Chaotic grasshopper optimization algorithm for global optimization
Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces chaos theory into the optimization process of GOA so as to accelerate its global convergence speed. The chaotic maps are employed to balance the...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 31; no. 8; pp. 4385 - 4405 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.08.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-018-3343-2 | 
Cover
| Abstract | Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces chaos theory into the optimization process of GOA so as to accelerate its global convergence speed. The chaotic maps are employed to balance the exploration and exploitation efficiently and the reduction in repulsion/attraction forces between grasshoppers in the optimization process. The proposed chaotic GOA algorithms are benchmarked on thirteen test functions. The results show that the chaotic maps (especially circle map) are able to significantly boost the performance of GOA. | 
    
|---|---|
| AbstractList | Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces chaos theory into the optimization process of GOA so as to accelerate its global convergence speed. The chaotic maps are employed to balance the exploration and exploitation efficiently and the reduction in repulsion/attraction forces between grasshoppers in the optimization process. The proposed chaotic GOA algorithms are benchmarked on thirteen test functions. The results show that the chaotic maps (especially circle map) are able to significantly boost the performance of GOA. | 
    
| Author | Arora, Sankalap Anand, Priyanka  | 
    
| Author_xml | – sequence: 1 givenname: Sankalap surname: Arora fullname: Arora, Sankalap email: sankalap10156@davuniversity.org organization: DAV University – sequence: 2 givenname: Priyanka surname: Anand fullname: Anand, Priyanka organization: Lovely Professional University  | 
    
| BookMark | eNp9kEtLxDAUhYOM4MzoD3BXcF3Nu52lDr5gwI2uQ5ImbYZOU5PMQn-9GSuIgnIXd3HPd-7hLMBs8IMB4BzBSwRhdRUhZBiVENUlIZSU-AjMESWkJJDVMzCHK5qvnJITsIhxCyGkvGZzcLPupE9OF22QMXZ-HE0o_Jjczr3L5PxQyL71waVuV1gfirb3SvY_FKfg2Mo-mrOvvQQvd7fP64dy83T_uL7elJognsoKmaaC1ug8VOdUSBFOkGyMMopbtSJarRomCW4oxMZQXHNeW6OY0twyTJbgYvIdg3_dm5jE1u_DkF8KjGvGWJWBrKomlQ4-xmCs0C595kxBul4gKA6FiakwkQsTh8LEwR_9IsfgdjK8_cvgiYlZO7QmfGf6G_oA-HKA2g | 
    
| CitedBy_id | crossref_primary_10_3390_electronics10222834 crossref_primary_10_1038_s41598_022_27144_4 crossref_primary_10_1007_s10586_024_04666_2 crossref_primary_10_1007_s13369_021_06026_3 crossref_primary_10_3390_biomimetics9110683 crossref_primary_10_1016_j_compbiomed_2022_106239 crossref_primary_10_1007_s11771_023_5503_5 crossref_primary_10_1007_s40747_020_00189_6 crossref_primary_10_1016_j_eswa_2021_116368 crossref_primary_10_1109_ACCESS_2019_2933265 crossref_primary_10_1016_j_conbuildmat_2024_136201 crossref_primary_10_1002_eng2_12124 crossref_primary_10_1080_01430750_2020_1745276 crossref_primary_10_1016_j_enconman_2024_119231 crossref_primary_10_1088_1361_6501_acf681 crossref_primary_10_3390_machines11010010 crossref_primary_10_1109_ACCESS_2020_2967399 crossref_primary_10_1016_j_matcom_2024_02_008 crossref_primary_10_31590_ejosat_1216396 crossref_primary_10_1109_ACCESS_2023_3253512 crossref_primary_10_1007_s00521_020_05475_5 crossref_primary_10_3389_fninf_2022_1063048 crossref_primary_10_1007_s00607_021_00991_1 crossref_primary_10_1007_s12065_022_00788_x crossref_primary_10_1007_s00521_021_05756_7 crossref_primary_10_1088_1361_6501_ad7e42 crossref_primary_10_21605_cukurovaumfd_1334219 crossref_primary_10_1007_s42417_022_00538_4 crossref_primary_10_1093_jcde_qwab082 crossref_primary_10_1109_ACCESS_2019_2954500 crossref_primary_10_3390_electronics11213639 crossref_primary_10_1002_mma_7271 crossref_primary_10_1007_s00366_020_01234_1 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1007_s10489_021_02353_y crossref_primary_10_3390_electronics11223678 crossref_primary_10_1016_j_enconman_2024_118391 crossref_primary_10_1007_s12065_021_00590_1 crossref_primary_10_1109_TEM_2024_3385298 crossref_primary_10_1016_j_energy_2023_130126 crossref_primary_10_1007_s11581_025_06200_9 crossref_primary_10_1007_s12665_022_10269_0 crossref_primary_10_1109_ACCESS_2023_3332902 crossref_primary_10_3390_molecules25081797 crossref_primary_10_1007_s00521_022_06899_x crossref_primary_10_1007_s13042_022_01703_7 crossref_primary_10_1007_s00500_021_05752_y crossref_primary_10_1155_2022_2699833 crossref_primary_10_1007_s00366_021_01448_x crossref_primary_10_1007_s11042_022_12562_3 crossref_primary_10_1109_ACCESS_2020_2993762 crossref_primary_10_1016_j_jestch_2023_101388 crossref_primary_10_1007_s13369_020_04486_7 crossref_primary_10_1177_16878132221082975 crossref_primary_10_1038_s41598_024_74144_7 crossref_primary_10_1007_s00500_022_07257_8 crossref_primary_10_1007_s00500_022_07403_2 crossref_primary_10_1007_s12065_024_00937_4 crossref_primary_10_1109_ACCESS_2021_3067597 crossref_primary_10_1016_j_jwpe_2024_105717 crossref_primary_10_1007_s12652_022_04103_5 crossref_primary_10_1016_j_chaos_2024_114869 crossref_primary_10_1016_j_ijrefrig_2024_01_012 crossref_primary_10_3390_su14095668 crossref_primary_10_1109_ACCESS_2020_3007602 crossref_primary_10_1007_s00366_020_01120_w crossref_primary_10_1007_s11227_021_04255_9 crossref_primary_10_1038_s41598_024_75347_8 crossref_primary_10_1109_ACCESS_2019_2905961 crossref_primary_10_1016_j_displa_2024_102727 crossref_primary_10_1109_ACCESS_2020_2976101 crossref_primary_10_1155_2020_4873501 crossref_primary_10_1007_s42452_020_04013_1 crossref_primary_10_1007_s42235_023_00438_7 crossref_primary_10_1080_13682199_2023_2167545 crossref_primary_10_1007_s11042_020_09876_5 crossref_primary_10_3390_agronomy15020323 crossref_primary_10_1007_s42979_024_03604_8 crossref_primary_10_3390_math10071145 crossref_primary_10_12677_AEPE_2022_102008 crossref_primary_10_1002_cpe_5945 crossref_primary_10_1016_j_measurement_2024_115184 crossref_primary_10_1007_s11063_023_11230_3 crossref_primary_10_37394_23203_2023_18_13 crossref_primary_10_1007_s10489_020_01728_x crossref_primary_10_1109_ACCESS_2024_3350212 crossref_primary_10_1007_s00500_023_09504_y crossref_primary_10_1016_j_rineng_2024_103369 crossref_primary_10_3390_sym13122364 crossref_primary_10_1109_ACCESS_2021_3077616 crossref_primary_10_3390_biomimetics9070399 crossref_primary_10_3390_s22228787 crossref_primary_10_1007_s11276_023_03247_2 crossref_primary_10_1016_j_displa_2024_102740 crossref_primary_10_3390_f15081365 crossref_primary_10_1016_j_asoc_2024_111539 crossref_primary_10_1007_s12530_021_09389_y crossref_primary_10_1002_ett_4443 crossref_primary_10_37394_232016_2023_18_14 crossref_primary_10_1007_s00500_020_04877_w crossref_primary_10_1007_s10586_024_04892_8 crossref_primary_10_1007_s11227_023_05413_x crossref_primary_10_3390_math12162521 crossref_primary_10_1109_ACCESS_2019_2895502 crossref_primary_10_1109_ACCESS_2022_3193233 crossref_primary_10_1007_s41870_022_01031_7 crossref_primary_10_1007_s42835_020_00589_1 crossref_primary_10_1142_S0217984924503081 crossref_primary_10_3390_w16162232 crossref_primary_10_1016_j_neucom_2024_128427 crossref_primary_10_1007_s00521_020_05347_y crossref_primary_10_1016_j_jclepro_2019_119318 crossref_primary_10_1007_s10586_024_04443_1 crossref_primary_10_1038_s41598_024_82277_y crossref_primary_10_1080_02522667_2020_1804133 crossref_primary_10_1108_JEIM_02_2020_0075 crossref_primary_10_1109_JSEN_2022_3190469 crossref_primary_10_1016_j_asej_2021_06_022 crossref_primary_10_1109_TIM_2022_3228003 crossref_primary_10_1007_s11227_020_03161_w crossref_primary_10_1016_j_apenergy_2023_121623 crossref_primary_10_1016_j_eswa_2023_120354 crossref_primary_10_1007_s10586_022_03650_y crossref_primary_10_1016_j_asoc_2021_107564 crossref_primary_10_1109_ACCESS_2021_3081366 crossref_primary_10_3390_s23208620 crossref_primary_10_1007_s11356_023_31368_w crossref_primary_10_1007_s12065_020_00479_5 crossref_primary_10_1016_j_tust_2025_106366 crossref_primary_10_1007_s10462_023_10431_5 crossref_primary_10_3390_biomimetics9090572 crossref_primary_10_1109_ACCESS_2021_3052800 crossref_primary_10_1016_j_measurement_2021_110552 crossref_primary_10_1109_ACCESS_2022_3197290 crossref_primary_10_3233_JIFS_237786 crossref_primary_10_1007_s41870_024_01791_4 crossref_primary_10_1108_COMPEL_12_2020_0422 crossref_primary_10_1007_s00500_023_09373_5 crossref_primary_10_1007_s10462_021_10100_5 crossref_primary_10_1007_s10586_024_04881_x crossref_primary_10_1007_s12065_023_00861_z crossref_primary_10_1007_s13369_024_09222_z crossref_primary_10_1016_j_engappai_2022_104952 crossref_primary_10_1016_j_enconman_2022_116580 crossref_primary_10_3390_app13031497 crossref_primary_10_1007_s10586_024_04672_4 crossref_primary_10_1007_s10489_022_03824_6 crossref_primary_10_1016_j_eswa_2022_119049 crossref_primary_10_1109_ACCESS_2020_3029728 crossref_primary_10_7717_peerj_cs_1526 crossref_primary_10_1049_cje_2021_03_008 crossref_primary_10_1109_ACCESS_2022_3174854 crossref_primary_10_1080_23080477_2022_2092670 crossref_primary_10_3390_math9182335 crossref_primary_10_3390_math11091977 crossref_primary_10_1007_s10586_023_04036_4 crossref_primary_10_1080_15623599_2021_1927363 crossref_primary_10_1007_s10845_021_01877_x crossref_primary_10_3390_en16135098 crossref_primary_10_1155_2022_5129098 crossref_primary_10_3390_jmse11061236 crossref_primary_10_3233_JIFS_212633 crossref_primary_10_32604_csse_2022_022107 crossref_primary_10_1007_s11053_023_10284_3 crossref_primary_10_1109_ACCESS_2020_3006469 crossref_primary_10_3390_su132212771 crossref_primary_10_3934_mbe_2021129 crossref_primary_10_1007_s00521_022_07670_y crossref_primary_10_1007_s10462_024_10946_5 crossref_primary_10_1016_j_asoc_2023_110091 crossref_primary_10_1007_s10586_020_03187_y crossref_primary_10_1007_s00500_025_10412_6 crossref_primary_10_1109_ACCESS_2023_3253432 crossref_primary_10_1007_s00521_018_3566_2 crossref_primary_10_1007_s10489_021_03037_3 crossref_primary_10_1088_2631_8695_ada222 crossref_primary_10_1007_s11042_023_17538_5 crossref_primary_10_1016_j_eswa_2022_119421 crossref_primary_10_1007_s42835_021_00884_5 crossref_primary_10_1155_2021_4454507 crossref_primary_10_1109_ACCESS_2019_2897325 crossref_primary_10_1007_s40747_025_01791_2 crossref_primary_10_1016_j_jestch_2023_101408 crossref_primary_10_1007_s13198_024_02669_1 crossref_primary_10_1007_s00366_020_00994_0 crossref_primary_10_1109_ACCESS_2019_2963679 crossref_primary_10_1109_ACCESS_2022_3202982 crossref_primary_10_1016_j_energy_2024_131163 crossref_primary_10_1002_oca_3034 crossref_primary_10_3390_pr10030491 crossref_primary_10_1016_j_chemolab_2022_104635 crossref_primary_10_1007_s11600_024_01294_7 crossref_primary_10_1109_TIA_2021_3116549 crossref_primary_10_1140_epjs_s11734_022_00559_w crossref_primary_10_1371_journal_pone_0275727 crossref_primary_10_1016_j_autcon_2021_104107 crossref_primary_10_1088_1361_6501_ad34f0 crossref_primary_10_3390_math12172708 crossref_primary_10_1016_j_asoc_2021_107451 crossref_primary_10_1002_cpe_6514 crossref_primary_10_3390_agriculture14060865 crossref_primary_10_1109_TGRS_2019_2959270 crossref_primary_10_1007_s00500_021_05874_3 crossref_primary_10_1016_j_asej_2024_103185 crossref_primary_10_1007_s11042_024_18331_8 crossref_primary_10_7717_peerj_cs_860 crossref_primary_10_1007_s44196_024_00578_6 crossref_primary_10_1007_s13748_019_00184_0 crossref_primary_10_1007_s10586_024_04511_6 crossref_primary_10_1007_s00500_021_06135_z crossref_primary_10_1109_TRS_2023_3267739 crossref_primary_10_1038_s41598_020_71502_z crossref_primary_10_1063_5_0187668 crossref_primary_10_1007_s00521_020_04815_9 crossref_primary_10_3390_en17122917  | 
    
| Cites_doi | 10.3233/JIFS-16798 10.1023/A:1022602019183 10.1016/j.jmatprotec.2008.06.028 10.1109/ICEC.1996.542373 10.1016/j.ins.2012.04.039 10.1177/003754970107600201 10.1016/j.advengsoft.2013.12.007 10.1016/j.asoc.2014.10.010 10.1007/s00521-014-1597-x 10.1109/4235.771163 10.1109/TPWRS.2006.873410 10.1007/s00521-017-2988-6 10.1023/A:1022995128597 10.1155/2014/924652 10.1016/j.swevo.2011.02.002 10.1162/106365601750190398 10.1109/81.933333 10.1007/s13369-017-2471-9 10.1007/s00521-014-1751-5 10.1016/j.ins.2009.03.004 10.1155/2013/696491 10.1016/j.advengsoft.2017.01.004 10.1016/j.cnsns.2012.07.017 10.1007/s00521-015-2037-2 10.1016/j.ins.2012.06.033 10.1007/s00521-014-1613-1 10.1016/j.cnsns.2011.08.021 10.1016/j.ins.2011.03.018 10.1016/B978-1-55860-335-6.50043-X 10.1023/A:1008202821328 10.1007/s10732-008-9080-4 10.1016/j.chaos.2006.04.057 10.1109/PDGC.2014.7030711 10.1016/j.jcde.2017.02.005 10.1016/0960-0779(94)90033-7 10.1016/j.cnsns.2012.06.009  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Natural Computing Applications Forum 2018 Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| Copyright_xml | – notice: The Natural Computing Applications Forum 2018 – notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s00521-018-3343-2 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 4405 | 
    
| ExternalDocumentID | 10_1007_s00521_018_3343_2 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c316t-71ed70fecece4c0581b3631adebeb6fb93cb9d5a32d402ee428668feb5bc6f523 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Mon Jul 14 08:59:02 EDT 2025 Wed Oct 01 02:25:50 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Fri Feb 21 02:35:44 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Grasshopper optimization algorithm Multimodal function Chaotic maps Global optimization problem  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-71ed70fecece4c0581b3631adebeb6fb93cb9d5a32d402ee428668feb5bc6f523 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2285557866 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | proquest_journals_2285557866 crossref_citationtrail_10_1007_s00521_018_3343_2 crossref_primary_10_1007_s00521_018_3343_2 springer_journals_10_1007_s00521_018_3343_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20190800 2019-8-00 20190801  | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 8 year: 2019 text: 20190800  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput200718721076108523231141114.65335 Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. 1st edn. Lulu, North Carolina Yang X-S (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, pp 209–218 RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.9037810.1016/j.ins.2009.03.004 Storn R (1996) Differential evolution design of an IIR filter. In: Proceedings of IEEE international conference on evolutionary computation, pp 268–273 HanXChangXAn intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transformsInf Sci201321810311810.1016/j.ins.2012.06.033 Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:21. https://doi.org/10.1155/2013/696491 DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002 YangDLiGChengGOn the efficiency of chaos optimization algorithms for global optimizationChaos Solitons Fractals200734413661375228678010.1016/j.chaos.2006.04.057 AroraSSinghSNode localization in wireless sensor networks using butterfly optimization algorithmArab J Sci Eng2017423325333510.1007/s13369-017-2471-9 GandomiAYangX-STalatahariSAlaviAFirefly algorithm with chaosCommun Nonlinear Sci Numer Simul2013181899829743651254.9208910.1016/j.cnsns.2012.06.009 dos CoelhoL SantosMarianiVCCombining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effectIEEE Trans Power Syst200621298910.1109/TPWRS.2006.873410 IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett20031719310510.1023/A:1022995128597 HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol Comput20019215919510.1162/106365601750190398 GandomiAHYunGJYangX-STalatahariSChaos-enhanced accelerated particle swarm optimizationCommun Nonlinear Sci Numer Simul201318232734029718331323.9008210.1016/j.cnsns.2012.07.017 HeidariAAAbbaspourRAJordehiARAn efficient chaotic water cycle algorithm for optimization tasksNeural Comput Appl2017281578510.1007/s00521-015-2037-2 AroraSSinghSThe firefly optimization algorithm: convergence analysis and parameter selectionInt J Comput Appl20136934852 JordehiARA chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problemsNeural Comput Appl201526482783310.1007/s00521-014-1751-5 Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the eleventh international conference on machine learning, pp 293–301 JordehiARChaotic bat swarm optimisation (cbso)Appl Soft Comput20152652353010.1016/j.asoc.2014.10.010 Arora S, Singh S, Singh S, Sharma B (2014) Mutated firefly algorithm. In: International conference on parallel, distributed and grid computing (PDGC), pp 33–38 GarcíaSMolinaDLozanoMHerreraFA study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimizationJ Heuristics20091566176441191.6882810.1007/s10732-008-9080-4 Eberhart RC, Kennedy J et al (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, New York, vol 1, pp 39–43 SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004 Arora S, Singh S (2015) Butterfly algorithm with levy flights for global optimization. In: International conference on signal processing, computing and control (ISPCC), pp 220–224 Lu H, Wang X, Fei Z, Qiu M (2014) The effects of using chaotic map on improving the performance of multiobjective evolutionary algorithms. Math Prob Eng 2014:16. https://doi.org/10.1155/2014/924652 WilcoxonFKattiSWilcoxRACritical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank testSel Tables Math Stat197011712590121.36201 SaremiSMirjaliliSLewisABiogeography-based optimisation with chaosNeural Comput Appl20142551077109710.1007/s00521-014-1597-x Kohli M, Arora S (2017) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Design Eng. https://doi.org/10.1016/j.jcde.2017.02.005 HeDHeCJiangL-GZhuH-WHuG-RChaotic characteristics of a one-dimensional iterative map with infinite collapsesIEEE Trans Circuits Syst I Fundam Theory Appl200148790090618410050993.3703310.1109/81.933333 Yang X-S, Gandomi AH, Talatahari S, Alavi AH (eds) (2012) Metaheuristics in water, geotechnical and transport engineering. Elsevier, Newnes GeemZWKimJHLoganathanGA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201 ZhengW-MKneading plane of the circle mapChaos Solitons Fractals199447122112330817.5803010.1016/0960-0779(94)90033-7 AroraSSinghSAn improved butterfly optimization algorithm with chaosJ Intell Fuzzy Syst2017321107910881366.9022210.3233/JIFS-16798 NaanaaAFast chaotic optimization algorithm based on spatiotemporal maps for global optimizationAppl Math Comput201526940241133967871410.90275 GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007 HanXChangXA chaotic digital secure communication based on a modified gravitational search algorithm filterInf Sci2012208142710.1016/j.ins.2012.04.039 YaoXLiuYLinGEvolutionary programming made fasterIEEE Trans Evol Comput1999328210210.1109/4235.771163 Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. Wiley, New York ChuangL-YTsaiS-WYangC-HChaotic catfish particle swarm optimization for solving global numerical optimization problemsAppl Math Comput2011217166900691627756811213.65087 JiaDZhengGKhanMKAn effective memetic differential evolution algorithm based on chaotic local searchInf Sci2011181153175318710.1016/j.ins.2011.03.018 JordehiARA chaotic-based big bang-big crunch algorithm for solving global optimisation problemsNeural Comput Appl20142561329133510.1007/s00521-014-1613-1 YildizARAn effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industryJ Mater Process Technol200920962773278010.1016/j.jmatprotec.2008.06.028 YangX-SIntroduction to mathematical optimization: from linear programming to metaheuristics2008CambridgeCambridge International Science Publishing1159.90004 StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim199711434135914795530888.9013510.1023/A:1008202821328 SayedGIHassanienAEAzarATFeature selection via a novel chaotic crow search algorithmNeural Comput Appl201710.1007/s00521-017-2988-6 TalatahariSAzarBFSheikholeslamiRGandomiAImperialist competitive algorithm combined with chaos for global optimizationCommun Nonlinear Sci Numer Simul20121731312131928437971241.9019310.1016/j.cnsns.2011.08.021 S Saremi (3343_CR24) 2017; 105 D Yang (3343_CR25) 2007; 34 DE Goldberg (3343_CR14) 1988; 3 S Arora (3343_CR10) 2017; 42 W-M Zheng (3343_CR43) 1994; 4 GI Sayed (3343_CR11) 2017 X Han (3343_CR38) 2012; 208 3343_CR13 E Rashedi (3343_CR19) 2009; 179 AR Jordehi (3343_CR5) 2015; 26 ZW Geem (3343_CR20) 2001; 76 3343_CR17 3343_CR16 AR Jordehi (3343_CR35) 2015; 26 AA Heidari (3343_CR33) 2017; 28 S Mirjalili (3343_CR23) 2014; 69 S Talatahari (3343_CR34) 2012; 17 L Santos Coelho dos (3343_CR8) 2006; 21 J Ilonen (3343_CR12) 2003; 17 D He (3343_CR41) 2001; 48 N Hansen (3343_CR21) 2001; 9 J Derrac (3343_CR46) 2011; 1 3343_CR40 MS Tavazoei (3343_CR42) 2007; 187 S García (3343_CR47) 2009; 15 3343_CR22 3343_CR44 S Arora (3343_CR28) 2017; 32 AR Yildiz (3343_CR4) 2009; 209 R Storn (3343_CR15) 1997; 11 3343_CR2 A Gandomi (3343_CR26) 2013; 18 F Wilcoxon (3343_CR48) 1970; 1 3343_CR3 AH Gandomi (3343_CR27) 2013; 18 3343_CR29 D Jia (3343_CR32) 2011; 181 3343_CR6 3343_CR7 3343_CR9 S Arora (3343_CR18) 2013; 69 L-Y Chuang (3343_CR36) 2011; 217 S Saremi (3343_CR37) 2014; 25 A Naanaa (3343_CR39) 2015; 269 X Han (3343_CR30) 2013; 218 AR Jordehi (3343_CR31) 2014; 25 X Yao (3343_CR45) 1999; 3 X-S Yang (3343_CR1) 2008  | 
    
| References_xml | – reference: AroraSSinghSThe firefly optimization algorithm: convergence analysis and parameter selectionInt J Comput Appl20136934852 – reference: DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002 – reference: NaanaaAFast chaotic optimization algorithm based on spatiotemporal maps for global optimizationAppl Math Comput201526940241133967871410.90275 – reference: Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the eleventh international conference on machine learning, pp 293–301 – reference: Yang X-S (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, pp 209–218 – reference: TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput200718721076108523231141114.65335 – reference: Storn R (1996) Differential evolution design of an IIR filter. In: Proceedings of IEEE international conference on evolutionary computation, pp 268–273 – reference: GandomiAHYunGJYangX-STalatahariSChaos-enhanced accelerated particle swarm optimizationCommun Nonlinear Sci Numer Simul201318232734029718331323.9008210.1016/j.cnsns.2012.07.017 – reference: ZhengW-MKneading plane of the circle mapChaos Solitons Fractals199447122112330817.5803010.1016/0960-0779(94)90033-7 – reference: AroraSSinghSAn improved butterfly optimization algorithm with chaosJ Intell Fuzzy Syst2017321107910881366.9022210.3233/JIFS-16798 – reference: YangDLiGChengGOn the efficiency of chaos optimization algorithms for global optimizationChaos Solitons Fractals200734413661375228678010.1016/j.chaos.2006.04.057 – reference: JiaDZhengGKhanMKAn effective memetic differential evolution algorithm based on chaotic local searchInf Sci2011181153175318710.1016/j.ins.2011.03.018 – reference: GarcíaSMolinaDLozanoMHerreraFA study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimizationJ Heuristics20091566176441191.6882810.1007/s10732-008-9080-4 – reference: Kohli M, Arora S (2017) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Design Eng. https://doi.org/10.1016/j.jcde.2017.02.005 – reference: ChuangL-YTsaiS-WYangC-HChaotic catfish particle swarm optimization for solving global numerical optimization problemsAppl Math Comput2011217166900691627756811213.65087 – reference: RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.9037810.1016/j.ins.2009.03.004 – reference: dos CoelhoL SantosMarianiVCCombining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effectIEEE Trans Power Syst200621298910.1109/TPWRS.2006.873410 – reference: Arora S, Singh S (2015) Butterfly algorithm with levy flights for global optimization. In: International conference on signal processing, computing and control (ISPCC), pp 220–224 – reference: Lu H, Wang X, Fei Z, Qiu M (2014) The effects of using chaotic map on improving the performance of multiobjective evolutionary algorithms. Math Prob Eng 2014:16. https://doi.org/10.1155/2014/924652 – reference: YildizARAn effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industryJ Mater Process Technol200920962773278010.1016/j.jmatprotec.2008.06.028 – reference: Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. Wiley, New York – reference: GeemZWKimJHLoganathanGA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201 – reference: SaremiSMirjaliliSLewisABiogeography-based optimisation with chaosNeural Comput Appl20142551077109710.1007/s00521-014-1597-x – reference: Eberhart RC, Kennedy J et al (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, New York, vol 1, pp 39–43 – reference: JordehiARA chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problemsNeural Comput Appl201526482783310.1007/s00521-014-1751-5 – reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004 – reference: HanXChangXA chaotic digital secure communication based on a modified gravitational search algorithm filterInf Sci2012208142710.1016/j.ins.2012.04.039 – reference: WilcoxonFKattiSWilcoxRACritical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank testSel Tables Math Stat197011712590121.36201 – reference: GandomiAYangX-STalatahariSAlaviAFirefly algorithm with chaosCommun Nonlinear Sci Numer Simul2013181899829743651254.9208910.1016/j.cnsns.2012.06.009 – reference: JordehiARChaotic bat swarm optimisation (cbso)Appl Soft Comput20152652353010.1016/j.asoc.2014.10.010 – reference: IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett20031719310510.1023/A:1022995128597 – reference: GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183 – reference: JordehiARA chaotic-based big bang-big crunch algorithm for solving global optimisation problemsNeural Comput Appl20142561329133510.1007/s00521-014-1613-1 – reference: YangX-SIntroduction to mathematical optimization: from linear programming to metaheuristics2008CambridgeCambridge International Science Publishing1159.90004 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007 – reference: HeDHeCJiangL-GZhuH-WHuG-RChaotic characteristics of a one-dimensional iterative map with infinite collapsesIEEE Trans Circuits Syst I Fundam Theory Appl200148790090618410050993.3703310.1109/81.933333 – reference: AroraSSinghSNode localization in wireless sensor networks using butterfly optimization algorithmArab J Sci Eng2017423325333510.1007/s13369-017-2471-9 – reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim199711434135914795530888.9013510.1023/A:1008202821328 – reference: SayedGIHassanienAEAzarATFeature selection via a novel chaotic crow search algorithmNeural Comput Appl201710.1007/s00521-017-2988-6 – reference: Yang X-S, Gandomi AH, Talatahari S, Alavi AH (eds) (2012) Metaheuristics in water, geotechnical and transport engineering. Elsevier, Newnes – reference: Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. 1st edn. Lulu, North Carolina – reference: YaoXLiuYLinGEvolutionary programming made fasterIEEE Trans Evol Comput1999328210210.1109/4235.771163 – reference: HanXChangXAn intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transformsInf Sci201321810311810.1016/j.ins.2012.06.033 – reference: HeidariAAAbbaspourRAJordehiARAn efficient chaotic water cycle algorithm for optimization tasksNeural Comput Appl2017281578510.1007/s00521-015-2037-2 – reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol Comput20019215919510.1162/106365601750190398 – reference: Arora S, Singh S, Singh S, Sharma B (2014) Mutated firefly algorithm. In: International conference on parallel, distributed and grid computing (PDGC), pp 33–38 – reference: Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:21. https://doi.org/10.1155/2013/696491 – reference: TalatahariSAzarBFSheikholeslamiRGandomiAImperialist competitive algorithm combined with chaos for global optimizationCommun Nonlinear Sci Numer Simul20121731312131928437971241.9019310.1016/j.cnsns.2011.08.021 – volume-title: Introduction to mathematical optimization: from linear programming to metaheuristics year: 2008 ident: 3343_CR1 – volume: 32 start-page: 1079 issue: 1 year: 2017 ident: 3343_CR28 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-16798 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 3343_CR14 publication-title: Mach Learn doi: 10.1023/A:1022602019183 – volume: 209 start-page: 2773 issue: 6 year: 2009 ident: 3343_CR4 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.06.028 – ident: 3343_CR9 doi: 10.1109/ICEC.1996.542373 – volume: 208 start-page: 14 year: 2012 ident: 3343_CR38 publication-title: Inf Sci doi: 10.1016/j.ins.2012.04.039 – volume: 69 start-page: 48 issue: 3 year: 2013 ident: 3343_CR18 publication-title: Int J Comput Appl – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 3343_CR20 publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 69 start-page: 46 year: 2014 ident: 3343_CR23 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 26 start-page: 523 year: 2015 ident: 3343_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.10.010 – volume: 25 start-page: 1077 issue: 5 year: 2014 ident: 3343_CR37 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1597-x – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 3343_CR45 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.771163 – volume: 21 start-page: 989 issue: 2 year: 2006 ident: 3343_CR8 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.873410 – year: 2017 ident: 3343_CR11 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2988-6 – volume: 17 start-page: 93 issue: 1 year: 2003 ident: 3343_CR12 publication-title: Neural Process Lett doi: 10.1023/A:1022995128597 – ident: 3343_CR40 doi: 10.1155/2014/924652 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 3343_CR46 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 3343_CR21 publication-title: Evol Comput doi: 10.1162/106365601750190398 – volume: 48 start-page: 900 issue: 7 year: 2001 ident: 3343_CR41 publication-title: IEEE Trans Circuits Syst I Fundam Theory Appl doi: 10.1109/81.933333 – ident: 3343_CR2 – volume: 42 start-page: 3325 year: 2017 ident: 3343_CR10 publication-title: Arab J Sci Eng doi: 10.1007/s13369-017-2471-9 – volume: 26 start-page: 827 issue: 4 year: 2015 ident: 3343_CR35 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1751-5 – ident: 3343_CR22 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 3343_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – ident: 3343_CR44 doi: 10.1155/2013/696491 – volume: 105 start-page: 30 year: 2017 ident: 3343_CR24 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 18 start-page: 327 issue: 2 year: 2013 ident: 3343_CR27 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.07.017 – volume: 28 start-page: 57 issue: 1 year: 2017 ident: 3343_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2037-2 – volume: 218 start-page: 103 year: 2013 ident: 3343_CR30 publication-title: Inf Sci doi: 10.1016/j.ins.2012.06.033 – volume: 25 start-page: 1329 issue: 6 year: 2014 ident: 3343_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1613-1 – volume: 17 start-page: 1312 issue: 3 year: 2012 ident: 3343_CR34 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2011.08.021 – volume: 181 start-page: 3175 issue: 15 year: 2011 ident: 3343_CR32 publication-title: Inf Sci doi: 10.1016/j.ins.2011.03.018 – ident: 3343_CR6 doi: 10.1016/B978-1-55860-335-6.50043-X – volume: 269 start-page: 402 year: 2015 ident: 3343_CR39 publication-title: Appl Math Comput – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 3343_CR15 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 187 start-page: 1076 issue: 2 year: 2007 ident: 3343_CR42 publication-title: Appl Math Comput – ident: 3343_CR13 – volume: 15 start-page: 617 issue: 6 year: 2009 ident: 3343_CR47 publication-title: J Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 34 start-page: 1366 issue: 4 year: 2007 ident: 3343_CR25 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.04.057 – ident: 3343_CR16 doi: 10.1109/PDGC.2014.7030711 – ident: 3343_CR29 doi: 10.1016/j.jcde.2017.02.005 – ident: 3343_CR17 – volume: 4 start-page: 1221 issue: 7 year: 1994 ident: 3343_CR43 publication-title: Chaos Solitons Fractals doi: 10.1016/0960-0779(94)90033-7 – volume: 217 start-page: 6900 issue: 16 year: 2011 ident: 3343_CR36 publication-title: Appl Math Comput – volume: 1 start-page: 171 year: 1970 ident: 3343_CR48 publication-title: Sel Tables Math Stat – ident: 3343_CR3 – ident: 3343_CR7 – volume: 18 start-page: 89 issue: 1 year: 2013 ident: 3343_CR26 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.06.009  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.6092157 | 
    
| Snippet | Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4385 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Chaos theory Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Global optimization Heuristic methods Image Processing and Computer Vision Optimization algorithms Original Article Probability and Statistics in Computer Science Swarming  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVh4IwoFeWACWUri2InHUlFVSDBRqVtkx3Y7tE3Vx__nnNgtRYCEMvrs4WzffV_Od4fQA2dCqSwWxGYWCIqVEZFgCIlQRgLa5yaXLqL79s4Hw_R1xEY-j3sVXruHkGRtqbfJbu4PpqO-OaE0pQTs7iFz1bzgEA-T7pdkyLoPJ9AW96QnpSGU-dMS-85ohzC_BUVrX9M_RcceJOJus6tn6MDMz9FJaMCA_X28QM-9iaxABo-XgIEn1WIBoxUYgZnPrsRyOq6A_k9mGMApbqp_7ElcomH_5aM3IL4pAilpzNcki43OImtK-NIyYgA7Kaex1LAbilslaKmEZpImGqihMUAvOM-tUUyV3ALtvEKteTU31wgr8PUyU4Zp14FYgO-WSovYplxGOsqSNoqCdorSVwx3jSumxbbWca3QAhRaOIUWMOVxO2XRlMv4S7gTVF74m7MqkiRnDMwI5230FLZhN_zrYjf_kr5FR4B8RPOSr4Na6-XG3AG6WKv7-jR9AgcUxps priority: 102 providerName: Springer Nature  | 
    
| Title | Chaotic grasshopper optimization algorithm for global optimization | 
    
| URI | https://link.springer.com/article/10.1007/s00521-018-3343-2 https://www.proquest.com/docview/2285557866  | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gvPjitxFFsgefNI3bunXbgzFA-IhGYowk-LS0awcPwCbO_9_r2EBMJHtbr012be9-t2vvB3DD3EAIzwpI7MUYoMTcJBwNIQmE4oj2mfK5zui-DNlg5DyN3XEFhuVdGH2ssrSJuaGWSaT_kd_btu-6uLwYe0w_iWaN0tnVkkKDF9QK8iEvMbYHNVtXxqpCrd0dvr79uimZk3RiTKPP-zi0zHOaeVlRdGUYWvuEUocSe9tTbeDnn4xp7oh6R3BQIEijtZryY6ioxQkcluwMRrFZT6HdmfIEZYzJEgHyNElTbE3QQsyLq5cGn03wC7Pp3EDkaqxKg2xJnMGo133vDEjBmEAiarGMeJaSnhmrCB8nMl3EpJRRi0ucKsFiEdBIBNLl1JYYNyqFsQdjfqyEKyIWY0x6DtVFslAXYAgEAtwTypWanjhAx86FDKzYYdyUpmfXwSy1E0ZFOXHNajEL14WQc4WGqNBQKzTELrfrLumqlsYu4Uap8rDYVl_hZhHU4a6chk3zv4Nd7h7sCvYRBwWrc30NqGbLb3WNWCMTTdjze_0m1Fr9j-dus1hO-HZkt34AiXvULg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYQDLDwRhQKZIAFZJHEsVMPCNFC1dKHEAKJLdix0w5tU9oixJ_jt3FOHQpIsFUZ_ZByvtx9l_Pdh9Axo1zK0OM4CRMIUBLhYgGGEHOpBaB9pkvCZHRbbVZ7DG6f6NMC-shrYcy1ytwmZoZapbH5R37u-yVKQb0Yuxy-YMMaZbKrOYWGsNQK6iJrMWYLOxr6_Q1CuPFF_RrO-8T3qzcPlRq2LAM4Jh6b4NDTKnQTHcMTxC4FHEcY8YSC15MskZzEkisqiK8g1tIa8DpjpURLKmOWUNP4AFzAUkACDsHfUvmmfXf_rTIzIwWFGMrcLwpInld1szam4DohlC9hQgKC_Z-ecQZ3f2VoM8dXXUerFrE6V1MV20ALerCJ1nI2CMcahy1UrnRFCnOczggAeTcdDmE0BYvUt6Wejuh1QKKTbt8BpOxMW5H8mLGNHuciux20OEgHehc5EoCHCKWmytAhcwASQiruJQETrnJDv4DcXDpRbNuXGxaNXvTVeDkTaAQCjYxAI1hy-rVkOO3d8d_kYi7yyH7G42imdAV0lh_DbPjPzfb-3-wILdceWs2oWW839tEKYDA-vVNYRIuT0as-AJwzkYdWmRz0PG_9_QQg1BAs | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALb0ShQAYmkNUkjp1kLIWqvCoGKnWz7MRukdokasP_55xHSxEgoYw-e7iz777LvRC6YjSU0ndCrH0NDooWNhagCHEolQC0z1QgTET3ZcD6Q-9xREfVnNNFne1ehyTLmgbTpSnJ21ms28vCN_M307jBASbEIxh08KZn-iTAhR66nS-FkcVMTnBhTHqPR-qw5k9HrBumFdr8FiAt7E5vD-1UgNHqlBLeRxsqOUC79TAGq3qbh-i2OxEp0FjjOeDhSZplsJqCQphVlZaWmI7T-Xs-mVkAVK2yE8gaxREa9u7fun1cDUjAEXFYjn1Hxb6tVQSfF9kUIChhxBExSEYyLUMSyTCmgrgxuIlKgavBWKCVpDJiGlzQY9RI0kSdIEuC3Re-VDQ204hDsONCxqGjPSbs2PbdJrJr7vCo6h5uhlhM-bLvccFQDgzlhqEctlwvt2Rl64y_iFs1y3n1ihbcdQNKQaUw1kQ3tRhWy78edvov6ku09XrX488Pg6cztA2AKCwT_Fqokc8_1DmAjlxeFBfrE1mkzcM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+grasshopper+optimization+algorithm+for+global+optimization&rft.jtitle=Neural+computing+%26+applications&rft.au=Arora%2C+Sankalap&rft.au=Anand%2C+Priyanka&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=8&rft.spage=4385&rft.epage=4405&rft_id=info:doi/10.1007%2Fs00521-018-3343-2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |