Chaotic grasshopper optimization algorithm for global optimization

Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces chaos theory into the optimization process of GOA so as to accelerate its global convergence speed. The chaotic maps are employed to balance the...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 31; no. 8; pp. 4385 - 4405
Main Authors Arora, Sankalap, Anand, Priyanka
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-018-3343-2

Cover

Abstract Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces chaos theory into the optimization process of GOA so as to accelerate its global convergence speed. The chaotic maps are employed to balance the exploration and exploitation efficiently and the reduction in repulsion/attraction forces between grasshoppers in the optimization process. The proposed chaotic GOA algorithms are benchmarked on thirteen test functions. The results show that the chaotic maps (especially circle map) are able to significantly boost the performance of GOA.
AbstractList Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces chaos theory into the optimization process of GOA so as to accelerate its global convergence speed. The chaotic maps are employed to balance the exploration and exploitation efficiently and the reduction in repulsion/attraction forces between grasshoppers in the optimization process. The proposed chaotic GOA algorithms are benchmarked on thirteen test functions. The results show that the chaotic maps (especially circle map) are able to significantly boost the performance of GOA.
Author Arora, Sankalap
Anand, Priyanka
Author_xml – sequence: 1
  givenname: Sankalap
  surname: Arora
  fullname: Arora, Sankalap
  email: sankalap10156@davuniversity.org
  organization: DAV University
– sequence: 2
  givenname: Priyanka
  surname: Anand
  fullname: Anand, Priyanka
  organization: Lovely Professional University
BookMark eNp9kEtLxDAUhYOM4MzoD3BXcF3Nu52lDr5gwI2uQ5ImbYZOU5PMQn-9GSuIgnIXd3HPd-7hLMBs8IMB4BzBSwRhdRUhZBiVENUlIZSU-AjMESWkJJDVMzCHK5qvnJITsIhxCyGkvGZzcLPupE9OF22QMXZ-HE0o_Jjczr3L5PxQyL71waVuV1gfirb3SvY_FKfg2Mo-mrOvvQQvd7fP64dy83T_uL7elJognsoKmaaC1ug8VOdUSBFOkGyMMopbtSJarRomCW4oxMZQXHNeW6OY0twyTJbgYvIdg3_dm5jE1u_DkF8KjGvGWJWBrKomlQ4-xmCs0C595kxBul4gKA6FiakwkQsTh8LEwR_9IsfgdjK8_cvgiYlZO7QmfGf6G_oA-HKA2g
CitedBy_id crossref_primary_10_3390_electronics10222834
crossref_primary_10_1038_s41598_022_27144_4
crossref_primary_10_1007_s10586_024_04666_2
crossref_primary_10_1007_s13369_021_06026_3
crossref_primary_10_3390_biomimetics9110683
crossref_primary_10_1016_j_compbiomed_2022_106239
crossref_primary_10_1007_s11771_023_5503_5
crossref_primary_10_1007_s40747_020_00189_6
crossref_primary_10_1016_j_eswa_2021_116368
crossref_primary_10_1109_ACCESS_2019_2933265
crossref_primary_10_1016_j_conbuildmat_2024_136201
crossref_primary_10_1002_eng2_12124
crossref_primary_10_1080_01430750_2020_1745276
crossref_primary_10_1016_j_enconman_2024_119231
crossref_primary_10_1088_1361_6501_acf681
crossref_primary_10_3390_machines11010010
crossref_primary_10_1109_ACCESS_2020_2967399
crossref_primary_10_1016_j_matcom_2024_02_008
crossref_primary_10_31590_ejosat_1216396
crossref_primary_10_1109_ACCESS_2023_3253512
crossref_primary_10_1007_s00521_020_05475_5
crossref_primary_10_3389_fninf_2022_1063048
crossref_primary_10_1007_s00607_021_00991_1
crossref_primary_10_1007_s12065_022_00788_x
crossref_primary_10_1007_s00521_021_05756_7
crossref_primary_10_1088_1361_6501_ad7e42
crossref_primary_10_21605_cukurovaumfd_1334219
crossref_primary_10_1007_s42417_022_00538_4
crossref_primary_10_1093_jcde_qwab082
crossref_primary_10_1109_ACCESS_2019_2954500
crossref_primary_10_3390_electronics11213639
crossref_primary_10_1002_mma_7271
crossref_primary_10_1007_s00366_020_01234_1
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1007_s10489_021_02353_y
crossref_primary_10_3390_electronics11223678
crossref_primary_10_1016_j_enconman_2024_118391
crossref_primary_10_1007_s12065_021_00590_1
crossref_primary_10_1109_TEM_2024_3385298
crossref_primary_10_1016_j_energy_2023_130126
crossref_primary_10_1007_s11581_025_06200_9
crossref_primary_10_1007_s12665_022_10269_0
crossref_primary_10_1109_ACCESS_2023_3332902
crossref_primary_10_3390_molecules25081797
crossref_primary_10_1007_s00521_022_06899_x
crossref_primary_10_1007_s13042_022_01703_7
crossref_primary_10_1007_s00500_021_05752_y
crossref_primary_10_1155_2022_2699833
crossref_primary_10_1007_s00366_021_01448_x
crossref_primary_10_1007_s11042_022_12562_3
crossref_primary_10_1109_ACCESS_2020_2993762
crossref_primary_10_1016_j_jestch_2023_101388
crossref_primary_10_1007_s13369_020_04486_7
crossref_primary_10_1177_16878132221082975
crossref_primary_10_1038_s41598_024_74144_7
crossref_primary_10_1007_s00500_022_07257_8
crossref_primary_10_1007_s00500_022_07403_2
crossref_primary_10_1007_s12065_024_00937_4
crossref_primary_10_1109_ACCESS_2021_3067597
crossref_primary_10_1016_j_jwpe_2024_105717
crossref_primary_10_1007_s12652_022_04103_5
crossref_primary_10_1016_j_chaos_2024_114869
crossref_primary_10_1016_j_ijrefrig_2024_01_012
crossref_primary_10_3390_su14095668
crossref_primary_10_1109_ACCESS_2020_3007602
crossref_primary_10_1007_s00366_020_01120_w
crossref_primary_10_1007_s11227_021_04255_9
crossref_primary_10_1038_s41598_024_75347_8
crossref_primary_10_1109_ACCESS_2019_2905961
crossref_primary_10_1016_j_displa_2024_102727
crossref_primary_10_1109_ACCESS_2020_2976101
crossref_primary_10_1155_2020_4873501
crossref_primary_10_1007_s42452_020_04013_1
crossref_primary_10_1007_s42235_023_00438_7
crossref_primary_10_1080_13682199_2023_2167545
crossref_primary_10_1007_s11042_020_09876_5
crossref_primary_10_3390_agronomy15020323
crossref_primary_10_1007_s42979_024_03604_8
crossref_primary_10_3390_math10071145
crossref_primary_10_12677_AEPE_2022_102008
crossref_primary_10_1002_cpe_5945
crossref_primary_10_1016_j_measurement_2024_115184
crossref_primary_10_1007_s11063_023_11230_3
crossref_primary_10_37394_23203_2023_18_13
crossref_primary_10_1007_s10489_020_01728_x
crossref_primary_10_1109_ACCESS_2024_3350212
crossref_primary_10_1007_s00500_023_09504_y
crossref_primary_10_1016_j_rineng_2024_103369
crossref_primary_10_3390_sym13122364
crossref_primary_10_1109_ACCESS_2021_3077616
crossref_primary_10_3390_biomimetics9070399
crossref_primary_10_3390_s22228787
crossref_primary_10_1007_s11276_023_03247_2
crossref_primary_10_1016_j_displa_2024_102740
crossref_primary_10_3390_f15081365
crossref_primary_10_1016_j_asoc_2024_111539
crossref_primary_10_1007_s12530_021_09389_y
crossref_primary_10_1002_ett_4443
crossref_primary_10_37394_232016_2023_18_14
crossref_primary_10_1007_s00500_020_04877_w
crossref_primary_10_1007_s10586_024_04892_8
crossref_primary_10_1007_s11227_023_05413_x
crossref_primary_10_3390_math12162521
crossref_primary_10_1109_ACCESS_2019_2895502
crossref_primary_10_1109_ACCESS_2022_3193233
crossref_primary_10_1007_s41870_022_01031_7
crossref_primary_10_1007_s42835_020_00589_1
crossref_primary_10_1142_S0217984924503081
crossref_primary_10_3390_w16162232
crossref_primary_10_1016_j_neucom_2024_128427
crossref_primary_10_1007_s00521_020_05347_y
crossref_primary_10_1016_j_jclepro_2019_119318
crossref_primary_10_1007_s10586_024_04443_1
crossref_primary_10_1038_s41598_024_82277_y
crossref_primary_10_1080_02522667_2020_1804133
crossref_primary_10_1108_JEIM_02_2020_0075
crossref_primary_10_1109_JSEN_2022_3190469
crossref_primary_10_1016_j_asej_2021_06_022
crossref_primary_10_1109_TIM_2022_3228003
crossref_primary_10_1007_s11227_020_03161_w
crossref_primary_10_1016_j_apenergy_2023_121623
crossref_primary_10_1016_j_eswa_2023_120354
crossref_primary_10_1007_s10586_022_03650_y
crossref_primary_10_1016_j_asoc_2021_107564
crossref_primary_10_1109_ACCESS_2021_3081366
crossref_primary_10_3390_s23208620
crossref_primary_10_1007_s11356_023_31368_w
crossref_primary_10_1007_s12065_020_00479_5
crossref_primary_10_1016_j_tust_2025_106366
crossref_primary_10_1007_s10462_023_10431_5
crossref_primary_10_3390_biomimetics9090572
crossref_primary_10_1109_ACCESS_2021_3052800
crossref_primary_10_1016_j_measurement_2021_110552
crossref_primary_10_1109_ACCESS_2022_3197290
crossref_primary_10_3233_JIFS_237786
crossref_primary_10_1007_s41870_024_01791_4
crossref_primary_10_1108_COMPEL_12_2020_0422
crossref_primary_10_1007_s00500_023_09373_5
crossref_primary_10_1007_s10462_021_10100_5
crossref_primary_10_1007_s10586_024_04881_x
crossref_primary_10_1007_s12065_023_00861_z
crossref_primary_10_1007_s13369_024_09222_z
crossref_primary_10_1016_j_engappai_2022_104952
crossref_primary_10_1016_j_enconman_2022_116580
crossref_primary_10_3390_app13031497
crossref_primary_10_1007_s10586_024_04672_4
crossref_primary_10_1007_s10489_022_03824_6
crossref_primary_10_1016_j_eswa_2022_119049
crossref_primary_10_1109_ACCESS_2020_3029728
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_1049_cje_2021_03_008
crossref_primary_10_1109_ACCESS_2022_3174854
crossref_primary_10_1080_23080477_2022_2092670
crossref_primary_10_3390_math9182335
crossref_primary_10_3390_math11091977
crossref_primary_10_1007_s10586_023_04036_4
crossref_primary_10_1080_15623599_2021_1927363
crossref_primary_10_1007_s10845_021_01877_x
crossref_primary_10_3390_en16135098
crossref_primary_10_1155_2022_5129098
crossref_primary_10_3390_jmse11061236
crossref_primary_10_3233_JIFS_212633
crossref_primary_10_32604_csse_2022_022107
crossref_primary_10_1007_s11053_023_10284_3
crossref_primary_10_1109_ACCESS_2020_3006469
crossref_primary_10_3390_su132212771
crossref_primary_10_3934_mbe_2021129
crossref_primary_10_1007_s00521_022_07670_y
crossref_primary_10_1007_s10462_024_10946_5
crossref_primary_10_1016_j_asoc_2023_110091
crossref_primary_10_1007_s10586_020_03187_y
crossref_primary_10_1007_s00500_025_10412_6
crossref_primary_10_1109_ACCESS_2023_3253432
crossref_primary_10_1007_s00521_018_3566_2
crossref_primary_10_1007_s10489_021_03037_3
crossref_primary_10_1088_2631_8695_ada222
crossref_primary_10_1007_s11042_023_17538_5
crossref_primary_10_1016_j_eswa_2022_119421
crossref_primary_10_1007_s42835_021_00884_5
crossref_primary_10_1155_2021_4454507
crossref_primary_10_1109_ACCESS_2019_2897325
crossref_primary_10_1007_s40747_025_01791_2
crossref_primary_10_1016_j_jestch_2023_101408
crossref_primary_10_1007_s13198_024_02669_1
crossref_primary_10_1007_s00366_020_00994_0
crossref_primary_10_1109_ACCESS_2019_2963679
crossref_primary_10_1109_ACCESS_2022_3202982
crossref_primary_10_1016_j_energy_2024_131163
crossref_primary_10_1002_oca_3034
crossref_primary_10_3390_pr10030491
crossref_primary_10_1016_j_chemolab_2022_104635
crossref_primary_10_1007_s11600_024_01294_7
crossref_primary_10_1109_TIA_2021_3116549
crossref_primary_10_1140_epjs_s11734_022_00559_w
crossref_primary_10_1371_journal_pone_0275727
crossref_primary_10_1016_j_autcon_2021_104107
crossref_primary_10_1088_1361_6501_ad34f0
crossref_primary_10_3390_math12172708
crossref_primary_10_1016_j_asoc_2021_107451
crossref_primary_10_1002_cpe_6514
crossref_primary_10_3390_agriculture14060865
crossref_primary_10_1109_TGRS_2019_2959270
crossref_primary_10_1007_s00500_021_05874_3
crossref_primary_10_1016_j_asej_2024_103185
crossref_primary_10_1007_s11042_024_18331_8
crossref_primary_10_7717_peerj_cs_860
crossref_primary_10_1007_s44196_024_00578_6
crossref_primary_10_1007_s13748_019_00184_0
crossref_primary_10_1007_s10586_024_04511_6
crossref_primary_10_1007_s00500_021_06135_z
crossref_primary_10_1109_TRS_2023_3267739
crossref_primary_10_1038_s41598_020_71502_z
crossref_primary_10_1063_5_0187668
crossref_primary_10_1007_s00521_020_04815_9
crossref_primary_10_3390_en17122917
Cites_doi 10.3233/JIFS-16798
10.1023/A:1022602019183
10.1016/j.jmatprotec.2008.06.028
10.1109/ICEC.1996.542373
10.1016/j.ins.2012.04.039
10.1177/003754970107600201
10.1016/j.advengsoft.2013.12.007
10.1016/j.asoc.2014.10.010
10.1007/s00521-014-1597-x
10.1109/4235.771163
10.1109/TPWRS.2006.873410
10.1007/s00521-017-2988-6
10.1023/A:1022995128597
10.1155/2014/924652
10.1016/j.swevo.2011.02.002
10.1162/106365601750190398
10.1109/81.933333
10.1007/s13369-017-2471-9
10.1007/s00521-014-1751-5
10.1016/j.ins.2009.03.004
10.1155/2013/696491
10.1016/j.advengsoft.2017.01.004
10.1016/j.cnsns.2012.07.017
10.1007/s00521-015-2037-2
10.1016/j.ins.2012.06.033
10.1007/s00521-014-1613-1
10.1016/j.cnsns.2011.08.021
10.1016/j.ins.2011.03.018
10.1016/B978-1-55860-335-6.50043-X
10.1023/A:1008202821328
10.1007/s10732-008-9080-4
10.1016/j.chaos.2006.04.057
10.1109/PDGC.2014.7030711
10.1016/j.jcde.2017.02.005
10.1016/0960-0779(94)90033-7
10.1016/j.cnsns.2012.06.009
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2018
Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Natural Computing Applications Forum 2018
– notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-018-3343-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 4405
ExternalDocumentID 10_1007_s00521_018_3343_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-71ed70fecece4c0581b3631adebeb6fb93cb9d5a32d402ee428668feb5bc6f523
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Mon Jul 14 08:59:02 EDT 2025
Wed Oct 01 02:25:50 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Fri Feb 21 02:35:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Grasshopper optimization algorithm
Multimodal function
Chaotic maps
Global optimization problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-71ed70fecece4c0581b3631adebeb6fb93cb9d5a32d402ee428668feb5bc6f523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2285557866
PQPubID 2043988
PageCount 21
ParticipantIDs proquest_journals_2285557866
crossref_citationtrail_10_1007_s00521_018_3343_2
crossref_primary_10_1007_s00521_018_3343_2
springer_journals_10_1007_s00521_018_3343_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190800
2019-8-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190800
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput200718721076108523231141114.65335
Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. 1st edn. Lulu, North Carolina
Yang X-S (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, pp 209–218
RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.9037810.1016/j.ins.2009.03.004
Storn R (1996) Differential evolution design of an IIR filter. In: Proceedings of IEEE international conference on evolutionary computation, pp 268–273
HanXChangXAn intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transformsInf Sci201321810311810.1016/j.ins.2012.06.033
Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:21. https://doi.org/10.1155/2013/696491
DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002
YangDLiGChengGOn the efficiency of chaos optimization algorithms for global optimizationChaos Solitons Fractals200734413661375228678010.1016/j.chaos.2006.04.057
AroraSSinghSNode localization in wireless sensor networks using butterfly optimization algorithmArab J Sci Eng2017423325333510.1007/s13369-017-2471-9
GandomiAYangX-STalatahariSAlaviAFirefly algorithm with chaosCommun Nonlinear Sci Numer Simul2013181899829743651254.9208910.1016/j.cnsns.2012.06.009
dos CoelhoL SantosMarianiVCCombining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effectIEEE Trans Power Syst200621298910.1109/TPWRS.2006.873410
IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett20031719310510.1023/A:1022995128597
HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol Comput20019215919510.1162/106365601750190398
GandomiAHYunGJYangX-STalatahariSChaos-enhanced accelerated particle swarm optimizationCommun Nonlinear Sci Numer Simul201318232734029718331323.9008210.1016/j.cnsns.2012.07.017
HeidariAAAbbaspourRAJordehiARAn efficient chaotic water cycle algorithm for optimization tasksNeural Comput Appl2017281578510.1007/s00521-015-2037-2
AroraSSinghSThe firefly optimization algorithm: convergence analysis and parameter selectionInt J Comput Appl20136934852
JordehiARA chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problemsNeural Comput Appl201526482783310.1007/s00521-014-1751-5
Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the eleventh international conference on machine learning, pp 293–301
JordehiARChaotic bat swarm optimisation (cbso)Appl Soft Comput20152652353010.1016/j.asoc.2014.10.010
Arora S, Singh S, Singh S, Sharma B (2014) Mutated firefly algorithm. In: International conference on parallel, distributed and grid computing (PDGC), pp 33–38
GarcíaSMolinaDLozanoMHerreraFA study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimizationJ Heuristics20091566176441191.6882810.1007/s10732-008-9080-4
Eberhart RC, Kennedy J et al (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, New York, vol 1, pp 39–43
SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004
Arora S, Singh S (2015) Butterfly algorithm with levy flights for global optimization. In: International conference on signal processing, computing and control (ISPCC), pp 220–224
Lu H, Wang X, Fei Z, Qiu M (2014) The effects of using chaotic map on improving the performance of multiobjective evolutionary algorithms. Math Prob Eng 2014:16. https://doi.org/10.1155/2014/924652
WilcoxonFKattiSWilcoxRACritical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank testSel Tables Math Stat197011712590121.36201
SaremiSMirjaliliSLewisABiogeography-based optimisation with chaosNeural Comput Appl20142551077109710.1007/s00521-014-1597-x
Kohli M, Arora S (2017) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Design Eng. https://doi.org/10.1016/j.jcde.2017.02.005
HeDHeCJiangL-GZhuH-WHuG-RChaotic characteristics of a one-dimensional iterative map with infinite collapsesIEEE Trans Circuits Syst I Fundam Theory Appl200148790090618410050993.3703310.1109/81.933333
Yang X-S, Gandomi AH, Talatahari S, Alavi AH (eds) (2012) Metaheuristics in water, geotechnical and transport engineering. Elsevier, Newnes
GeemZWKimJHLoganathanGA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201
ZhengW-MKneading plane of the circle mapChaos Solitons Fractals199447122112330817.5803010.1016/0960-0779(94)90033-7
AroraSSinghSAn improved butterfly optimization algorithm with chaosJ Intell Fuzzy Syst2017321107910881366.9022210.3233/JIFS-16798
NaanaaAFast chaotic optimization algorithm based on spatiotemporal maps for global optimizationAppl Math Comput201526940241133967871410.90275
GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
HanXChangXA chaotic digital secure communication based on a modified gravitational search algorithm filterInf Sci2012208142710.1016/j.ins.2012.04.039
YaoXLiuYLinGEvolutionary programming made fasterIEEE Trans Evol Comput1999328210210.1109/4235.771163
Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. Wiley, New York
ChuangL-YTsaiS-WYangC-HChaotic catfish particle swarm optimization for solving global numerical optimization problemsAppl Math Comput2011217166900691627756811213.65087
JiaDZhengGKhanMKAn effective memetic differential evolution algorithm based on chaotic local searchInf Sci2011181153175318710.1016/j.ins.2011.03.018
JordehiARA chaotic-based big bang-big crunch algorithm for solving global optimisation problemsNeural Comput Appl20142561329133510.1007/s00521-014-1613-1
YildizARAn effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industryJ Mater Process Technol200920962773278010.1016/j.jmatprotec.2008.06.028
YangX-SIntroduction to mathematical optimization: from linear programming to metaheuristics2008CambridgeCambridge International Science Publishing1159.90004
StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim199711434135914795530888.9013510.1023/A:1008202821328
SayedGIHassanienAEAzarATFeature selection via a novel chaotic crow search algorithmNeural Comput Appl201710.1007/s00521-017-2988-6
TalatahariSAzarBFSheikholeslamiRGandomiAImperialist competitive algorithm combined with chaos for global optimizationCommun Nonlinear Sci Numer Simul20121731312131928437971241.9019310.1016/j.cnsns.2011.08.021
S Saremi (3343_CR24) 2017; 105
D Yang (3343_CR25) 2007; 34
DE Goldberg (3343_CR14) 1988; 3
S Arora (3343_CR10) 2017; 42
W-M Zheng (3343_CR43) 1994; 4
GI Sayed (3343_CR11) 2017
X Han (3343_CR38) 2012; 208
3343_CR13
E Rashedi (3343_CR19) 2009; 179
AR Jordehi (3343_CR5) 2015; 26
ZW Geem (3343_CR20) 2001; 76
3343_CR17
3343_CR16
AR Jordehi (3343_CR35) 2015; 26
AA Heidari (3343_CR33) 2017; 28
S Mirjalili (3343_CR23) 2014; 69
S Talatahari (3343_CR34) 2012; 17
L Santos Coelho dos (3343_CR8) 2006; 21
J Ilonen (3343_CR12) 2003; 17
D He (3343_CR41) 2001; 48
N Hansen (3343_CR21) 2001; 9
J Derrac (3343_CR46) 2011; 1
3343_CR40
MS Tavazoei (3343_CR42) 2007; 187
S García (3343_CR47) 2009; 15
3343_CR22
3343_CR44
S Arora (3343_CR28) 2017; 32
AR Yildiz (3343_CR4) 2009; 209
R Storn (3343_CR15) 1997; 11
3343_CR2
A Gandomi (3343_CR26) 2013; 18
F Wilcoxon (3343_CR48) 1970; 1
3343_CR3
AH Gandomi (3343_CR27) 2013; 18
3343_CR29
D Jia (3343_CR32) 2011; 181
3343_CR6
3343_CR7
3343_CR9
S Arora (3343_CR18) 2013; 69
L-Y Chuang (3343_CR36) 2011; 217
S Saremi (3343_CR37) 2014; 25
A Naanaa (3343_CR39) 2015; 269
X Han (3343_CR30) 2013; 218
AR Jordehi (3343_CR31) 2014; 25
X Yao (3343_CR45) 1999; 3
X-S Yang (3343_CR1) 2008
References_xml – reference: AroraSSinghSThe firefly optimization algorithm: convergence analysis and parameter selectionInt J Comput Appl20136934852
– reference: DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002
– reference: NaanaaAFast chaotic optimization algorithm based on spatiotemporal maps for global optimizationAppl Math Comput201526940241133967871410.90275
– reference: Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the eleventh international conference on machine learning, pp 293–301
– reference: Yang X-S (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI, pp 209–218
– reference: TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput200718721076108523231141114.65335
– reference: Storn R (1996) Differential evolution design of an IIR filter. In: Proceedings of IEEE international conference on evolutionary computation, pp 268–273
– reference: GandomiAHYunGJYangX-STalatahariSChaos-enhanced accelerated particle swarm optimizationCommun Nonlinear Sci Numer Simul201318232734029718331323.9008210.1016/j.cnsns.2012.07.017
– reference: ZhengW-MKneading plane of the circle mapChaos Solitons Fractals199447122112330817.5803010.1016/0960-0779(94)90033-7
– reference: AroraSSinghSAn improved butterfly optimization algorithm with chaosJ Intell Fuzzy Syst2017321107910881366.9022210.3233/JIFS-16798
– reference: YangDLiGChengGOn the efficiency of chaos optimization algorithms for global optimizationChaos Solitons Fractals200734413661375228678010.1016/j.chaos.2006.04.057
– reference: JiaDZhengGKhanMKAn effective memetic differential evolution algorithm based on chaotic local searchInf Sci2011181153175318710.1016/j.ins.2011.03.018
– reference: GarcíaSMolinaDLozanoMHerreraFA study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimizationJ Heuristics20091566176441191.6882810.1007/s10732-008-9080-4
– reference: Kohli M, Arora S (2017) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Design Eng. https://doi.org/10.1016/j.jcde.2017.02.005
– reference: ChuangL-YTsaiS-WYangC-HChaotic catfish particle swarm optimization for solving global numerical optimization problemsAppl Math Comput2011217166900691627756811213.65087
– reference: RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.9037810.1016/j.ins.2009.03.004
– reference: dos CoelhoL SantosMarianiVCCombining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effectIEEE Trans Power Syst200621298910.1109/TPWRS.2006.873410
– reference: Arora S, Singh S (2015) Butterfly algorithm with levy flights for global optimization. In: International conference on signal processing, computing and control (ISPCC), pp 220–224
– reference: Lu H, Wang X, Fei Z, Qiu M (2014) The effects of using chaotic map on improving the performance of multiobjective evolutionary algorithms. Math Prob Eng 2014:16. https://doi.org/10.1155/2014/924652
– reference: YildizARAn effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industryJ Mater Process Technol200920962773278010.1016/j.jmatprotec.2008.06.028
– reference: Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. Wiley, New York
– reference: GeemZWKimJHLoganathanGA new heuristic optimization algorithm: harmony searchSimulation2001762606810.1177/003754970107600201
– reference: SaremiSMirjaliliSLewisABiogeography-based optimisation with chaosNeural Comput Appl20142551077109710.1007/s00521-014-1597-x
– reference: Eberhart RC, Kennedy J et al (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, New York, vol 1, pp 39–43
– reference: JordehiARA chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problemsNeural Comput Appl201526482783310.1007/s00521-014-1751-5
– reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004
– reference: HanXChangXA chaotic digital secure communication based on a modified gravitational search algorithm filterInf Sci2012208142710.1016/j.ins.2012.04.039
– reference: WilcoxonFKattiSWilcoxRACritical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank testSel Tables Math Stat197011712590121.36201
– reference: GandomiAYangX-STalatahariSAlaviAFirefly algorithm with chaosCommun Nonlinear Sci Numer Simul2013181899829743651254.9208910.1016/j.cnsns.2012.06.009
– reference: JordehiARChaotic bat swarm optimisation (cbso)Appl Soft Comput20152652353010.1016/j.asoc.2014.10.010
– reference: IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett20031719310510.1023/A:1022995128597
– reference: GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183
– reference: JordehiARA chaotic-based big bang-big crunch algorithm for solving global optimisation problemsNeural Comput Appl20142561329133510.1007/s00521-014-1613-1
– reference: YangX-SIntroduction to mathematical optimization: from linear programming to metaheuristics2008CambridgeCambridge International Science Publishing1159.90004
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
– reference: HeDHeCJiangL-GZhuH-WHuG-RChaotic characteristics of a one-dimensional iterative map with infinite collapsesIEEE Trans Circuits Syst I Fundam Theory Appl200148790090618410050993.3703310.1109/81.933333
– reference: AroraSSinghSNode localization in wireless sensor networks using butterfly optimization algorithmArab J Sci Eng2017423325333510.1007/s13369-017-2471-9
– reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim199711434135914795530888.9013510.1023/A:1008202821328
– reference: SayedGIHassanienAEAzarATFeature selection via a novel chaotic crow search algorithmNeural Comput Appl201710.1007/s00521-017-2988-6
– reference: Yang X-S, Gandomi AH, Talatahari S, Alavi AH (eds) (2012) Metaheuristics in water, geotechnical and transport engineering. Elsevier, Newnes
– reference: Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. 1st edn. Lulu, North Carolina
– reference: YaoXLiuYLinGEvolutionary programming made fasterIEEE Trans Evol Comput1999328210210.1109/4235.771163
– reference: HanXChangXAn intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transformsInf Sci201321810311810.1016/j.ins.2012.06.033
– reference: HeidariAAAbbaspourRAJordehiARAn efficient chaotic water cycle algorithm for optimization tasksNeural Comput Appl2017281578510.1007/s00521-015-2037-2
– reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol Comput20019215919510.1162/106365601750190398
– reference: Arora S, Singh S, Singh S, Sharma B (2014) Mutated firefly algorithm. In: International conference on parallel, distributed and grid computing (PDGC), pp 33–38
– reference: Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:21. https://doi.org/10.1155/2013/696491
– reference: TalatahariSAzarBFSheikholeslamiRGandomiAImperialist competitive algorithm combined with chaos for global optimizationCommun Nonlinear Sci Numer Simul20121731312131928437971241.9019310.1016/j.cnsns.2011.08.021
– volume-title: Introduction to mathematical optimization: from linear programming to metaheuristics
  year: 2008
  ident: 3343_CR1
– volume: 32
  start-page: 1079
  issue: 1
  year: 2017
  ident: 3343_CR28
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-16798
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 3343_CR14
  publication-title: Mach Learn
  doi: 10.1023/A:1022602019183
– volume: 209
  start-page: 2773
  issue: 6
  year: 2009
  ident: 3343_CR4
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.06.028
– ident: 3343_CR9
  doi: 10.1109/ICEC.1996.542373
– volume: 208
  start-page: 14
  year: 2012
  ident: 3343_CR38
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.04.039
– volume: 69
  start-page: 48
  issue: 3
  year: 2013
  ident: 3343_CR18
  publication-title: Int J Comput Appl
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 3343_CR20
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 69
  start-page: 46
  year: 2014
  ident: 3343_CR23
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 26
  start-page: 523
  year: 2015
  ident: 3343_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.10.010
– volume: 25
  start-page: 1077
  issue: 5
  year: 2014
  ident: 3343_CR37
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1597-x
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 3343_CR45
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.771163
– volume: 21
  start-page: 989
  issue: 2
  year: 2006
  ident: 3343_CR8
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.873410
– year: 2017
  ident: 3343_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2988-6
– volume: 17
  start-page: 93
  issue: 1
  year: 2003
  ident: 3343_CR12
  publication-title: Neural Process Lett
  doi: 10.1023/A:1022995128597
– ident: 3343_CR40
  doi: 10.1155/2014/924652
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 3343_CR46
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 3343_CR21
  publication-title: Evol Comput
  doi: 10.1162/106365601750190398
– volume: 48
  start-page: 900
  issue: 7
  year: 2001
  ident: 3343_CR41
  publication-title: IEEE Trans Circuits Syst I Fundam Theory Appl
  doi: 10.1109/81.933333
– ident: 3343_CR2
– volume: 42
  start-page: 3325
  year: 2017
  ident: 3343_CR10
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-017-2471-9
– volume: 26
  start-page: 827
  issue: 4
  year: 2015
  ident: 3343_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1751-5
– ident: 3343_CR22
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 3343_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– ident: 3343_CR44
  doi: 10.1155/2013/696491
– volume: 105
  start-page: 30
  year: 2017
  ident: 3343_CR24
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 18
  start-page: 327
  issue: 2
  year: 2013
  ident: 3343_CR27
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.07.017
– volume: 28
  start-page: 57
  issue: 1
  year: 2017
  ident: 3343_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2037-2
– volume: 218
  start-page: 103
  year: 2013
  ident: 3343_CR30
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.06.033
– volume: 25
  start-page: 1329
  issue: 6
  year: 2014
  ident: 3343_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1613-1
– volume: 17
  start-page: 1312
  issue: 3
  year: 2012
  ident: 3343_CR34
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.08.021
– volume: 181
  start-page: 3175
  issue: 15
  year: 2011
  ident: 3343_CR32
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.03.018
– ident: 3343_CR6
  doi: 10.1016/B978-1-55860-335-6.50043-X
– volume: 269
  start-page: 402
  year: 2015
  ident: 3343_CR39
  publication-title: Appl Math Comput
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 3343_CR15
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 187
  start-page: 1076
  issue: 2
  year: 2007
  ident: 3343_CR42
  publication-title: Appl Math Comput
– ident: 3343_CR13
– volume: 15
  start-page: 617
  issue: 6
  year: 2009
  ident: 3343_CR47
  publication-title: J Heuristics
  doi: 10.1007/s10732-008-9080-4
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  ident: 3343_CR25
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.04.057
– ident: 3343_CR16
  doi: 10.1109/PDGC.2014.7030711
– ident: 3343_CR29
  doi: 10.1016/j.jcde.2017.02.005
– ident: 3343_CR17
– volume: 4
  start-page: 1221
  issue: 7
  year: 1994
  ident: 3343_CR43
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/0960-0779(94)90033-7
– volume: 217
  start-page: 6900
  issue: 16
  year: 2011
  ident: 3343_CR36
  publication-title: Appl Math Comput
– volume: 1
  start-page: 171
  year: 1970
  ident: 3343_CR48
  publication-title: Sel Tables Math Stat
– ident: 3343_CR3
– ident: 3343_CR7
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  ident: 3343_CR26
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.06.009
SSID ssj0004685
Score 2.6092157
Snippet Grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired by the swarming behavior of grasshoppers. The present study introduces...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4385
SubjectTerms Algorithms
Artificial Intelligence
Chaos theory
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Global optimization
Heuristic methods
Image Processing and Computer Vision
Optimization algorithms
Original Article
Probability and Statistics in Computer Science
Swarming
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVh4IwoFeWACWUri2InHUlFVSDBRqVtkx3Y7tE3Vx__nnNgtRYCEMvrs4WzffV_Od4fQA2dCqSwWxGYWCIqVEZFgCIlQRgLa5yaXLqL79s4Hw_R1xEY-j3sVXruHkGRtqbfJbu4PpqO-OaE0pQTs7iFz1bzgEA-T7pdkyLoPJ9AW96QnpSGU-dMS-85ohzC_BUVrX9M_RcceJOJus6tn6MDMz9FJaMCA_X28QM-9iaxABo-XgIEn1WIBoxUYgZnPrsRyOq6A_k9mGMApbqp_7ElcomH_5aM3IL4pAilpzNcki43OImtK-NIyYgA7Kaex1LAbilslaKmEZpImGqihMUAvOM-tUUyV3ALtvEKteTU31wgr8PUyU4Zp14FYgO-WSovYplxGOsqSNoqCdorSVwx3jSumxbbWca3QAhRaOIUWMOVxO2XRlMv4S7gTVF74m7MqkiRnDMwI5230FLZhN_zrYjf_kr5FR4B8RPOSr4Na6-XG3AG6WKv7-jR9AgcUxps
  priority: 102
  providerName: Springer Nature
Title Chaotic grasshopper optimization algorithm for global optimization
URI https://link.springer.com/article/10.1007/s00521-018-3343-2
https://www.proquest.com/docview/2285557866
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gvPjitxFFsgefNI3bunXbgzFA-IhGYowk-LS0awcPwCbO_9_r2EBMJHtbr012be9-t2vvB3DD3EAIzwpI7MUYoMTcJBwNIQmE4oj2mfK5zui-DNlg5DyN3XEFhuVdGH2ssrSJuaGWSaT_kd_btu-6uLwYe0w_iWaN0tnVkkKDF9QK8iEvMbYHNVtXxqpCrd0dvr79uimZk3RiTKPP-zi0zHOaeVlRdGUYWvuEUocSe9tTbeDnn4xp7oh6R3BQIEijtZryY6ioxQkcluwMRrFZT6HdmfIEZYzJEgHyNElTbE3QQsyLq5cGn03wC7Pp3EDkaqxKg2xJnMGo133vDEjBmEAiarGMeJaSnhmrCB8nMl3EpJRRi0ucKsFiEdBIBNLl1JYYNyqFsQdjfqyEKyIWY0x6DtVFslAXYAgEAtwTypWanjhAx86FDKzYYdyUpmfXwSy1E0ZFOXHNajEL14WQc4WGqNBQKzTELrfrLumqlsYu4Uap8rDYVl_hZhHU4a6chk3zv4Nd7h7sCvYRBwWrc30NqGbLb3WNWCMTTdjze_0m1Fr9j-dus1hO-HZkt34AiXvULg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYQDLDwRhQKZIAFZJHEsVMPCNFC1dKHEAKJLdix0w5tU9oixJ_jt3FOHQpIsFUZ_ZByvtx9l_Pdh9Axo1zK0OM4CRMIUBLhYgGGEHOpBaB9pkvCZHRbbVZ7DG6f6NMC-shrYcy1ytwmZoZapbH5R37u-yVKQb0Yuxy-YMMaZbKrOYWGsNQK6iJrMWYLOxr6_Q1CuPFF_RrO-8T3qzcPlRq2LAM4Jh6b4NDTKnQTHcMTxC4FHEcY8YSC15MskZzEkisqiK8g1tIa8DpjpURLKmOWUNP4AFzAUkACDsHfUvmmfXf_rTIzIwWFGMrcLwpInld1szam4DohlC9hQgKC_Z-ecQZ3f2VoM8dXXUerFrE6V1MV20ALerCJ1nI2CMcahy1UrnRFCnOczggAeTcdDmE0BYvUt6Wejuh1QKKTbt8BpOxMW5H8mLGNHuciux20OEgHehc5EoCHCKWmytAhcwASQiruJQETrnJDv4DcXDpRbNuXGxaNXvTVeDkTaAQCjYxAI1hy-rVkOO3d8d_kYi7yyH7G42imdAV0lh_DbPjPzfb-3-wILdceWs2oWW839tEKYDA-vVNYRIuT0as-AJwzkYdWmRz0PG_9_QQg1BAs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALb0ShQAYmkNUkjp1kLIWqvCoGKnWz7MRukdokasP_55xHSxEgoYw-e7iz777LvRC6YjSU0ndCrH0NDooWNhagCHEolQC0z1QgTET3ZcD6Q-9xREfVnNNFne1ehyTLmgbTpSnJ21ms28vCN_M307jBASbEIxh08KZn-iTAhR66nS-FkcVMTnBhTHqPR-qw5k9HrBumFdr8FiAt7E5vD-1UgNHqlBLeRxsqOUC79TAGq3qbh-i2OxEp0FjjOeDhSZplsJqCQphVlZaWmI7T-Xs-mVkAVK2yE8gaxREa9u7fun1cDUjAEXFYjn1Hxb6tVQSfF9kUIChhxBExSEYyLUMSyTCmgrgxuIlKgavBWKCVpDJiGlzQY9RI0kSdIEuC3Re-VDQ204hDsONCxqGjPSbs2PbdJrJr7vCo6h5uhlhM-bLvccFQDgzlhqEctlwvt2Rl64y_iFs1y3n1ihbcdQNKQaUw1kQ3tRhWy78edvov6ku09XrX488Pg6cztA2AKCwT_Fqokc8_1DmAjlxeFBfrE1mkzcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+grasshopper+optimization+algorithm+for+global+optimization&rft.jtitle=Neural+computing+%26+applications&rft.au=Arora%2C+Sankalap&rft.au=Anand%2C+Priyanka&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=8&rft.spage=4385&rft.epage=4405&rft_id=info:doi/10.1007%2Fs00521-018-3343-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon