a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5063-9484 |
| PQID | 2033149158 |
| PQPubID | 54626 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2033149158 crossref_primary_10_1007_s11042_018_6045_y crossref_citationtrail_10_1007_s11042_018_6045_y springer_journals_10_1007_s11042_018_6045_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20181100 2018-11-00 20181101 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 20181100 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | FukuiKazuhiroYamaguchiOsamuFace Recognition Using Multi-viewpoint Patterns for Robot VisionSpringer Tracts in Advanced Robotics2005Berlin, HeidelbergSpringer Berlin Heidelberg192201 GuanYLiCTRoliFOn reducing the effect of covariate factors in gait recognition: a classifier ensemble methodIEEE Trans Pattern Anal Mach Intell2015371521152810.1109/TPAMI.2014.2366766 Liu N, Lu J, Tan Y-P, Li M (2011) Set-to-set gait recognition across varying views and walking conditions. In: 2011 I.E. International Conference on Multimedia and Expo (ICME). pp 1–6 WangXiuhuiWangJunYanKeGait recognition based on Gabor wavelets and (2D)2PCAMultimedia Tools and Applications20177710125451256110.1007/s11042-017-4903-7 Wold H (1985) Partial least squares. Encyclopedia of Statistic Sciences 581–591 HongJKangJPriceMEExtraction of bodily features for gait recognition and gait attractiveness evaluationMultimed Tools Appl2014711999201310.1007/s11042-012-1319-2 WolfLShashuaAGemanDLearning over sets using kernel principal anglesJ Mach Learn Res2003420032125341 XuDYanSTaoDHuman gait recognition with matrix representationIEEE Trans Circuits Syst Video Technol20061689690310.1109/TCSVT.2006.877418 TuragaPVeeraraghavanASrivastavaAChellappaRStatistical computations on Grassmann and Stiefel manifolds for image and video-based recognitionIEEE Trans Pattern Anal Mach Intell2011332273228610.1109/TPAMI.2011.52 LaiZXuYJinZZhangDHuman gait recognition via sparse discriminant projection learningIEEE Trans Circuits Syst Video Technol2014241651166210.1109/TCSVT.2014.2305495 Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. IEEE pp 2705–2712 GuJDingXWangSWuYAction and gait recognition from recovered 3-D human jointsIEEE Trans Syst Man Cybern Part B Cybern2010401021103310.1109/TSMCB.2010.2043526 Tsuji A, Makihara Y, Yagi Y (2010) Silhouette transformation based on walking speed for gait identification. In: 2010 I.E. conference on computer vision and pattern recognition (CVPR) pp 717–722 López-FernándezDMadrid-CuevasFJCarmona-PoyatoAA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020 Begelfor E, Werman M (2006) Affine invariance revisited. In: 2006 ieee computer society conference on computer vision and pattern recognition pp 2087–2094 ZhouZPrugel-BennettADamperRIA Bayesian framework for extracting human gait using strong prior knowledgeIEEE Trans Pattern Anal Mach Intell2006281738175210.1109/TPAMI.2006.214 ZengWWangCYangFSilhouette-based gait recognition via deterministic learningPattern Recogn2014473568358410.1016/j.patcog.2014.04.014 Li X, Fukui K, Zheng N (2009) Boosting constrained mutual subspace method for robust image-set based object recognition. pp 1132–1137 KimT-KKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsIEEE Trans Pattern Anal Mach Intell2007291005101810.1109/TPAMI.2007.1037 HuHMultiview gait recognition based on patch distribution features and uncorrelated multilinear sparse local discriminant canonical correlation analysisIEEE Trans Circuits Syst Video Technol20142461763010.1109/TCSVT.2013.2280098 Chang J-M (2008) Classification on the Grassmannians: theory and applications. ProQuest LeeTKMBelkhatirMSaneiSA comprehensive review of past and present vision-based techniques for gait recognitionMultimed Tools Appl2014722833286910.1007/s11042-013-1574-x MuramatsuDShiraishiAMakiharaYGait-based person recognition using arbitrary view transformation modelIEEE Trans Image Process201524140154329397610.1109/TIP.2014.2371335 Shiraga K, Makihara Y, Muramatsu D et al (2016) GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 international conference on biometrics (ICB). pp 1–8 LiFDaiQXuWErGWeighted subspace distance and its applications to object recognition and retrieval with image setsIEEE Signal Process Lett20091622723010.1109/LSP.2008.2010819 Takemura N, Makihara Y, Muramatsu D et al (2017) On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans Circuits Syst Video Technol 1–1. doi:https://doi.org/10.1109/TCSVT.2017.2760835 MakiharaYSagawaRMukaigawaYLeonardisABischofHPinzAGait recognition using a view transformation model in the frequency domainComputer vision – ECCV 20062006BerlinSpringer15116310.1007/11744078_12 KusakunniranWWuQZhangJLiHGait recognition across various walking speeds using higher order shape configuration based on a differential composition modelIEEE Trans Syst Man Cybern Part B Cybern2012421654166810.1109/TSMCB.2012.2197823 LeeChan-SuElgammalAhmedCarrying Object Detection Using Pose Preserving Dynamic Shape ModelsArticulated Motion and Deformable Objects2006Berlin, HeidelbergSpringer Berlin Heidelberg31532510.1007/11789239_33 XingXWangKYanTLvZComplete canonical correlation analysis with application to multiview gait recognitionPattern Recogn20155010711710.1016/j.patcog.2015.08.011 MakiharaYMannamiHTsujiAThe OU-ISIR gait database comprising the treadmill datasetIPSJ Trans Comput Vis Appl20124536210.2197/ipsjtcva.4.53 LuWZongWXingWBaoEGait recognition based on joint distribution of motion anglesJ Vis Lang Comput20142575476310.1016/j.jvlc.2014.10.004 XuDHuangYZengZXuXHuman gait recognition using patch distribution feature and locality-constrained group sparse representationIEEE Trans Image Process201221316326291897510.1109/TIP.2011.21609561372.94280 GoffredoMBouchrikaICarterJNNixonMSSelf-calibrating view-invariant gait biometricsIEEE Trans Syst Man Cybern Part B Cybern201040997100810.1109/TSMCB.2009.2031091 Das ChoudhurySTjahjadiTClothing and carrying condition invariant gait recognition based on rotation forestPattern Recogn Lett2016801710.1016/j.patrec.2016.05.009 NandyAChakrabortyRChakrabortyPCloth invariant gait recognition using pooled segmented statistical featuresNeurocomputing201619111714010.1016/j.neucom.2016.01.002 LiuZSarkarSImproved gait recognition by gait dynamics normalizationIEEE Trans Pattern Anal Mach Intell20062886387610.1109/TPAMI.2006.122 TakemuraNMakiharaYMuramatsuDMulti-view large population gait dataset and its performance evaluation for cross-view gait recognitionIPSJ Trans Comput Vis Appl20181010.1186/s41074-018-0039-6 Marks JD (2012) Mean variants on matrix manifolds. Doctor of Philosophy (Ph.D.) Thesis, Colorado State University ZengWWangCGait recognition across different walking speeds via deterministic learningNeurocomputing201515213915010.1016/j.neucom.2014.10.079 ChenXXuJUncooperative gait recognition: re-ranking based on sparse coding and multi-view hypergraph learningPattern Recogn20165311612910.1016/j.patcog.2015.11.016 Yamaguchi O, Fukui K, Maeda K -I (1998) Face recognition using temporal image sequence. IEEE pp 318–323 BoulgourisNVHuangXGait recognition using HMMs and dual discriminative observations for sub-dynamics analysisIEEE Trans Image Process2013223636364710.1109/TIP.2013.2266578 TafazzoliFSafabakhshRModel-based human gait recognition using leg and arm movementsEng Appl Artif Intell2010231237124610.1016/j.engappai.2010.07.004 Tanawongsuwan R, Bobick A (2004) Modelling the effects of walking speed on appearance-based gait recognition. In: Proceedings of the 2004 I.E. computer society conference on computer vision and pattern recognition. CVPR 2004. p II-783-II-790 Vol.2 HotellingHRelations between two sets of variatesBiometrika19362832110.2307/23339550015.40705 (2015) CASIA Gait Database. http://www.sinobiometrics.com. Accessed 24 April 2018 NishiyamaMYamaguchiOFukuiKKanadeTJainARathaNKFace recognition with the multiple constrained mutual subspace methodAudio- and video-based biometric person authentication2005BerlinSpringer718010.1007/11527923_8 KusakunniranWWuQZhangJA new view-invariant feature for cross-view gait recognitionIEEE Trans Inf Forensics Secur201381642165310.1109/TIFS.2013.2252342 Connie T, Goh MKO, Teoh ABJ A Grassmann graph embedding framework for gait analysis. EURASIP J Adv Signal Process 2014, 2014:15. https://doi.org/10.1186/1687-6180-2014-15 JeanFAlbuABBergevinRTowards view-invariant gait modeling: computing view-normalized body part trajectoriesPattern Recogn2009422936294910.1016/j.patcog.2009.05.0061175.68362 Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the 25th international conference on machine learning pp 376–383 HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell20062831632210.1109/TPAMI.2006.38 RidaIJiangXMarcialisGLHuman body part selection by group lasso of motion for model-free gait recognitionIEEE Signal Process Lett20162315415810.1109/LSP.2015.2507200 KusakunniranWWuQZhangJLiHGait recognition under various viewing angles based on correlated motion regressionIEEE Trans Circuits Syst Video Technol20122296698010.1109/TCSVT.2012.2186744 Xiuhui Wang (6045_CR46) 2017; 77 W Zeng (6045_CR53) 2015; 152 6045_CR47 6045_CR44 6045_CR43 S Das Choudhury (6045_CR7) 2016; 80 Z Liu (6045_CR28) 2006; 28 6045_CR41 H Hotelling (6045_CR16) 1936; 28 N Takemura (6045_CR42) 2018; 10 Z Lai (6045_CR23) 2014; 24 J Gu (6045_CR10) 2010; 40 L Wolf (6045_CR48) 2003; 4 J Han (6045_CR13) 2006; 28 Chan-Su Lee (6045_CR24) 2006 Y Makihara (6045_CR33) 2012; 4 6045_CR34 M Goffredo (6045_CR9) 2010; 40 X Chen (6045_CR5) 2016; 53 Kazuhiro Fukui (6045_CR8) 2005 6045_CR39 NV Boulgouris (6045_CR3) 2013; 22 F Tafazzoli (6045_CR40) 2010; 23 H Hu (6045_CR17) 2014; 24 T-K Kim (6045_CR19) 2007; 29 F Jean (6045_CR18) 2009; 42 W Lu (6045_CR31) 2014; 25 Y Makihara (6045_CR32) 2006 F Li (6045_CR26) 2009; 16 J Hong (6045_CR15) 2014; 71 W Kusakunniran (6045_CR21) 2012; 42 6045_CR29 6045_CR27 D López-Fernández (6045_CR30) 2016; 38 D Muramatsu (6045_CR35) 2015; 24 A Nandy (6045_CR36) 2016; 191 D Xu (6045_CR50) 2006; 16 6045_CR4 6045_CR6 W Kusakunniran (6045_CR20) 2012; 22 X Xing (6045_CR49) 2015; 50 6045_CR14 6045_CR2 6045_CR1 6045_CR12 Y Guan (6045_CR11) 2015; 37 Z Zhou (6045_CR55) 2006; 28 6045_CR52 P Turaga (6045_CR45) 2011; 33 W Kusakunniran (6045_CR22) 2013; 8 D Xu (6045_CR51) 2012; 21 W Zeng (6045_CR54) 2014; 47 TKM Lee (6045_CR25) 2014; 72 M Nishiyama (6045_CR37) 2005 I Rida (6045_CR38) 2016; 23 |
| References_xml | – reference: LiuZSarkarSImproved gait recognition by gait dynamics normalizationIEEE Trans Pattern Anal Mach Intell20062886387610.1109/TPAMI.2006.122 – reference: ZengWWangCGait recognition across different walking speeds via deterministic learningNeurocomputing201515213915010.1016/j.neucom.2014.10.079 – reference: Chang J-M (2008) Classification on the Grassmannians: theory and applications. ProQuest – reference: TafazzoliFSafabakhshRModel-based human gait recognition using leg and arm movementsEng Appl Artif Intell2010231237124610.1016/j.engappai.2010.07.004 – reference: WolfLShashuaAGemanDLearning over sets using kernel principal anglesJ Mach Learn Res2003420032125341 – reference: BoulgourisNVHuangXGait recognition using HMMs and dual discriminative observations for sub-dynamics analysisIEEE Trans Image Process2013223636364710.1109/TIP.2013.2266578 – reference: LiFDaiQXuWErGWeighted subspace distance and its applications to object recognition and retrieval with image setsIEEE Signal Process Lett20091622723010.1109/LSP.2008.2010819 – reference: LaiZXuYJinZZhangDHuman gait recognition via sparse discriminant projection learningIEEE Trans Circuits Syst Video Technol2014241651166210.1109/TCSVT.2014.2305495 – reference: XuDYanSTaoDHuman gait recognition with matrix representationIEEE Trans Circuits Syst Video Technol20061689690310.1109/TCSVT.2006.877418 – reference: ChenXXuJUncooperative gait recognition: re-ranking based on sparse coding and multi-view hypergraph learningPattern Recogn20165311612910.1016/j.patcog.2015.11.016 – reference: MakiharaYSagawaRMukaigawaYLeonardisABischofHPinzAGait recognition using a view transformation model in the frequency domainComputer vision – ECCV 20062006BerlinSpringer15116310.1007/11744078_12 – reference: HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell20062831632210.1109/TPAMI.2006.38 – reference: KimT-KKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsIEEE Trans Pattern Anal Mach Intell2007291005101810.1109/TPAMI.2007.1037 – reference: Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the 25th international conference on machine learning pp 376–383 – reference: JeanFAlbuABBergevinRTowards view-invariant gait modeling: computing view-normalized body part trajectoriesPattern Recogn2009422936294910.1016/j.patcog.2009.05.0061175.68362 – reference: Wold H (1985) Partial least squares. Encyclopedia of Statistic Sciences 581–591 – reference: GuanYLiCTRoliFOn reducing the effect of covariate factors in gait recognition: a classifier ensemble methodIEEE Trans Pattern Anal Mach Intell2015371521152810.1109/TPAMI.2014.2366766 – reference: MakiharaYMannamiHTsujiAThe OU-ISIR gait database comprising the treadmill datasetIPSJ Trans Comput Vis Appl20124536210.2197/ipsjtcva.4.53 – reference: ZhouZPrugel-BennettADamperRIA Bayesian framework for extracting human gait using strong prior knowledgeIEEE Trans Pattern Anal Mach Intell2006281738175210.1109/TPAMI.2006.214 – reference: LuWZongWXingWBaoEGait recognition based on joint distribution of motion anglesJ Vis Lang Comput20142575476310.1016/j.jvlc.2014.10.004 – reference: ZengWWangCYangFSilhouette-based gait recognition via deterministic learningPattern Recogn2014473568358410.1016/j.patcog.2014.04.014 – reference: KusakunniranWWuQZhangJA new view-invariant feature for cross-view gait recognitionIEEE Trans Inf Forensics Secur201381642165310.1109/TIFS.2013.2252342 – reference: XingXWangKYanTLvZComplete canonical correlation analysis with application to multiview gait recognitionPattern Recogn20155010711710.1016/j.patcog.2015.08.011 – reference: KusakunniranWWuQZhangJLiHGait recognition across various walking speeds using higher order shape configuration based on a differential composition modelIEEE Trans Syst Man Cybern Part B Cybern2012421654166810.1109/TSMCB.2012.2197823 – reference: RidaIJiangXMarcialisGLHuman body part selection by group lasso of motion for model-free gait recognitionIEEE Signal Process Lett20162315415810.1109/LSP.2015.2507200 – reference: LeeTKMBelkhatirMSaneiSA comprehensive review of past and present vision-based techniques for gait recognitionMultimed Tools Appl2014722833286910.1007/s11042-013-1574-x – reference: Marks JD (2012) Mean variants on matrix manifolds. Doctor of Philosophy (Ph.D.) Thesis, Colorado State University – reference: Connie T, Goh MKO, Teoh ABJ A Grassmann graph embedding framework for gait analysis. EURASIP J Adv Signal Process 2014, 2014:15. https://doi.org/10.1186/1687-6180-2014-15 – reference: XuDHuangYZengZXuXHuman gait recognition using patch distribution feature and locality-constrained group sparse representationIEEE Trans Image Process201221316326291897510.1109/TIP.2011.21609561372.94280 – reference: FukuiKazuhiroYamaguchiOsamuFace Recognition Using Multi-viewpoint Patterns for Robot VisionSpringer Tracts in Advanced Robotics2005Berlin, HeidelbergSpringer Berlin Heidelberg192201 – reference: Tanawongsuwan R, Bobick A (2004) Modelling the effects of walking speed on appearance-based gait recognition. In: Proceedings of the 2004 I.E. computer society conference on computer vision and pattern recognition. CVPR 2004. p II-783-II-790 Vol.2 – reference: NandyAChakrabortyRChakrabortyPCloth invariant gait recognition using pooled segmented statistical featuresNeurocomputing201619111714010.1016/j.neucom.2016.01.002 – reference: Das ChoudhurySTjahjadiTClothing and carrying condition invariant gait recognition based on rotation forestPattern Recogn Lett2016801710.1016/j.patrec.2016.05.009 – reference: GoffredoMBouchrikaICarterJNNixonMSSelf-calibrating view-invariant gait biometricsIEEE Trans Syst Man Cybern Part B Cybern201040997100810.1109/TSMCB.2009.2031091 – reference: Liu N, Lu J, Tan Y-P, Li M (2011) Set-to-set gait recognition across varying views and walking conditions. In: 2011 I.E. International Conference on Multimedia and Expo (ICME). pp 1–6 – reference: WangXiuhuiWangJunYanKeGait recognition based on Gabor wavelets and (2D)2PCAMultimedia Tools and Applications20177710125451256110.1007/s11042-017-4903-7 – reference: HuHMultiview gait recognition based on patch distribution features and uncorrelated multilinear sparse local discriminant canonical correlation analysisIEEE Trans Circuits Syst Video Technol20142461763010.1109/TCSVT.2013.2280098 – reference: GuJDingXWangSWuYAction and gait recognition from recovered 3-D human jointsIEEE Trans Syst Man Cybern Part B Cybern2010401021103310.1109/TSMCB.2010.2043526 – reference: KusakunniranWWuQZhangJLiHGait recognition under various viewing angles based on correlated motion regressionIEEE Trans Circuits Syst Video Technol20122296698010.1109/TCSVT.2012.2186744 – reference: HotellingHRelations between two sets of variatesBiometrika19362832110.2307/23339550015.40705 – reference: TakemuraNMakiharaYMuramatsuDMulti-view large population gait dataset and its performance evaluation for cross-view gait recognitionIPSJ Trans Comput Vis Appl20181010.1186/s41074-018-0039-6 – reference: Yamaguchi O, Fukui K, Maeda K -I (1998) Face recognition using temporal image sequence. IEEE pp 318–323 – reference: TuragaPVeeraraghavanASrivastavaAChellappaRStatistical computations on Grassmann and Stiefel manifolds for image and video-based recognitionIEEE Trans Pattern Anal Mach Intell2011332273228610.1109/TPAMI.2011.52 – reference: (2015) CASIA Gait Database. http://www.sinobiometrics.com. Accessed 24 April 2018 – reference: NishiyamaMYamaguchiOFukuiKKanadeTJainARathaNKFace recognition with the multiple constrained mutual subspace methodAudio- and video-based biometric person authentication2005BerlinSpringer718010.1007/11527923_8 – reference: Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. IEEE pp 2705–2712 – reference: Tsuji A, Makihara Y, Yagi Y (2010) Silhouette transformation based on walking speed for gait identification. In: 2010 I.E. conference on computer vision and pattern recognition (CVPR) pp 717–722 – reference: LeeChan-SuElgammalAhmedCarrying Object Detection Using Pose Preserving Dynamic Shape ModelsArticulated Motion and Deformable Objects2006Berlin, HeidelbergSpringer Berlin Heidelberg31532510.1007/11789239_33 – reference: Begelfor E, Werman M (2006) Affine invariance revisited. In: 2006 ieee computer society conference on computer vision and pattern recognition pp 2087–2094 – reference: López-FernándezDMadrid-CuevasFJCarmona-PoyatoAA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020 – reference: Li X, Fukui K, Zheng N (2009) Boosting constrained mutual subspace method for robust image-set based object recognition. pp 1132–1137 – reference: MuramatsuDShiraishiAMakiharaYGait-based person recognition using arbitrary view transformation modelIEEE Trans Image Process201524140154329397610.1109/TIP.2014.2371335 – reference: Takemura N, Makihara Y, Muramatsu D et al (2017) On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans Circuits Syst Video Technol 1–1. doi:https://doi.org/10.1109/TCSVT.2017.2760835 – reference: Shiraga K, Makihara Y, Muramatsu D et al (2016) GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 international conference on biometrics (ICB). pp 1–8 – reference: HongJKangJPriceMEExtraction of bodily features for gait recognition and gait attractiveness evaluationMultimed Tools Appl2014711999201310.1007/s11042-012-1319-2 – volume: 28 start-page: 321 year: 1936 ident: 6045_CR16 publication-title: Biometrika doi: 10.2307/2333955 – volume: 50 start-page: 107 year: 2015 ident: 6045_CR49 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.08.011 – ident: 6045_CR52 doi: 10.1109/AFGR.1998.670968 – volume: 22 start-page: 3636 year: 2013 ident: 6045_CR3 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2266578 – volume: 152 start-page: 139 year: 2015 ident: 6045_CR53 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.10.079 – volume: 29 start-page: 1005 year: 2007 ident: 6045_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.1037 – volume: 42 start-page: 2936 year: 2009 ident: 6045_CR18 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.05.006 – start-page: 192 volume-title: Springer Tracts in Advanced Robotics year: 2005 ident: 6045_CR8 – start-page: 71 volume-title: Audio- and video-based biometric person authentication year: 2005 ident: 6045_CR37 doi: 10.1007/11527923_8 – volume: 21 start-page: 316 year: 2012 ident: 6045_CR51 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2160956 – ident: 6045_CR12 doi: 10.1145/1390156.1390204 – ident: 6045_CR2 doi: 10.1109/CVPR.2006.50 – volume: 22 start-page: 966 year: 2012 ident: 6045_CR20 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2012.2186744 – volume: 16 start-page: 227 year: 2009 ident: 6045_CR26 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2008.2010819 – volume: 53 start-page: 116 year: 2016 ident: 6045_CR5 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.11.016 – ident: 6045_CR43 doi: 10.1109/CVPR.2004.1315244 – volume: 24 start-page: 1651 year: 2014 ident: 6045_CR23 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2014.2305495 – volume: 24 start-page: 617 year: 2014 ident: 6045_CR17 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2013.2280098 – volume: 77 start-page: 12545 issue: 10 year: 2017 ident: 6045_CR46 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-4903-7 – volume: 42 start-page: 1654 year: 2012 ident: 6045_CR21 publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/TSMCB.2012.2197823 – ident: 6045_CR29 – start-page: 151 volume-title: Computer vision – ECCV 2006 year: 2006 ident: 6045_CR32 doi: 10.1007/11744078_12 – ident: 6045_CR39 doi: 10.1109/ICB.2016.7550060 – volume: 23 start-page: 1237 year: 2010 ident: 6045_CR40 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.07.004 – volume: 4 start-page: 53 year: 2012 ident: 6045_CR33 publication-title: IPSJ Trans Comput Vis Appl doi: 10.2197/ipsjtcva.4.53 – volume: 28 start-page: 863 year: 2006 ident: 6045_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.122 – volume: 10 year: 2018 ident: 6045_CR42 publication-title: IPSJ Trans Comput Vis Appl doi: 10.1186/s41074-018-0039-6 – volume: 4 start-page: 2003 year: 2003 ident: 6045_CR48 publication-title: J Mach Learn Res – volume: 28 start-page: 1738 year: 2006 ident: 6045_CR55 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.214 – volume: 33 start-page: 2273 year: 2011 ident: 6045_CR45 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.52 – ident: 6045_CR41 doi: 10.1109/TCSVT.2017.2760835 – volume: 191 start-page: 117 year: 2016 ident: 6045_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.002 – ident: 6045_CR47 – ident: 6045_CR6 doi: 10.1186/1687-6180-2014-15 – volume: 28 start-page: 316 year: 2006 ident: 6045_CR13 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.38 – volume: 8 start-page: 1642 year: 2013 ident: 6045_CR22 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2013.2252342 – volume: 80 start-page: 1 year: 2016 ident: 6045_CR7 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2016.05.009 – ident: 6045_CR4 – ident: 6045_CR44 doi: 10.1109/CVPR.2010.5540144 – volume: 24 start-page: 140 year: 2015 ident: 6045_CR35 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2014.2371335 – start-page: 315 volume-title: Articulated Motion and Deformable Objects year: 2006 ident: 6045_CR24 doi: 10.1007/11789239_33 – volume: 38 start-page: 396 year: 2016 ident: 6045_CR30 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2016.03.020 – volume: 47 start-page: 3568 year: 2014 ident: 6045_CR54 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.04.014 – volume: 37 start-page: 1521 year: 2015 ident: 6045_CR11 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2366766 – ident: 6045_CR27 – volume: 25 start-page: 754 year: 2014 ident: 6045_CR31 publication-title: J Vis Lang Comput doi: 10.1016/j.jvlc.2014.10.004 – volume: 40 start-page: 1021 year: 2010 ident: 6045_CR10 publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/TSMCB.2010.2043526 – volume: 40 start-page: 997 year: 2010 ident: 6045_CR9 publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/TSMCB.2009.2031091 – ident: 6045_CR14 doi: 10.1109/CVPR.2011.5995564 – volume: 23 start-page: 154 year: 2016 ident: 6045_CR38 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2015.2507200 – volume: 71 start-page: 1999 year: 2014 ident: 6045_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-012-1319-2 – ident: 6045_CR34 – ident: 6045_CR1 – volume: 72 start-page: 2833 year: 2014 ident: 6045_CR25 publication-title: Multimed Tools Appl doi: 10.1007/s11042-013-1574-x – volume: 16 start-page: 896 year: 2006 ident: 6045_CR50 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2006.877418 |
| SSID | ssj0016524 |
| Score | 2.1822128 |
| Snippet | Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 28457 |
| SubjectTerms | Biometrics Computer Communication Networks Computer Science Data Structures and Information Theory Euclidean geometry Gait Gait recognition Least squares method Life assessment Manifolds (mathematics) Multimedia Information Systems Multivariate analysis Special Purpose and Application-Based Systems Subspaces |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6x8sIegPFDlF_yw56GLCWx4yQPE9omCpq0CqEh9S1ybKeqxtJCCxL767lznXYg0edcrCh3zn3x3X0fwGeVGC0RpvLCGselSy3HNGx45bLCSJ1p5efWfvXV1a38OUgHa9BvZ2GorbL9JvoPtR0bOiPHn3QhEM3HaX4-ueekGkXV1VZCQwdpBfvVU4x9gPWEmLE6sP79on99s6grqDTI3OYRx1wZt3VOP0wX06hKFOdcIc7hz68z1RJ-vqmY-kTU24bNgCDZt7nLP8Gaa3Zgq1VnYGGz7sDH_6gGd-GPP61nQz2asUXT0Lhh1Pc-ZD6jjf45yy4fEE2jZcP-OrT3nJdhPunJTRkd27IJhRs-wh3p_rDp_SPNMKHpcN5T2-zBbe_i948rHoQWuBGxmvE8zlSNwEATj7gxrrKmkBaBgNXSmELnmXB1UUmrC6FIw69WaZ2JWuDmdkJHYh86zbhxB8A8mUskHaJGJ0Ulc5vqxCSVqRLrrMi6ELUvtTSBhZzEMO7KJX8y-aFEP5Tkh_K5C18Wt0zmFByrjI9bT5VhN07LZex04az13vLyu4sdrl7sCDYSChc_mXgMndnDoztBiDKrTkPcvQDDkOTF priority: 102 providerName: ProQuest |
| Title | Human gait recognition using localized Grassmann mean representatives with partial least squares regression |
| URI | https://link.springer.com/article/10.1007/s11042-018-6045-y https://www.proquest.com/docview/2033149158 |
| Volume | 77 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sXvTgoyrWR9mDJ2UhyW42ybFKW1EUEQv1FDa7m1LU-GgV9Nc7u01aFRU85ZDJEjKz-b5kZr4B2BeBkhxpKk20MpSbUFOEYUUzEyWKy0gK17d2fiFOevy0H_bLPu5RVe1epSTdm3rW7ObbVhLPj6lAHkLfarAQWjUvDOJe0JqmDkRYTrKNPYpw6FepzJ-W-ApGM4b5LSnqsKazCsslSSStiVfXYM4UdVipBjCQcj_WYemTmuA63Lof8mQgh2MyrQt6KIgtbR8QB1rDd6NJ9xkJM1oW5N6gvZO1LFuQXs2I2D-z5NFGFN7CnR3tQ0ZPL7ZNCU0Hk7LZYgN6nfb18QktZylQxXwxprEfiRyxX1qpcKVMplXCNWK9llypRMYRM3mScS0TJuyYvlyEecRyhvvXMOmxTZgvHgqzBcTptXjcIDE0nGU81qEMVJCpLNBGs6gBXvVQU1UKjdt5F3fpTCLZ-iFFP6TWD-lbAw6mlzxOVDb-Mt6tPJWWG26UBh5j-LHnh3EDDivvzU7_utj2v6x3YDGw0eN6EXdhfvz8YvaQlIyzJtTiTrcJC63uzVkbj0fti8urpgvND82v318 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeKFAQy6s-wKWVpSR2nOSAKloey2uFEEjcgmM7K1TILuwC2v44flvHXmeXIpUb5zhW5Jl4xp75vg9gQ0RKckxTaaaVodzEmmIYVrQwSaa4TKRwuLWTlmhe8MPL-HICnmssjG2rrPdEt1HrjrJ35HhIZwyz-TBOf3TvqFWNstXVWkJDemkFveUoxjyw48gMnvAI19s62EF7b0bR3u75ryb1KgNUsVD0aRomosSoKC2JtlKm0CrjGqOgllypTKYJM2VWcC0zJqyAXSniMmElQ882TAYM5_0AU5zxDA9_Uz93W6dnozqGiL2sbhpQjM1hXVd14L3QQmOCMKUC8yo6-DcyjtPdVxVaF_j2ZmHGZ6xke-hiczBhqnn4XKtBEL85zMOnF9SGX-C3qw6Qtrzuk1GTUqcits--TVwEvf5jNNm_x-wdR1bk1uB4x7Hp8VCPpkfsNTHpWvfGT7ixOkOkd_dgMVM4tD3s4a0W4OJdlnwRJqtOZZaAOPKYgBvMUg1nBU91LCMVFaqItNEsaUBQL2quPOu5Fd-4ycd8zdYOOdoht3bIBw34NnqlO6T8eGvwam2p3P_9vXzsqw34Xltv_Pi_ky2_PdlXmG6enxznxwetoxX4GFnXcajIVZjs3z-YNUyP-sW690ECV-_t9n8Bo80htA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1tQULtoXwVdVsKPpRLkdUkdpzkUFWosCylRT0UiVtwbGeFSrOftNr-tP66zniT3YIEN85xrMjz4nn2zJsBeKsioyXSVJ5Z47h0seXohg0vXJIZqROtvG7t65nqnsvPF_FFC_42WhhKq2z2RL9R276hO3I8pAuBbD6M0_dlnRbx7bDzcTDk1EGKIq1NO40ZRE7d9Dce38YfTg7R1ntR1Dn6_qnL6w4D3IhQTXgaJqpEj6ipgLYxrrAmkxY9oNXSmEyniXBlVkirM6GoeV2p4jIRpUBUO6EDgfM-geWEqriTSr1zPI9gqLhuqJsGHL1y2ERUvWwvJFFMEKZcIaPi09s-cUF078RmvcvrrMHzmquygxm41qHlqg1YbfpAsHpb2IBn_xU13IQfPi7AevpqwubpSf2KUYZ9j3nfefXHWXY8Qt6OIyv20-F4X12zVkL9cmNGF8RsQMDGT7imDkNsPLwhtRQO7c2yd6sXcP4oC74FS1W_ci-B-bIxgXTIT50UhUxtrCMTFaaIrLMiaUPQLGpu6nrn1HbjOl9UaiY75GiHnOyQT9vwbv7KYFbs46HB242l8vq_H-cLlLZhv7He4vG9k716eLJdWEGw519Ozk5fw9OIkOPlkNuwNBnduDfIiybFjgcgg8vHRvw_tI4fTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+gait+recognition+using+localized+Grassmann+mean+representatives+with+partial+least+squares+regression&rft.jtitle=Multimedia+tools+and+applications&rft.au=Connie%2C+Tee&rft.au=Goh%2C+Michael+Kah+Ong&rft.au=Teoh%2C+Andrew+Beng+Jin&rft.date=2018-11-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=21&rft.spage=28457&rft.epage=28482&rft_id=info:doi/10.1007%2Fs11042-018-6045-y&rft.externalDocID=10_1007_s11042_018_6045_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |