Human gait recognition using localized Grassmann mean representatives with partial least squares regression

Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number of challenges. The performance of a gait recognition system is sensitive towards factors like viewing angle, clothing, shoe type, load carria...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 77; no. 21; pp. 28457 - 28482
Main Authors Connie, Tee, Goh, Michael Kah Ong, Teoh, Andrew Beng Jin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-018-6045-y

Cover

Abstract Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number of challenges. The performance of a gait recognition system is sensitive towards factors like viewing angle, clothing, shoe type, load carriage and speed changes. In this paper, the problems of gait are formulated on the Grassmann manifold. It is not difficult to obtain multiple snapshots of a walking subjects with the wide availability of camera networks. These sets of images can be modelled as low-dimensional subspaces, which can be realized naturally as points on the Grassmann manifold. Modelling image sets as low-dimensional subspaces provides not only possible clue of one’s gait, but also the common patterns of variation in the set. We present a method called Localized Grassmann Mean Representatives with Partial Least Squares Regression (LoGPLS) to infer a low-dimensional Euclidean approximation of the manifold. The notion of local mean representatives is introduced to construct multiple tangent spaces to better approximate the topological structure of the manifold. As the properties of the tangent spaces allows the Grassmann points to be evaluated in the vector space, partial least squares is applied to allow a more accurate classification of the points in a reduced space. Experiments have been conducted on four different publicly available gait databases. Empirical evidences demonstrate the effectiveness of the proposed approach in solving the various covariates in gait recognition.
AbstractList Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number of challenges. The performance of a gait recognition system is sensitive towards factors like viewing angle, clothing, shoe type, load carriage and speed changes. In this paper, the problems of gait are formulated on the Grassmann manifold. It is not difficult to obtain multiple snapshots of a walking subjects with the wide availability of camera networks. These sets of images can be modelled as low-dimensional subspaces, which can be realized naturally as points on the Grassmann manifold. Modelling image sets as low-dimensional subspaces provides not only possible clue of one’s gait, but also the common patterns of variation in the set. We present a method called Localized Grassmann Mean Representatives with Partial Least Squares Regression (LoGPLS) to infer a low-dimensional Euclidean approximation of the manifold. The notion of local mean representatives is introduced to construct multiple tangent spaces to better approximate the topological structure of the manifold. As the properties of the tangent spaces allows the Grassmann points to be evaluated in the vector space, partial least squares is applied to allow a more accurate classification of the points in a reduced space. Experiments have been conducted on four different publicly available gait databases. Empirical evidences demonstrate the effectiveness of the proposed approach in solving the various covariates in gait recognition.
Author Teoh, Andrew Beng Jin
Connie, Tee
Goh, Michael Kah Ong
Author_xml – sequence: 1
  givenname: Tee
  surname: Connie
  fullname: Connie, Tee
  organization: Faculty of Information Science and Technology, Multimedia University
– sequence: 2
  givenname: Michael Kah Ong
  surname: Goh
  fullname: Goh, Michael Kah Ong
  organization: Faculty of Information Science and Technology, Multimedia University
– sequence: 3
  givenname: Andrew Beng Jin
  orcidid: 0000-0001-5063-9484
  surname: Teoh
  fullname: Teoh, Andrew Beng Jin
  email: bjteoh@yonsei.ac.kr
  organization: School of Electrical and Electronic Engineering, College of Engineering, Yonsei University
BookMark eNp9kE9LwzAYh4NMcFM_gLeA52rSpE1zlKGbMPCi5_AuTWtml25JqsxPb0YFQdDT-x6e3_vnmaGJ651B6IqSG0qIuA2UEp5nhFZZSXiRHU7QlBaCZULkdJJ6VpFMFISeoVkIG0JoWeR8it6WwxYcbsFG7I3uW2ej7R0egnUt7noNnf00NV54CCGRDm9N4r3ZeROMixDtuwn4w8ZXvAMfLXS4MxAiDvsBEpPQNpWQhl6g0wa6YC6_6zl6ebh_ni-z1dPicX63yjSjZcwqKspGEgrpr1xrs6615HUuWQ1cawmVYKaRa16DZGUlOGnKohGsYUIyw4Cwc3Q9zt35fj-YENWmH7xLK1VOGKNc0qJKFB0p7fsQvGnUztst-IOiRB2dqtGpSk7V0ak6pIz4ldH2qKB30YPt_k3mYzKkLa41_uemv0NfUoiQNw
CitedBy_id crossref_primary_10_3390_app15010043
crossref_primary_10_1007_s11042_020_09003_4
crossref_primary_10_1080_03772063_2024_2351563
crossref_primary_10_3390_biomimetics9060364
crossref_primary_10_1007_s11227_020_03409_5
Cites_doi 10.2307/2333955
10.1016/j.patcog.2015.08.011
10.1109/AFGR.1998.670968
10.1109/TIP.2013.2266578
10.1016/j.neucom.2014.10.079
10.1109/TPAMI.2007.1037
10.1016/j.patcog.2009.05.006
10.1007/11527923_8
10.1109/TIP.2011.2160956
10.1145/1390156.1390204
10.1109/CVPR.2006.50
10.1109/TCSVT.2012.2186744
10.1109/LSP.2008.2010819
10.1016/j.patcog.2015.11.016
10.1109/CVPR.2004.1315244
10.1109/TCSVT.2014.2305495
10.1109/TCSVT.2013.2280098
10.1007/s11042-017-4903-7
10.1109/TSMCB.2012.2197823
10.1007/11744078_12
10.1109/ICB.2016.7550060
10.1016/j.engappai.2010.07.004
10.2197/ipsjtcva.4.53
10.1109/TPAMI.2006.122
10.1186/s41074-018-0039-6
10.1109/TPAMI.2006.214
10.1109/TPAMI.2011.52
10.1109/TCSVT.2017.2760835
10.1016/j.neucom.2016.01.002
10.1186/1687-6180-2014-15
10.1109/TPAMI.2006.38
10.1109/TIFS.2013.2252342
10.1016/j.patrec.2016.05.009
10.1109/CVPR.2010.5540144
10.1109/TIP.2014.2371335
10.1007/11789239_33
10.1016/j.jvcir.2016.03.020
10.1016/j.patcog.2014.04.014
10.1109/TPAMI.2014.2366766
10.1016/j.jvlc.2014.10.004
10.1109/TSMCB.2010.2043526
10.1109/TSMCB.2009.2031091
10.1109/CVPR.2011.5995564
10.1109/LSP.2015.2507200
10.1007/s11042-012-1319-2
10.1007/s11042-013-1574-x
10.1109/TCSVT.2006.877418
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-018-6045-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 28482
ExternalDocumentID 10_1007_s11042_018_6045_y
GrantInformation_xml – fundername: Fundamental Research Grant Scheme
  grantid: FRGS/1/2014/ICT02/MMU/02/2
– fundername: National Research Foundation of Korea (KR)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-8176f901a0072ccebdc94d293da4cc9a873ef9b4da9368740f65f73f3793e3a03
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:27:40 EDT 2025
Wed Oct 01 05:47:41 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Fri Feb 21 02:33:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Grassmann means
Tangent spaces
Grassmann manifold
Partial least squares regression
Gait recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8176f901a0072ccebdc94d293da4cc9a873ef9b4da9368740f65f73f3793e3a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5063-9484
PQID 2033149158
PQPubID 54626
PageCount 26
ParticipantIDs proquest_journals_2033149158
crossref_primary_10_1007_s11042_018_6045_y
crossref_citationtrail_10_1007_s11042_018_6045_y
springer_journals_10_1007_s11042_018_6045_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181100
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FukuiKazuhiroYamaguchiOsamuFace Recognition Using Multi-viewpoint Patterns for Robot VisionSpringer Tracts in Advanced Robotics2005Berlin, HeidelbergSpringer Berlin Heidelberg192201
GuanYLiCTRoliFOn reducing the effect of covariate factors in gait recognition: a classifier ensemble methodIEEE Trans Pattern Anal Mach Intell2015371521152810.1109/TPAMI.2014.2366766
Liu N, Lu J, Tan Y-P, Li M (2011) Set-to-set gait recognition across varying views and walking conditions. In: 2011 I.E. International Conference on Multimedia and Expo (ICME). pp 1–6
WangXiuhuiWangJunYanKeGait recognition based on Gabor wavelets and (2D)2PCAMultimedia Tools and Applications20177710125451256110.1007/s11042-017-4903-7
Wold H (1985) Partial least squares. Encyclopedia of Statistic Sciences 581–591
HongJKangJPriceMEExtraction of bodily features for gait recognition and gait attractiveness evaluationMultimed Tools Appl2014711999201310.1007/s11042-012-1319-2
WolfLShashuaAGemanDLearning over sets using kernel principal anglesJ Mach Learn Res2003420032125341
XuDYanSTaoDHuman gait recognition with matrix representationIEEE Trans Circuits Syst Video Technol20061689690310.1109/TCSVT.2006.877418
TuragaPVeeraraghavanASrivastavaAChellappaRStatistical computations on Grassmann and Stiefel manifolds for image and video-based recognitionIEEE Trans Pattern Anal Mach Intell2011332273228610.1109/TPAMI.2011.52
LaiZXuYJinZZhangDHuman gait recognition via sparse discriminant projection learningIEEE Trans Circuits Syst Video Technol2014241651166210.1109/TCSVT.2014.2305495
Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. IEEE pp 2705–2712
GuJDingXWangSWuYAction and gait recognition from recovered 3-D human jointsIEEE Trans Syst Man Cybern Part B Cybern2010401021103310.1109/TSMCB.2010.2043526
Tsuji A, Makihara Y, Yagi Y (2010) Silhouette transformation based on walking speed for gait identification. In: 2010 I.E. conference on computer vision and pattern recognition (CVPR) pp 717–722
López-FernándezDMadrid-CuevasFJCarmona-PoyatoAA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020
Begelfor E, Werman M (2006) Affine invariance revisited. In: 2006 ieee computer society conference on computer vision and pattern recognition pp 2087–2094
ZhouZPrugel-BennettADamperRIA Bayesian framework for extracting human gait using strong prior knowledgeIEEE Trans Pattern Anal Mach Intell2006281738175210.1109/TPAMI.2006.214
ZengWWangCYangFSilhouette-based gait recognition via deterministic learningPattern Recogn2014473568358410.1016/j.patcog.2014.04.014
Li X, Fukui K, Zheng N (2009) Boosting constrained mutual subspace method for robust image-set based object recognition. pp 1132–1137
KimT-KKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsIEEE Trans Pattern Anal Mach Intell2007291005101810.1109/TPAMI.2007.1037
HuHMultiview gait recognition based on patch distribution features and uncorrelated multilinear sparse local discriminant canonical correlation analysisIEEE Trans Circuits Syst Video Technol20142461763010.1109/TCSVT.2013.2280098
Chang J-M (2008) Classification on the Grassmannians: theory and applications. ProQuest
LeeTKMBelkhatirMSaneiSA comprehensive review of past and present vision-based techniques for gait recognitionMultimed Tools Appl2014722833286910.1007/s11042-013-1574-x
MuramatsuDShiraishiAMakiharaYGait-based person recognition using arbitrary view transformation modelIEEE Trans Image Process201524140154329397610.1109/TIP.2014.2371335
Shiraga K, Makihara Y, Muramatsu D et al (2016) GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 international conference on biometrics (ICB). pp 1–8
LiFDaiQXuWErGWeighted subspace distance and its applications to object recognition and retrieval with image setsIEEE Signal Process Lett20091622723010.1109/LSP.2008.2010819
Takemura N, Makihara Y, Muramatsu D et al (2017) On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans Circuits Syst Video Technol 1–1. doi:https://doi.org/10.1109/TCSVT.2017.2760835
MakiharaYSagawaRMukaigawaYLeonardisABischofHPinzAGait recognition using a view transformation model in the frequency domainComputer vision – ECCV 20062006BerlinSpringer15116310.1007/11744078_12
KusakunniranWWuQZhangJLiHGait recognition across various walking speeds using higher order shape configuration based on a differential composition modelIEEE Trans Syst Man Cybern Part B Cybern2012421654166810.1109/TSMCB.2012.2197823
LeeChan-SuElgammalAhmedCarrying Object Detection Using Pose Preserving Dynamic Shape ModelsArticulated Motion and Deformable Objects2006Berlin, HeidelbergSpringer Berlin Heidelberg31532510.1007/11789239_33
XingXWangKYanTLvZComplete canonical correlation analysis with application to multiview gait recognitionPattern Recogn20155010711710.1016/j.patcog.2015.08.011
MakiharaYMannamiHTsujiAThe OU-ISIR gait database comprising the treadmill datasetIPSJ Trans Comput Vis Appl20124536210.2197/ipsjtcva.4.53
LuWZongWXingWBaoEGait recognition based on joint distribution of motion anglesJ Vis Lang Comput20142575476310.1016/j.jvlc.2014.10.004
XuDHuangYZengZXuXHuman gait recognition using patch distribution feature and locality-constrained group sparse representationIEEE Trans Image Process201221316326291897510.1109/TIP.2011.21609561372.94280
GoffredoMBouchrikaICarterJNNixonMSSelf-calibrating view-invariant gait biometricsIEEE Trans Syst Man Cybern Part B Cybern201040997100810.1109/TSMCB.2009.2031091
Das ChoudhurySTjahjadiTClothing and carrying condition invariant gait recognition based on rotation forestPattern Recogn Lett2016801710.1016/j.patrec.2016.05.009
NandyAChakrabortyRChakrabortyPCloth invariant gait recognition using pooled segmented statistical featuresNeurocomputing201619111714010.1016/j.neucom.2016.01.002
LiuZSarkarSImproved gait recognition by gait dynamics normalizationIEEE Trans Pattern Anal Mach Intell20062886387610.1109/TPAMI.2006.122
TakemuraNMakiharaYMuramatsuDMulti-view large population gait dataset and its performance evaluation for cross-view gait recognitionIPSJ Trans Comput Vis Appl20181010.1186/s41074-018-0039-6
Marks JD (2012) Mean variants on matrix manifolds. Doctor of Philosophy (Ph.D.) Thesis, Colorado State University
ZengWWangCGait recognition across different walking speeds via deterministic learningNeurocomputing201515213915010.1016/j.neucom.2014.10.079
ChenXXuJUncooperative gait recognition: re-ranking based on sparse coding and multi-view hypergraph learningPattern Recogn20165311612910.1016/j.patcog.2015.11.016
Yamaguchi O, Fukui K, Maeda K -I (1998) Face recognition using temporal image sequence. IEEE pp 318–323
BoulgourisNVHuangXGait recognition using HMMs and dual discriminative observations for sub-dynamics analysisIEEE Trans Image Process2013223636364710.1109/TIP.2013.2266578
TafazzoliFSafabakhshRModel-based human gait recognition using leg and arm movementsEng Appl Artif Intell2010231237124610.1016/j.engappai.2010.07.004
Tanawongsuwan R, Bobick A (2004) Modelling the effects of walking speed on appearance-based gait recognition. In: Proceedings of the 2004 I.E. computer society conference on computer vision and pattern recognition. CVPR 2004. p II-783-II-790 Vol.2
HotellingHRelations between two sets of variatesBiometrika19362832110.2307/23339550015.40705
(2015) CASIA Gait Database. http://www.sinobiometrics.com. Accessed 24 April 2018
NishiyamaMYamaguchiOFukuiKKanadeTJainARathaNKFace recognition with the multiple constrained mutual subspace methodAudio- and video-based biometric person authentication2005BerlinSpringer718010.1007/11527923_8
KusakunniranWWuQZhangJA new view-invariant feature for cross-view gait recognitionIEEE Trans Inf Forensics Secur201381642165310.1109/TIFS.2013.2252342
Connie T, Goh MKO, Teoh ABJ A Grassmann graph embedding framework for gait analysis. EURASIP J Adv Signal Process 2014, 2014:15. https://doi.org/10.1186/1687-6180-2014-15
JeanFAlbuABBergevinRTowards view-invariant gait modeling: computing view-normalized body part trajectoriesPattern Recogn2009422936294910.1016/j.patcog.2009.05.0061175.68362
Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the 25th international conference on machine learning pp 376–383
HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell20062831632210.1109/TPAMI.2006.38
RidaIJiangXMarcialisGLHuman body part selection by group lasso of motion for model-free gait recognitionIEEE Signal Process Lett20162315415810.1109/LSP.2015.2507200
KusakunniranWWuQZhangJLiHGait recognition under various viewing angles based on correlated motion regressionIEEE Trans Circuits Syst Video Technol20122296698010.1109/TCSVT.2012.2186744
Xiuhui Wang (6045_CR46) 2017; 77
W Zeng (6045_CR53) 2015; 152
6045_CR47
6045_CR44
6045_CR43
S Das Choudhury (6045_CR7) 2016; 80
Z Liu (6045_CR28) 2006; 28
6045_CR41
H Hotelling (6045_CR16) 1936; 28
N Takemura (6045_CR42) 2018; 10
Z Lai (6045_CR23) 2014; 24
J Gu (6045_CR10) 2010; 40
L Wolf (6045_CR48) 2003; 4
J Han (6045_CR13) 2006; 28
Chan-Su Lee (6045_CR24) 2006
Y Makihara (6045_CR33) 2012; 4
6045_CR34
M Goffredo (6045_CR9) 2010; 40
X Chen (6045_CR5) 2016; 53
Kazuhiro Fukui (6045_CR8) 2005
6045_CR39
NV Boulgouris (6045_CR3) 2013; 22
F Tafazzoli (6045_CR40) 2010; 23
H Hu (6045_CR17) 2014; 24
T-K Kim (6045_CR19) 2007; 29
F Jean (6045_CR18) 2009; 42
W Lu (6045_CR31) 2014; 25
Y Makihara (6045_CR32) 2006
F Li (6045_CR26) 2009; 16
J Hong (6045_CR15) 2014; 71
W Kusakunniran (6045_CR21) 2012; 42
6045_CR29
6045_CR27
D López-Fernández (6045_CR30) 2016; 38
D Muramatsu (6045_CR35) 2015; 24
A Nandy (6045_CR36) 2016; 191
D Xu (6045_CR50) 2006; 16
6045_CR4
6045_CR6
W Kusakunniran (6045_CR20) 2012; 22
X Xing (6045_CR49) 2015; 50
6045_CR14
6045_CR2
6045_CR1
6045_CR12
Y Guan (6045_CR11) 2015; 37
Z Zhou (6045_CR55) 2006; 28
6045_CR52
P Turaga (6045_CR45) 2011; 33
W Kusakunniran (6045_CR22) 2013; 8
D Xu (6045_CR51) 2012; 21
W Zeng (6045_CR54) 2014; 47
TKM Lee (6045_CR25) 2014; 72
M Nishiyama (6045_CR37) 2005
I Rida (6045_CR38) 2016; 23
References_xml – reference: LiuZSarkarSImproved gait recognition by gait dynamics normalizationIEEE Trans Pattern Anal Mach Intell20062886387610.1109/TPAMI.2006.122
– reference: ZengWWangCGait recognition across different walking speeds via deterministic learningNeurocomputing201515213915010.1016/j.neucom.2014.10.079
– reference: Chang J-M (2008) Classification on the Grassmannians: theory and applications. ProQuest
– reference: TafazzoliFSafabakhshRModel-based human gait recognition using leg and arm movementsEng Appl Artif Intell2010231237124610.1016/j.engappai.2010.07.004
– reference: WolfLShashuaAGemanDLearning over sets using kernel principal anglesJ Mach Learn Res2003420032125341
– reference: BoulgourisNVHuangXGait recognition using HMMs and dual discriminative observations for sub-dynamics analysisIEEE Trans Image Process2013223636364710.1109/TIP.2013.2266578
– reference: LiFDaiQXuWErGWeighted subspace distance and its applications to object recognition and retrieval with image setsIEEE Signal Process Lett20091622723010.1109/LSP.2008.2010819
– reference: LaiZXuYJinZZhangDHuman gait recognition via sparse discriminant projection learningIEEE Trans Circuits Syst Video Technol2014241651166210.1109/TCSVT.2014.2305495
– reference: XuDYanSTaoDHuman gait recognition with matrix representationIEEE Trans Circuits Syst Video Technol20061689690310.1109/TCSVT.2006.877418
– reference: ChenXXuJUncooperative gait recognition: re-ranking based on sparse coding and multi-view hypergraph learningPattern Recogn20165311612910.1016/j.patcog.2015.11.016
– reference: MakiharaYSagawaRMukaigawaYLeonardisABischofHPinzAGait recognition using a view transformation model in the frequency domainComputer vision – ECCV 20062006BerlinSpringer15116310.1007/11744078_12
– reference: HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell20062831632210.1109/TPAMI.2006.38
– reference: KimT-KKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsIEEE Trans Pattern Anal Mach Intell2007291005101810.1109/TPAMI.2007.1037
– reference: Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the 25th international conference on machine learning pp 376–383
– reference: JeanFAlbuABBergevinRTowards view-invariant gait modeling: computing view-normalized body part trajectoriesPattern Recogn2009422936294910.1016/j.patcog.2009.05.0061175.68362
– reference: Wold H (1985) Partial least squares. Encyclopedia of Statistic Sciences 581–591
– reference: GuanYLiCTRoliFOn reducing the effect of covariate factors in gait recognition: a classifier ensemble methodIEEE Trans Pattern Anal Mach Intell2015371521152810.1109/TPAMI.2014.2366766
– reference: MakiharaYMannamiHTsujiAThe OU-ISIR gait database comprising the treadmill datasetIPSJ Trans Comput Vis Appl20124536210.2197/ipsjtcva.4.53
– reference: ZhouZPrugel-BennettADamperRIA Bayesian framework for extracting human gait using strong prior knowledgeIEEE Trans Pattern Anal Mach Intell2006281738175210.1109/TPAMI.2006.214
– reference: LuWZongWXingWBaoEGait recognition based on joint distribution of motion anglesJ Vis Lang Comput20142575476310.1016/j.jvlc.2014.10.004
– reference: ZengWWangCYangFSilhouette-based gait recognition via deterministic learningPattern Recogn2014473568358410.1016/j.patcog.2014.04.014
– reference: KusakunniranWWuQZhangJA new view-invariant feature for cross-view gait recognitionIEEE Trans Inf Forensics Secur201381642165310.1109/TIFS.2013.2252342
– reference: XingXWangKYanTLvZComplete canonical correlation analysis with application to multiview gait recognitionPattern Recogn20155010711710.1016/j.patcog.2015.08.011
– reference: KusakunniranWWuQZhangJLiHGait recognition across various walking speeds using higher order shape configuration based on a differential composition modelIEEE Trans Syst Man Cybern Part B Cybern2012421654166810.1109/TSMCB.2012.2197823
– reference: RidaIJiangXMarcialisGLHuman body part selection by group lasso of motion for model-free gait recognitionIEEE Signal Process Lett20162315415810.1109/LSP.2015.2507200
– reference: LeeTKMBelkhatirMSaneiSA comprehensive review of past and present vision-based techniques for gait recognitionMultimed Tools Appl2014722833286910.1007/s11042-013-1574-x
– reference: Marks JD (2012) Mean variants on matrix manifolds. Doctor of Philosophy (Ph.D.) Thesis, Colorado State University
– reference: Connie T, Goh MKO, Teoh ABJ A Grassmann graph embedding framework for gait analysis. EURASIP J Adv Signal Process 2014, 2014:15. https://doi.org/10.1186/1687-6180-2014-15
– reference: XuDHuangYZengZXuXHuman gait recognition using patch distribution feature and locality-constrained group sparse representationIEEE Trans Image Process201221316326291897510.1109/TIP.2011.21609561372.94280
– reference: FukuiKazuhiroYamaguchiOsamuFace Recognition Using Multi-viewpoint Patterns for Robot VisionSpringer Tracts in Advanced Robotics2005Berlin, HeidelbergSpringer Berlin Heidelberg192201
– reference: Tanawongsuwan R, Bobick A (2004) Modelling the effects of walking speed on appearance-based gait recognition. In: Proceedings of the 2004 I.E. computer society conference on computer vision and pattern recognition. CVPR 2004. p II-783-II-790 Vol.2
– reference: NandyAChakrabortyRChakrabortyPCloth invariant gait recognition using pooled segmented statistical featuresNeurocomputing201619111714010.1016/j.neucom.2016.01.002
– reference: Das ChoudhurySTjahjadiTClothing and carrying condition invariant gait recognition based on rotation forestPattern Recogn Lett2016801710.1016/j.patrec.2016.05.009
– reference: GoffredoMBouchrikaICarterJNNixonMSSelf-calibrating view-invariant gait biometricsIEEE Trans Syst Man Cybern Part B Cybern201040997100810.1109/TSMCB.2009.2031091
– reference: Liu N, Lu J, Tan Y-P, Li M (2011) Set-to-set gait recognition across varying views and walking conditions. In: 2011 I.E. International Conference on Multimedia and Expo (ICME). pp 1–6
– reference: WangXiuhuiWangJunYanKeGait recognition based on Gabor wavelets and (2D)2PCAMultimedia Tools and Applications20177710125451256110.1007/s11042-017-4903-7
– reference: HuHMultiview gait recognition based on patch distribution features and uncorrelated multilinear sparse local discriminant canonical correlation analysisIEEE Trans Circuits Syst Video Technol20142461763010.1109/TCSVT.2013.2280098
– reference: GuJDingXWangSWuYAction and gait recognition from recovered 3-D human jointsIEEE Trans Syst Man Cybern Part B Cybern2010401021103310.1109/TSMCB.2010.2043526
– reference: KusakunniranWWuQZhangJLiHGait recognition under various viewing angles based on correlated motion regressionIEEE Trans Circuits Syst Video Technol20122296698010.1109/TCSVT.2012.2186744
– reference: HotellingHRelations between two sets of variatesBiometrika19362832110.2307/23339550015.40705
– reference: TakemuraNMakiharaYMuramatsuDMulti-view large population gait dataset and its performance evaluation for cross-view gait recognitionIPSJ Trans Comput Vis Appl20181010.1186/s41074-018-0039-6
– reference: Yamaguchi O, Fukui K, Maeda K -I (1998) Face recognition using temporal image sequence. IEEE pp 318–323
– reference: TuragaPVeeraraghavanASrivastavaAChellappaRStatistical computations on Grassmann and Stiefel manifolds for image and video-based recognitionIEEE Trans Pattern Anal Mach Intell2011332273228610.1109/TPAMI.2011.52
– reference: (2015) CASIA Gait Database. http://www.sinobiometrics.com. Accessed 24 April 2018
– reference: NishiyamaMYamaguchiOFukuiKKanadeTJainARathaNKFace recognition with the multiple constrained mutual subspace methodAudio- and video-based biometric person authentication2005BerlinSpringer718010.1007/11527923_8
– reference: Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. IEEE pp 2705–2712
– reference: Tsuji A, Makihara Y, Yagi Y (2010) Silhouette transformation based on walking speed for gait identification. In: 2010 I.E. conference on computer vision and pattern recognition (CVPR) pp 717–722
– reference: LeeChan-SuElgammalAhmedCarrying Object Detection Using Pose Preserving Dynamic Shape ModelsArticulated Motion and Deformable Objects2006Berlin, HeidelbergSpringer Berlin Heidelberg31532510.1007/11789239_33
– reference: Begelfor E, Werman M (2006) Affine invariance revisited. In: 2006 ieee computer society conference on computer vision and pattern recognition pp 2087–2094
– reference: López-FernándezDMadrid-CuevasFJCarmona-PoyatoAA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020
– reference: Li X, Fukui K, Zheng N (2009) Boosting constrained mutual subspace method for robust image-set based object recognition. pp 1132–1137
– reference: MuramatsuDShiraishiAMakiharaYGait-based person recognition using arbitrary view transformation modelIEEE Trans Image Process201524140154329397610.1109/TIP.2014.2371335
– reference: Takemura N, Makihara Y, Muramatsu D et al (2017) On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans Circuits Syst Video Technol 1–1. doi:https://doi.org/10.1109/TCSVT.2017.2760835
– reference: Shiraga K, Makihara Y, Muramatsu D et al (2016) GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 international conference on biometrics (ICB). pp 1–8
– reference: HongJKangJPriceMEExtraction of bodily features for gait recognition and gait attractiveness evaluationMultimed Tools Appl2014711999201310.1007/s11042-012-1319-2
– volume: 28
  start-page: 321
  year: 1936
  ident: 6045_CR16
  publication-title: Biometrika
  doi: 10.2307/2333955
– volume: 50
  start-page: 107
  year: 2015
  ident: 6045_CR49
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.08.011
– ident: 6045_CR52
  doi: 10.1109/AFGR.1998.670968
– volume: 22
  start-page: 3636
  year: 2013
  ident: 6045_CR3
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2266578
– volume: 152
  start-page: 139
  year: 2015
  ident: 6045_CR53
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.079
– volume: 29
  start-page: 1005
  year: 2007
  ident: 6045_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.1037
– volume: 42
  start-page: 2936
  year: 2009
  ident: 6045_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.05.006
– start-page: 192
  volume-title: Springer Tracts in Advanced Robotics
  year: 2005
  ident: 6045_CR8
– start-page: 71
  volume-title: Audio- and video-based biometric person authentication
  year: 2005
  ident: 6045_CR37
  doi: 10.1007/11527923_8
– volume: 21
  start-page: 316
  year: 2012
  ident: 6045_CR51
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2160956
– ident: 6045_CR12
  doi: 10.1145/1390156.1390204
– ident: 6045_CR2
  doi: 10.1109/CVPR.2006.50
– volume: 22
  start-page: 966
  year: 2012
  ident: 6045_CR20
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2012.2186744
– volume: 16
  start-page: 227
  year: 2009
  ident: 6045_CR26
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2008.2010819
– volume: 53
  start-page: 116
  year: 2016
  ident: 6045_CR5
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.11.016
– ident: 6045_CR43
  doi: 10.1109/CVPR.2004.1315244
– volume: 24
  start-page: 1651
  year: 2014
  ident: 6045_CR23
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2014.2305495
– volume: 24
  start-page: 617
  year: 2014
  ident: 6045_CR17
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2013.2280098
– volume: 77
  start-page: 12545
  issue: 10
  year: 2017
  ident: 6045_CR46
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-4903-7
– volume: 42
  start-page: 1654
  year: 2012
  ident: 6045_CR21
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2012.2197823
– ident: 6045_CR29
– start-page: 151
  volume-title: Computer vision – ECCV 2006
  year: 2006
  ident: 6045_CR32
  doi: 10.1007/11744078_12
– ident: 6045_CR39
  doi: 10.1109/ICB.2016.7550060
– volume: 23
  start-page: 1237
  year: 2010
  ident: 6045_CR40
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.07.004
– volume: 4
  start-page: 53
  year: 2012
  ident: 6045_CR33
  publication-title: IPSJ Trans Comput Vis Appl
  doi: 10.2197/ipsjtcva.4.53
– volume: 28
  start-page: 863
  year: 2006
  ident: 6045_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.122
– volume: 10
  year: 2018
  ident: 6045_CR42
  publication-title: IPSJ Trans Comput Vis Appl
  doi: 10.1186/s41074-018-0039-6
– volume: 4
  start-page: 2003
  year: 2003
  ident: 6045_CR48
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 1738
  year: 2006
  ident: 6045_CR55
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.214
– volume: 33
  start-page: 2273
  year: 2011
  ident: 6045_CR45
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.52
– ident: 6045_CR41
  doi: 10.1109/TCSVT.2017.2760835
– volume: 191
  start-page: 117
  year: 2016
  ident: 6045_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.002
– ident: 6045_CR47
– ident: 6045_CR6
  doi: 10.1186/1687-6180-2014-15
– volume: 28
  start-page: 316
  year: 2006
  ident: 6045_CR13
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.38
– volume: 8
  start-page: 1642
  year: 2013
  ident: 6045_CR22
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2013.2252342
– volume: 80
  start-page: 1
  year: 2016
  ident: 6045_CR7
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2016.05.009
– ident: 6045_CR4
– ident: 6045_CR44
  doi: 10.1109/CVPR.2010.5540144
– volume: 24
  start-page: 140
  year: 2015
  ident: 6045_CR35
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2371335
– start-page: 315
  volume-title: Articulated Motion and Deformable Objects
  year: 2006
  ident: 6045_CR24
  doi: 10.1007/11789239_33
– volume: 38
  start-page: 396
  year: 2016
  ident: 6045_CR30
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.03.020
– volume: 47
  start-page: 3568
  year: 2014
  ident: 6045_CR54
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.04.014
– volume: 37
  start-page: 1521
  year: 2015
  ident: 6045_CR11
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2366766
– ident: 6045_CR27
– volume: 25
  start-page: 754
  year: 2014
  ident: 6045_CR31
  publication-title: J Vis Lang Comput
  doi: 10.1016/j.jvlc.2014.10.004
– volume: 40
  start-page: 1021
  year: 2010
  ident: 6045_CR10
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2010.2043526
– volume: 40
  start-page: 997
  year: 2010
  ident: 6045_CR9
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2009.2031091
– ident: 6045_CR14
  doi: 10.1109/CVPR.2011.5995564
– volume: 23
  start-page: 154
  year: 2016
  ident: 6045_CR38
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2015.2507200
– volume: 71
  start-page: 1999
  year: 2014
  ident: 6045_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-012-1319-2
– ident: 6045_CR34
– ident: 6045_CR1
– volume: 72
  start-page: 2833
  year: 2014
  ident: 6045_CR25
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-013-1574-x
– volume: 16
  start-page: 896
  year: 2006
  ident: 6045_CR50
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2006.877418
SSID ssj0016524
Score 2.1822128
Snippet Gait recognition has become popular due to the rising demand for nonintrusive biometrics. At its nascent stage of development, gait recognition faces a number...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28457
SubjectTerms Biometrics
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Euclidean geometry
Gait
Gait recognition
Least squares method
Life assessment
Manifolds (mathematics)
Multimedia Information Systems
Multivariate analysis
Special Purpose and Application-Based Systems
Subspaces
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6x8sIegPFDlF_yw56GLCWx4yQPE9omCpq0CqEh9S1ybKeqxtJCCxL767lznXYg0edcrCh3zn3x3X0fwGeVGC0RpvLCGselSy3HNGx45bLCSJ1p5efWfvXV1a38OUgHa9BvZ2GorbL9JvoPtR0bOiPHn3QhEM3HaX4-ueekGkXV1VZCQwdpBfvVU4x9gPWEmLE6sP79on99s6grqDTI3OYRx1wZt3VOP0wX06hKFOdcIc7hz68z1RJ-vqmY-kTU24bNgCDZt7nLP8Gaa3Zgq1VnYGGz7sDH_6gGd-GPP61nQz2asUXT0Lhh1Pc-ZD6jjf45yy4fEE2jZcP-OrT3nJdhPunJTRkd27IJhRs-wh3p_rDp_SPNMKHpcN5T2-zBbe_i948rHoQWuBGxmvE8zlSNwEATj7gxrrKmkBaBgNXSmELnmXB1UUmrC6FIw69WaZ2JWuDmdkJHYh86zbhxB8A8mUskHaJGJ0Ulc5vqxCSVqRLrrMi6ELUvtTSBhZzEMO7KJX8y-aFEP5Tkh_K5C18Wt0zmFByrjI9bT5VhN07LZex04az13vLyu4sdrl7sCDYSChc_mXgMndnDoztBiDKrTkPcvQDDkOTF
  priority: 102
  providerName: ProQuest
Title Human gait recognition using localized Grassmann mean representatives with partial least squares regression
URI https://link.springer.com/article/10.1007/s11042-018-6045-y
https://www.proquest.com/docview/2033149158
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sXvTgoyrWR9mDJ2UhyW42ybFKW1EUEQv1FDa7m1LU-GgV9Nc7u01aFRU85ZDJEjKz-b5kZr4B2BeBkhxpKk20MpSbUFOEYUUzEyWKy0gK17d2fiFOevy0H_bLPu5RVe1epSTdm3rW7ObbVhLPj6lAHkLfarAQWjUvDOJe0JqmDkRYTrKNPYpw6FepzJ-W-ApGM4b5LSnqsKazCsslSSStiVfXYM4UdVipBjCQcj_WYemTmuA63Lof8mQgh2MyrQt6KIgtbR8QB1rDd6NJ9xkJM1oW5N6gvZO1LFuQXs2I2D-z5NFGFN7CnR3tQ0ZPL7ZNCU0Hk7LZYgN6nfb18QktZylQxXwxprEfiRyxX1qpcKVMplXCNWK9llypRMYRM3mScS0TJuyYvlyEecRyhvvXMOmxTZgvHgqzBcTptXjcIDE0nGU81qEMVJCpLNBGs6gBXvVQU1UKjdt5F3fpTCLZ-iFFP6TWD-lbAw6mlzxOVDb-Mt6tPJWWG26UBh5j-LHnh3EDDivvzU7_utj2v6x3YDGw0eN6EXdhfvz8YvaQlIyzJtTiTrcJC63uzVkbj0fti8urpgvND82v318
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeKFAQy6s-wKWVpSR2nOSAKloey2uFEEjcgmM7K1TILuwC2v44flvHXmeXIpUb5zhW5Jl4xp75vg9gQ0RKckxTaaaVodzEmmIYVrQwSaa4TKRwuLWTlmhe8MPL-HICnmssjG2rrPdEt1HrjrJ35HhIZwyz-TBOf3TvqFWNstXVWkJDemkFveUoxjyw48gMnvAI19s62EF7b0bR3u75ryb1KgNUsVD0aRomosSoKC2JtlKm0CrjGqOgllypTKYJM2VWcC0zJqyAXSniMmElQ882TAYM5_0AU5zxDA9_Uz93W6dnozqGiL2sbhpQjM1hXVd14L3QQmOCMKUC8yo6-DcyjtPdVxVaF_j2ZmHGZ6xke-hiczBhqnn4XKtBEL85zMOnF9SGX-C3qw6Qtrzuk1GTUqcits--TVwEvf5jNNm_x-wdR1bk1uB4x7Hp8VCPpkfsNTHpWvfGT7ixOkOkd_dgMVM4tD3s4a0W4OJdlnwRJqtOZZaAOPKYgBvMUg1nBU91LCMVFaqItNEsaUBQL2quPOu5Fd-4ycd8zdYOOdoht3bIBw34NnqlO6T8eGvwam2p3P_9vXzsqw34Xltv_Pi_ky2_PdlXmG6enxznxwetoxX4GFnXcajIVZjs3z-YNUyP-sW690ECV-_t9n8Bo80htA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1tQULtoXwVdVsKPpRLkdUkdpzkUFWosCylRT0UiVtwbGeFSrOftNr-tP66zniT3YIEN85xrMjz4nn2zJsBeKsioyXSVJ5Z47h0seXohg0vXJIZqROtvG7t65nqnsvPF_FFC_42WhhKq2z2RL9R276hO3I8pAuBbD6M0_dlnRbx7bDzcTDk1EGKIq1NO40ZRE7d9Dce38YfTg7R1ntR1Dn6_qnL6w4D3IhQTXgaJqpEj6ipgLYxrrAmkxY9oNXSmEyniXBlVkirM6GoeV2p4jIRpUBUO6EDgfM-geWEqriTSr1zPI9gqLhuqJsGHL1y2ERUvWwvJFFMEKZcIaPi09s-cUF078RmvcvrrMHzmquygxm41qHlqg1YbfpAsHpb2IBn_xU13IQfPi7AevpqwubpSf2KUYZ9j3nfefXHWXY8Qt6OIyv20-F4X12zVkL9cmNGF8RsQMDGT7imDkNsPLwhtRQO7c2yd6sXcP4oC74FS1W_ci-B-bIxgXTIT50UhUxtrCMTFaaIrLMiaUPQLGpu6nrn1HbjOl9UaiY75GiHnOyQT9vwbv7KYFbs46HB242l8vq_H-cLlLZhv7He4vG9k716eLJdWEGw519Ozk5fw9OIkOPlkNuwNBnduDfIiybFjgcgg8vHRvw_tI4fTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+gait+recognition+using+localized+Grassmann+mean+representatives+with+partial+least+squares+regression&rft.jtitle=Multimedia+tools+and+applications&rft.au=Connie%2C+Tee&rft.au=Goh%2C+Michael+Kah+Ong&rft.au=Teoh%2C+Andrew+Beng+Jin&rft.date=2018-11-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=21&rft.spage=28457&rft.epage=28482&rft_id=info:doi/10.1007%2Fs11042-018-6045-y&rft.externalDocID=10_1007_s11042_018_6045_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon