Improved salp swarm algorithm based on particle swarm optimization for feature selection

Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of ambient intelligence and humanized computing Vol. 10; no. 8; pp. 3155 - 3169
Main Authors Ibrahim, Rehab Ali, Ewees, Ahmed A., Oliva, Diego, Abd Elaziz, Mohamed, Lu, Songfeng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-5137
1868-5145
DOI10.1007/s12652-018-1031-9

Cover

Abstract Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article presents a hybrid optimization method for the FS problem; it combines the slap swarm algorithm (SSA) with the particle swarm optimization. The hybridization between both approaches creates an algorithm called SSAPSO, in which the efficacy of the exploration and the exploitation steps is improved. To verify the performance of the proposed algorithm, it is tested over two experimental series, in the first one, it is compared with other similar approaches using benchmark functions. Meanwhile, in the second set of experiments, the SSAPSO is used to determine the best set of features using different UCI datasets. Where the redundant or the confusing features are removed from the original dataset while keeping or yielding a better accuracy. The experimental results provide the evidence of the enhancement in the SSAPSO regarding the performance and the accuracy without affecting the computational effort.
AbstractList Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article presents a hybrid optimization method for the FS problem; it combines the slap swarm algorithm (SSA) with the particle swarm optimization. The hybridization between both approaches creates an algorithm called SSAPSO, in which the efficacy of the exploration and the exploitation steps is improved. To verify the performance of the proposed algorithm, it is tested over two experimental series, in the first one, it is compared with other similar approaches using benchmark functions. Meanwhile, in the second set of experiments, the SSAPSO is used to determine the best set of features using different UCI datasets. Where the redundant or the confusing features are removed from the original dataset while keeping or yielding a better accuracy. The experimental results provide the evidence of the enhancement in the SSAPSO regarding the performance and the accuracy without affecting the computational effort.
Author Ibrahim, Rehab Ali
Ewees, Ahmed A.
Oliva, Diego
Abd Elaziz, Mohamed
Lu, Songfeng
Author_xml – sequence: 1
  givenname: Rehab Ali
  surname: Ibrahim
  fullname: Ibrahim, Rehab Ali
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 2
  givenname: Ahmed A.
  surname: Ewees
  fullname: Ewees, Ahmed A.
  organization: University of Bisha, Department of Computer, Damietta University
– sequence: 3
  givenname: Diego
  surname: Oliva
  fullname: Oliva, Diego
  organization: Departamento de Ciencias Computacionales, Universidad de Guadalajara
– sequence: 4
  givenname: Mohamed
  surname: Abd Elaziz
  fullname: Abd Elaziz, Mohamed
  organization: Department of Mathematics, Faculty of Science, Zagazig University
– sequence: 5
  givenname: Songfeng
  surname: Lu
  fullname: Lu, Songfeng
  email: lusongfeng@hust.edu.cn
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Shenzhen Huazhong University of Science and Technology Research Institute
BookMark eNp9kEtLAzEUhYNUsGp_gLsB16O5kyYzWUrxUSi4UXAXMnnUlHmZpIr-elOnKAiazQ0557u59xyjSdd3BqEzwBeAcXkZoGC0yDFUOWACOT9AU6hYlVOY08n3nZRHaBbCBqdDOAGAKXpatoPvX43OgmyGLLxJ32ayWffexec2q2VIUt9lg_TRqcbsHf0QXes-ZHRJs73PrJFx65NsGqN2r6fo0MommNm-nqDHm-uHxV2-ur9dLq5WuSLAYs601bqmfF7xmjNLKs2xVbgkHCula1aWhla6IPXc4pqCklZCUTCwkhM-14ycoPOxb1rjZWtCFJt-67v0pSg4cIYxpSS5ytGlfB-CN1YoF7-mj166RgAWuyTFmKRISYpdkoInEn6Rg3et9O__MsXIhOTt1sb_zPQ39Alwd4iV
CitedBy_id crossref_primary_10_1007_s00366_020_01028_5
crossref_primary_10_1007_s10462_023_10618_w
crossref_primary_10_1007_s00366_020_01067_y
crossref_primary_10_1109_ACCESS_2022_3221194
crossref_primary_10_1371_journal_pone_0275104
crossref_primary_10_32604_cmc_2024_053627
crossref_primary_10_1109_ACCESS_2023_3296255
crossref_primary_10_1016_j_procs_2020_03_321
crossref_primary_10_1016_j_aej_2022_03_078
crossref_primary_10_1016_j_autcon_2022_104576
crossref_primary_10_1007_s10115_021_01641_w
crossref_primary_10_1007_s40747_020_00189_6
crossref_primary_10_32604_cmc_2022_022797
crossref_primary_10_1007_s10489_022_03976_5
crossref_primary_10_1007_s11042_020_09831_4
crossref_primary_10_1007_s42235_024_00515_5
crossref_primary_10_32604_cmc_2022_024619
crossref_primary_10_3390_e23081065
crossref_primary_10_1016_j_heliyon_2024_e37165
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1007_s10462_020_09860_3
crossref_primary_10_3390_sym12091460
crossref_primary_10_1016_j_eswa_2025_126737
crossref_primary_10_1038_s41598_023_50959_8
crossref_primary_10_1007_s00521_021_06751_8
crossref_primary_10_1007_s12652_019_01330_1
crossref_primary_10_1007_s00521_020_05621_z
crossref_primary_10_1007_s00500_020_05431_4
crossref_primary_10_3390_math10183327
crossref_primary_10_1155_2021_9590969
crossref_primary_10_3390_electronics12081778
crossref_primary_10_1016_j_eswa_2022_116516
crossref_primary_10_1007_s42107_022_00534_9
crossref_primary_10_1016_j_imu_2022_100983
crossref_primary_10_1016_j_apm_2020_08_014
crossref_primary_10_1016_j_apm_2019_10_069
crossref_primary_10_1016_j_egyr_2021_06_008
crossref_primary_10_3233_IDT_200049
crossref_primary_10_1117_1_JEI_27_6_063008
crossref_primary_10_1186_s13673_019_0174_9
crossref_primary_10_3390_diagnostics13091579
crossref_primary_10_1007_s12652_021_03234_5
crossref_primary_10_1007_s41870_024_02122_3
crossref_primary_10_1016_j_compbiomed_2021_104558
crossref_primary_10_1038_s41598_024_73991_8
crossref_primary_10_1016_j_cirpj_2024_07_002
crossref_primary_10_3934_math_2023256
crossref_primary_10_1016_j_eswa_2021_116029
crossref_primary_10_1016_j_cie_2020_107078
crossref_primary_10_1007_s00500_020_05130_0
crossref_primary_10_1007_s40722_023_00282_1
crossref_primary_10_1109_ACCESS_2022_3202894
crossref_primary_10_1007_s11664_024_11547_2
crossref_primary_10_1007_s00500_023_09487_w
crossref_primary_10_3233_IDA_230540
crossref_primary_10_3390_machines10070561
crossref_primary_10_1016_j_eswa_2020_114368
crossref_primary_10_1016_j_jocs_2022_101597
crossref_primary_10_1016_j_eswa_2019_113103
crossref_primary_10_1016_j_asoc_2023_110583
crossref_primary_10_3934_mbe_2022247
crossref_primary_10_1007_s11227_024_06100_1
crossref_primary_10_7717_peerj_cs_261
crossref_primary_10_1007_s12652_019_01364_5
crossref_primary_10_1016_j_asoc_2021_107745
crossref_primary_10_1007_s00530_021_00785_7
crossref_primary_10_32604_csse_2023_031063
crossref_primary_10_1016_j_knosys_2021_107603
crossref_primary_10_3233_JIFS_230459
crossref_primary_10_1007_s00354_022_00165_3
crossref_primary_10_3390_s22114275
crossref_primary_10_7717_peerj_cs_424
crossref_primary_10_1007_s11042_024_18473_9
crossref_primary_10_1007_s11053_019_09587_1
crossref_primary_10_2174_2666145416666230124143912
crossref_primary_10_3390_sym16060726
crossref_primary_10_1109_ACCESS_2020_2991968
crossref_primary_10_1142_S0218348X2140017X
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_1007_s12652_021_03226_5
crossref_primary_10_1155_2022_9193511
crossref_primary_10_3390_electronics11213463
crossref_primary_10_1007_s00366_020_01099_4
crossref_primary_10_1142_S0218001421570044
crossref_primary_10_1038_s41598_024_77440_4
crossref_primary_10_1007_s10846_024_02190_4
crossref_primary_10_1109_ACCESS_2021_3108533
crossref_primary_10_1016_j_advengsoft_2022_103338
crossref_primary_10_1007_s42235_022_00262_5
crossref_primary_10_1111_coin_12522
crossref_primary_10_1109_ACCESS_2021_3063218
crossref_primary_10_1007_s00366_020_01252_z
crossref_primary_10_1108_IJSI_04_2024_0066
crossref_primary_10_1007_s00366_021_01464_x
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_1007_s11831_021_09694_4
crossref_primary_10_1111_exsy_12786
crossref_primary_10_3389_fgene_2024_1491602
crossref_primary_10_1016_j_eswa_2022_117993
crossref_primary_10_1007_s13042_024_02111_9
crossref_primary_10_1007_s00521_021_06406_8
crossref_primary_10_1016_j_cie_2020_106628
crossref_primary_10_3390_math11061362
crossref_primary_10_1007_s10489_021_02862_w
crossref_primary_10_1093_jcde_qwad108
crossref_primary_10_1007_s00366_021_01342_6
crossref_primary_10_1038_s41598_025_93817_5
crossref_primary_10_3390_app13021087
crossref_primary_10_1049_cth2_12277
crossref_primary_10_1007_s10489_021_03118_3
crossref_primary_10_1080_02533839_2022_2101541
crossref_primary_10_1155_2020_6371085
crossref_primary_10_1088_1742_6596_1865_4_042091
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1109_ACCESS_2022_3211263
crossref_primary_10_1007_s13042_024_02107_5
crossref_primary_10_1007_s42835_021_00889_0
crossref_primary_10_1109_ACCESS_2019_2959325
crossref_primary_10_3390_en16155665
crossref_primary_10_4316_AECE_2022_02010
crossref_primary_10_1007_s00500_023_08449_6
crossref_primary_10_1016_j_envres_2020_110607
crossref_primary_10_1016_j_ins_2022_01_026
crossref_primary_10_1109_ACCESS_2021_3102095
crossref_primary_10_3390_computers10110136
crossref_primary_10_3390_pr11061827
crossref_primary_10_1007_s11042_023_15467_x
crossref_primary_10_1016_j_engappai_2019_01_011
crossref_primary_10_32604_cmc_2024_058115
crossref_primary_10_3390_math10030464
crossref_primary_10_3390_su142416429
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_1007_s13198_024_02569_4
crossref_primary_10_1155_2022_3991870
crossref_primary_10_1007_s10489_022_03269_x
crossref_primary_10_1007_s10489_022_03438_y
crossref_primary_10_1109_ACCESS_2023_3313630
crossref_primary_10_1016_j_bbe_2022_09_001
crossref_primary_10_1016_j_asoc_2023_110838
crossref_primary_10_1016_j_irbm_2022_05_003
crossref_primary_10_1016_j_rico_2023_100225
crossref_primary_10_1109_TCBB_2022_3215129
crossref_primary_10_1109_ACCESS_2021_3061503
crossref_primary_10_18273_revuin_v21n2_2022011
crossref_primary_10_3390_e25020259
crossref_primary_10_1007_s11063_021_10607_6
crossref_primary_10_1016_j_eswa_2020_113897
crossref_primary_10_1111_exsy_12854
crossref_primary_10_1007_s12652_022_04444_1
crossref_primary_10_1007_s12652_020_01733_5
crossref_primary_10_1038_s41598_025_92187_2
crossref_primary_10_1016_j_eswa_2021_115895
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_1155_2024_4217192
crossref_primary_10_1007_s00530_022_01029_y
crossref_primary_10_3390_math10152770
crossref_primary_10_1007_s00521_022_07852_8
crossref_primary_10_1007_s00500_022_06970_8
crossref_primary_10_1007_s12652_020_02786_2
crossref_primary_10_1109_ACCESS_2020_3033757
crossref_primary_10_1016_j_compag_2023_107767
crossref_primary_10_1080_10589759_2023_2249583
crossref_primary_10_1371_journal_pone_0295579
crossref_primary_10_3390_math9212786
crossref_primary_10_1016_j_knosys_2022_108833
crossref_primary_10_1016_j_heliyon_2024_e26799
crossref_primary_10_53600_ajesa_1321186
crossref_primary_10_3390_biomimetics9090572
crossref_primary_10_3390_s24247879
crossref_primary_10_3390_math9182321
crossref_primary_10_1016_j_knosys_2024_111578
crossref_primary_10_1007_s40430_023_04057_5
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_1007_s11042_023_17044_8
crossref_primary_10_1108_IJPCC_09_2020_0130
crossref_primary_10_1186_s12859_023_05502_x
crossref_primary_10_1007_s12652_019_01247_9
crossref_primary_10_1016_j_eswa_2021_114788
crossref_primary_10_3390_data9020020
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1007_s11277_023_10654_3
crossref_primary_10_3389_fphy_2020_00224
crossref_primary_10_1007_s13369_021_05646_z
crossref_primary_10_1016_j_compbiomed_2021_105015
crossref_primary_10_1007_s13042_024_02143_1
crossref_primary_10_1016_j_cmpb_2021_105949
crossref_primary_10_32604_cmc_2023_032287
crossref_primary_10_1016_j_advengsoft_2022_103283
crossref_primary_10_3390_math10193566
crossref_primary_10_1049_ipr2_12490
crossref_primary_10_3390_e23091189
crossref_primary_10_1007_s10462_024_10802_6
crossref_primary_10_1007_s10489_021_02831_3
crossref_primary_10_1080_08839514_2020_1861407
crossref_primary_10_1007_s00366_020_01233_2
crossref_primary_10_3390_sym13061092
crossref_primary_10_1007_s12652_021_03271_0
crossref_primary_10_1002_adts_202100246
crossref_primary_10_1016_j_swevo_2023_101430
crossref_primary_10_3934_mbe_2021129
crossref_primary_10_1111_coin_12499
crossref_primary_10_1007_s11063_020_10271_2
crossref_primary_10_1007_s00500_023_08565_3
crossref_primary_10_1007_s11831_024_10090_x
crossref_primary_10_1007_s12652_020_01839_w
crossref_primary_10_1007_s12633_022_01904_3
crossref_primary_10_1155_2022_4254932
crossref_primary_10_1007_s00521_022_07391_2
crossref_primary_10_32604_cmc_2023_031867
crossref_primary_10_1007_s12065_021_00579_w
crossref_primary_10_1109_ACCESS_2020_2997783
crossref_primary_10_1109_ACCESS_2022_3153038
crossref_primary_10_1007_s11042_022_12001_3
crossref_primary_10_1016_j_eswa_2023_121128
crossref_primary_10_1371_journal_pone_0274850
crossref_primary_10_32604_iasc_2021_013643
crossref_primary_10_1007_s40747_021_00389_8
crossref_primary_10_32604_cmc_2022_020449
crossref_primary_10_1016_j_knosys_2021_107467
crossref_primary_10_1093_jcde_qwac095
crossref_primary_10_1007_s11227_021_03773_w
crossref_primary_10_32604_cmc_2023_034005
crossref_primary_10_1007_s00366_021_01545_x
crossref_primary_10_1109_ACCESS_2020_3007336
crossref_primary_10_1007_s12652_020_02109_5
crossref_primary_10_1007_s42235_021_00114_8
crossref_primary_10_1007_s00521_020_04789_8
crossref_primary_10_1016_j_aej_2022_09_036
crossref_primary_10_1007_s00477_021_02150_6
crossref_primary_10_1016_j_procs_2023_10_188
crossref_primary_10_1007_s00521_023_09120_9
crossref_primary_10_1016_j_asoc_2020_107052
crossref_primary_10_1007_s00500_022_07280_9
crossref_primary_10_1016_j_eswa_2021_114901
crossref_primary_10_1109_ACCESS_2021_3117853
crossref_primary_10_1007_s00521_022_06921_2
crossref_primary_10_1016_j_compeleceng_2022_107942
crossref_primary_10_1016_j_measurement_2023_113525
crossref_primary_10_1016_j_eswa_2020_113873
crossref_primary_10_3934_era_2024165
crossref_primary_10_3390_app13158960
crossref_primary_10_1002_ett_4606
crossref_primary_10_1016_j_health_2023_100170
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1049_gtd2_12731
Cites_doi 10.1007/s12652-017-0452-1
10.1023/A:1011219601502
10.1093/bioinformatics/18.5.725
10.1016/j.advengsoft.2013.12.007
10.1007/978-3-319-70139-4_16
10.1021/ci9000103
10.1007/s12652-015-0333-4
10.1117/1.JATIS.4.3.038001
10.1016/j.asoc.2009.07.001
10.1007/s12652-015-0285-8
10.1007/978-3-540-36212-8_6
10.1016/j.ejor.2010.02.032
10.1007/s11042-018-5840-9
10.1016/j.knosys.2015.04.007
10.1016/j.eswa.2013.07.067
10.1023/A:1013685612819
10.1016/S1672-6529(11)60020-6
10.1098/rsif.2017.0298
10.1016/j.cmpb.2010.12.004
10.1007/978-3-319-70139-4_15
10.1023/A:1022602019183
10.1139/z90-111
10.1007/s10994-005-1505-9
10.1016/j.eswa.2018.06.023
10.1007/978-3-319-63754-9_2
10.1016/j.tree.2016.06.007
10.1016/j.cmpb.2013.10.007
10.1016/S0004-3702(03)00079-1
10.1016/j.patcog.2005.09.002
10.1089/cmb.2007.0211
10.21474/IJAR01/1544
10.7551/mitpress/4594.001.0001
10.1023/A:1012487302797
10.1007/s11265-008-0273-8
10.1016/S0031-3203(01)00046-2
10.1007/s10898-007-9149-x
10.1016/j.eswa.2013.09.023
10.1109/4235.850656
10.1016/j.patrec.2005.12.018
10.1098/rspb.1980.0153
10.1016/j.advengsoft.2017.07.002
10.1007/s12652-017-0637-7
10.1109/ICCCNT.2017.8203950
10.1109/ADCOM.2006.4289903
10.1007/11759966_204
10.1016/j.amc.2014.04.039
10.1007/s12652-017-0621-2
10.1109/IRI.2012.6303031
10.1109/ICENCO.2015.7416361
10.1007/s00521-017-3131-4
10.1109/MHS.1995.494215
10.1109/PowerAfrica.2017.7991209
10.1007/s12652-017-0655-5
10.1007/3-540-56602-3_138
10.1007/s12652-018-0895-z
10.1109/IJCNN.2007.4371101
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-018-1031-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 3169
ExternalDocumentID 10_1007_s12652_018_1031_9
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HCIFZ
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
2VQ
AARHV
AAYXX
AAYZH
ABBRH
ABDBE
ABFSG
ABRTQ
ABULA
ACSTC
ADKFA
AEBTG
AEZWR
AFDZB
AFHIU
AFLOW
AFOHR
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BSONS
CITATION
H13
HF~
HZ~
O9-
PHGZM
PHGZT
PQGLB
PUEGO
S1Z
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-6dfddb59489b96f38d90fc07390ccdb677e58d23b4f0b51cafa12261fa9394d63
IEDL.DBID AGYKE
ISSN 1868-5137
IngestDate Fri Jul 25 22:15:28 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Wed Oct 01 03:06:29 EDT 2025
Fri Feb 21 02:34:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Salp swarm algorithm
Swarm techniques
Feature selection
Global optimization
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6dfddb59489b96f38d90fc07390ccdb677e58d23b4f0b51cafa12261fa9394d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919600553
PQPubID 2043913
PageCount 15
ParticipantIDs proquest_journals_2919600553
crossref_citationtrail_10_1007_s12652_018_1031_9
crossref_primary_10_1007_s12652_018_1031_9
springer_journals_10_1007_s12652_018_1031_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190801
2019-8-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190801
  day: 1
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Neumann, Schnörr, Steidl (CR47) 2005; 61
Niknam, Amiri (CR48) 2010; 10
Chikh, Chikhi (CR7) 2017
Yeh, Yang, Lai (CR63) 2016; 2
Li, Wong (CR39) 2002; 18
Noman, Shamsuddin, Hassanien, Hassanien, Abraham, Vasilakos, Pedrycz (CR49) 2009
Zhang, Sun (CR64) 2002; 35
Yang, Slattery, Ghani (CR61) 2002; 18
CR35
Saravanan, Rajesh Babu (CR53) 2017
CR33
El Aziz, Ewees, Hassanien (CR14) 2018; 77
Han, Pei, Kamber (CR25) 2011
CR32
Al-Ayyoub, Jararweh, Rababah, Aldwairi (CR1) 2017; 8
Wang, Cen, Zhao, Zhang, Kan, Hu (CR58) 2018
Guyon, Elisseeff (CR22) 2003; 3
Prabukumar, Agilandeeswari, Ganesan (CR50) 2017
Sutherland, Weihs (CR54) 2017; 14
Yamuna, Thamaraichelvi (CR60) 2016; 4
Ewees, Elaziz, Houssein (CR19) 2018; 112
CR4
Zhong (CR65) 2001; 16
Moradi, Rostami (CR46) 2015; 84
El Aziz, Ewees, Hassanien, Mudhsh, Xiong, Hassanien, Oliva (CR15) 2018
Jensen, Goodarzi, Freitas (CR30) 2009; 49
CR45
El Aziz, Ewees, Hassanien, Bhattacharyya, Dutta, De, Klepac (CR12) 2016
Elaziz, Ewees, Oliva, Duan, Xiong, Liu, Xie, Li, Zhao, El-Alfy (CR16) 2017
Dash, Liu (CR10) 2003; 151
Chuang, Yang, Yang (CR8) 2009; 16
Arigbabu, Mahmood, Ahmad, Arigbabu (CR3) 2016; 7
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR44) 2017; 114
Karaboga, Basturk (CR31) 2007; 39
Ewees, El Aziz, Hassanien (CR18) 2017
Yao, Karmeshu (CR62) 2003
Kohane, Butte, Kho (CR34) 2002
Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (CR52) 2014; 41
Menghour, Souici-Meslati (CR42) 2016; 9
Unler, Murat (CR57) 2010; 206
Cuevas, Cienfuegos (CR9) 2014; 41
Li, Wang (CR38) 2015; 6
CR17
CR59
Gasca (CR20) 2006; 39
CR13
CR56
CR11
CR55
Henschke, Everett, Richardson, Suthers (CR26) 2016; 31
Goldberg, Holland (CR21) 1988; 3
Lai, Reinders, Wessels (CR37) 2006; 27
Inbarani, Azar, Jothi (CR29) 2014; 113
Anderson, Bone (CR2) 1980; 210
Chen, Yang, jing Wang, Wang, zhong Li, bin Liu (CR6) 2014; 239
Ibrahim, Oliva, Ewees, Lu, Liu, Xie, Li, Zhao, El-Alfy (CR27) 2017
Madin (CR41) 1990; 68
CR24
Kung, Luo, Mak (CR36) 2010; 61
Ibrahim, Elaziz, Ewees, Selim, Lu (CR28) 2018; 4
Mirjalili, Mirjalili, Lewis (CR43) 2014; 69
Raymer, Punch, Goodman, Kuhn, Jain (CR51) 2000; 4
Liu, Wang, Chen, Dong, Zhu, Wang (CR40) 2011; 8
Guyon, Weston, Barnhill, Vapnik (CR23) 2002; 46
Chang, Lin, Liu (CR5) 2012; 107
K Menghour (1031_CR42) 2016; 9
J Neumann (1031_CR47) 2005; 61
1031_CR4
LP Madin (1031_CR41) 1990; 68
HH Inbarani (1031_CR29) 2014; 113
IS Kohane (1031_CR34) 2002
DJN Zhong (1031_CR65) 2001; 16
X Li (1031_CR38) 2015; 6
Y Wang (1031_CR58) 2018
I Guyon (1031_CR22) 2003; 3
1031_CR24
S Mirjalili (1031_CR44) 2017; 114
N Henschke (1031_CR26) 2016; 31
KR Sutherland (1031_CR54) 2017; 14
PC Chang (1031_CR5) 2012; 107
G Yamuna (1031_CR60) 2016; 4
R Jensen (1031_CR30) 2009; 49
MEA Elaziz (1031_CR16) 2017
M Al-Ayyoub (1031_CR1) 2017; 8
SJARE Gasca (1031_CR20) 2006; 39
A Unler (1031_CR57) 2010; 206
1031_CR17
S Mirjalili (1031_CR43) 2014; 69
1031_CR59
1031_CR13
1031_CR56
1031_CR11
1031_CR55
R Chikh (1031_CR7) 2017
YY Yao (1031_CR62) 2003
Y Yang (1031_CR61) 2002; 18
AA Ewees (1031_CR19) 2018; 112
SY Kung (1031_CR36) 2010; 61
LH Chen (1031_CR6) 2014; 239
RA Ibrahim (1031_CR28) 2018; 4
MA Aziz El (1031_CR14) 2018; 77
T Niknam (1031_CR48) 2010; 10
M Dash (1031_CR10) 2003; 151
Y Liu (1031_CR40) 2011; 8
ML Raymer (1031_CR51) 2000; 4
RA Ibrahim (1031_CR27) 2017
RA Saravanan (1031_CR53) 2017
H Zhang (1031_CR64) 2002; 35
1031_CR45
P Moradi (1031_CR46) 2015; 84
J Han (1031_CR25) 2011
D Karaboga (1031_CR31) 2007; 39
J Li (1031_CR39) 2002; 18
C Lai (1031_CR37) 2006; 27
DE Goldberg (1031_CR21) 1988; 3
OA Arigbabu (1031_CR3) 2016; 7
M Prabukumar (1031_CR50) 2017
LY Chuang (1031_CR8) 2009; 16
I Guyon (1031_CR23) 2002; 46
1031_CR35
E Cuevas (1031_CR9) 2014; 41
AA Ewees (1031_CR18) 2017
1031_CR33
S Noman (1031_CR49) 2009
1031_CR32
PA Anderson (1031_CR2) 1980; 210
D Rodrigues (1031_CR52) 2014; 41
MA Aziz El (1031_CR15) 2018
MA Aziz El (1031_CR12) 2016
WC Yeh (1031_CR63) 2016; 2
References_xml – volume: 239
  start-page: 180
  year: 2014
  end-page: 197
  ident: CR6
  article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
  publication-title: Appl Math Comput
– ident: CR45
– volume: 2
  start-page: 263
  issue: 3
  year: 2016
  end-page: 275
  ident: CR63
  article-title: A hybrid simplified swarm optimization method for imbalanced data feature selection
  publication-title: Aust Acad Bus Econ Rev
– volume: 8
  start-page: 383
  issue: 3
  year: 2017
  end-page: 393
  ident: CR1
  article-title: Feature extraction and selection for arabic tweets authorship authentication
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0452-1
– year: 2017
  ident: CR7
  article-title: Clustered negative selection algorithm and fruit fly optimization for email spam detection
  publication-title: J Ambient Intell Humaniz Comput
– volume: 16
  start-page: 199
  year: 2001
  end-page: 214
  ident: CR65
  article-title: Using rough sets with heuristics for feature selection
  publication-title: J Intell Inform Syst
  doi: 10.1023/A:1011219601502
– year: 2017
  ident: CR53
  article-title: Enhanced text mining approach based on ontology for clustering research project selection
  publication-title: J Ambient Intell Humaniz Comput
– ident: CR4
– volume: 18
  start-page: 725
  year: 2002
  end-page: 734
  ident: CR39
  article-title: Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.5.725
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR43
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: CR35
– start-page: 156
  year: 2017
  end-page: 166
  ident: CR27
  article-title: Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning
  publication-title: International conference on neural information processing
  doi: 10.1007/978-3-319-70139-4_16
– volume: 49
  start-page: 824
  year: 2009
  end-page: 832
  ident: CR30
  article-title: Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities
  publication-title: J Chem Inf Model
  doi: 10.1021/ci9000103
– volume: 7
  start-page: 415
  issue: 3
  year: 2016
  end-page: 426
  ident: CR3
  article-title: Smile detection using hybrid face representation
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-015-0333-4
– volume: 4
  start-page: 038001
  issue: 3
  year: 2018
  ident: CR28
  article-title: Galaxy images classification using hybrid brain storm optimization with moth flame optimization
  publication-title: J Astron Telesc Instrum Syst
  doi: 10.1117/1.JATIS.4.3.038001
– volume: 10
  start-page: 183
  issue: 1
  year: 2010
  end-page: 197
  ident: CR48
  article-title: An efficient hybrid approach based on pso, aco and k-means for cluster analysis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.07.001
– volume: 6
  start-page: 675
  issue: 5
  year: 2015
  end-page: 688
  ident: CR38
  article-title: Optimal band selection for hyperspectral data with improved differential evolution
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-015-0285-8
– start-page: 115
  year: 2003
  end-page: 136
  ident: CR62
  article-title: Information-theoretic measures for knowledge discovery and data mining
  publication-title: Entropy measures, maximum entropy principle and emerging applications
  doi: 10.1007/978-3-540-36212-8_6
– volume: 206
  start-page: 528
  issue: 3
  year: 2010
  end-page: 539
  ident: CR57
  article-title: A discrete particle swarm optimization method for feature selection in binary classification problems
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.02.032
– volume: 77
  start-page: 26135
  year: 2018
  end-page: 26172
  ident: CR14
  article-title: Multi-objective whale optimization algorithm for content-based image retrieval
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5840-9
– volume: 84
  start-page: 144
  year: 2015
  end-page: 161
  ident: CR46
  article-title: Integration of graph clustering with ant colony optimization for feature selection
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.04.007
– volume: 41
  start-page: 412
  issue: 2
  year: 2014
  end-page: 425
  ident: CR9
  article-title: A new algorithm inspired in the behavior of the social-spider for constrained optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.07.067
– ident: CR11
– ident: CR32
– volume: 18
  start-page: 219
  issue: 2
  year: 2002
  end-page: 241
  ident: CR61
  article-title: A study of approaches to hypertext categorization
  publication-title: J Intell Inform Syst
  doi: 10.1023/A:1013685612819
– year: 2017
  ident: CR50
  article-title: An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier
  publication-title: J Ambient Intell Humaniz Comput
– volume: 8
  start-page: 191
  issue: 2
  year: 2011
  end-page: 200
  ident: CR40
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(11)60020-6
– volume: 14
  start-page: 20170,298
  issue: 133
  year: 2017
  ident: CR54
  article-title: Hydrodynamic advantages of swimming by salp chains
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0298
– start-page: 381
  year: 2009
  end-page: 397
  ident: CR49
  article-title: Hybrid learning enhancement of rbf network with particle swarm optimization
  publication-title: Foundations of computational, intelligence
– volume: 107
  start-page: 382
  issue: 3
  year: 2012
  end-page: 392
  ident: CR5
  article-title: An attribute weight assignment and particle swarm optimization algorithm for medical database classifications
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2010.12.004
– start-page: 145
  year: 2017
  end-page: 155
  ident: CR16
  article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection
  publication-title: International conference on neural information processing
  doi: 10.1007/978-3-319-70139-4_15
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  end-page: 99
  ident: CR21
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learn
  doi: 10.1023/A:1022602019183
– year: 2018
  ident: CR58
  article-title: Compressed sensing based feature fusion for image retrieval
  publication-title: J Ambient Intell Humaniz Comput
– volume: 68
  start-page: 765
  issue: 4
  year: 1990
  end-page: 777
  ident: CR41
  article-title: Aspects of jet propulsion in salps
  publication-title: Can J Zool
  doi: 10.1139/z90-111
– start-page: 1
  year: 2016
  end-page: 21
  ident: CR12
  article-title: Hybrid swarms optimization based image segmentation
  publication-title: Hybrid soft computing for image segmentation
– ident: CR33
– year: 2011
  ident: CR25
  publication-title: Data mining: concepts and techniques
– volume: 61
  start-page: 129
  issue: 1–3
  year: 2005
  end-page: 150
  ident: CR47
  article-title: Combined svm-based feature selection and classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-005-1505-9
– volume: 112
  start-page: 156
  year: 2018
  end-page: 172
  ident: CR19
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.06.023
– ident: CR56
– start-page: 23
  year: 2018
  end-page: 39
  ident: CR15
  article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation
  publication-title: Advances in soft computing and machine learning in image processing
  doi: 10.1007/978-3-319-63754-9_2
– volume: 31
  start-page: 720
  issue: 9
  year: 2016
  end-page: 733
  ident: CR26
  article-title: Rethinking the role of salps in the ocean
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2016.06.007
– volume: 113
  start-page: 175
  issue: 1
  year: 2014
  end-page: 185
  ident: CR29
  article-title: Supervised hybrid feature selection based on pso and rough sets for medical diagnosis
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2013.10.007
– volume: 151
  start-page: 155
  issue: 1–2
  year: 2003
  end-page: 176
  ident: CR10
  article-title: Consistency-based search in feature selection
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(03)00079-1
– volume: 39
  start-page: 313
  issue: 2
  year: 2006
  end-page: 315
  ident: CR20
  article-title: Eliminating redundancy and irrelevance using a new mlp-based feature selection method
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.09.002
– volume: 16
  start-page: 1689
  issue: 12
  year: 2009
  end-page: 1703
  ident: CR8
  article-title: Tabu search and binary particle swarm optimization for feature selection using microarray data
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2007.0211
– volume: 4
  start-page: 744
  issue: 9
  year: 2016
  end-page: 760
  ident: CR60
  article-title: Hybrid firefly swarm intelligence based feature selection for medical data classification and segmentation in svd–nsct domain
  publication-title: Int J Adv Res
  doi: 10.21474/IJAR01/1544
– year: 2002
  ident: CR34
  publication-title: Microarrays for an integrative genomics
  doi: 10.7551/mitpress/4594.001.0001
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  end-page: 422
  ident: CR23
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 61
  start-page: 3
  issue: 1
  year: 2010
  end-page: 20
  ident: CR36
  article-title: Feature selection for genomic signal processing: unsupervised, supervised, and self-supervised scenarios
  publication-title: J Signal Process Syst
  doi: 10.1007/s11265-008-0273-8
– volume: 35
  start-page: 701
  issue: 3
  year: 2002
  end-page: 711
  ident: CR64
  article-title: Feature selection using tabu search method
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(01)00046-2
– ident: CR17
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  end-page: 471
  ident: CR31
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial beecolony (abc) algorithm
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– year: 2017
  ident: CR18
  article-title: Chaotic multi-verse optimizer-based feature selection
  publication-title: Neural Comput Appl
– ident: CR13
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR22
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  end-page: 2258
  ident: CR52
  article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
– ident: CR55
– volume: 4
  start-page: 164
  issue: 2
  year: 2000
  end-page: 171
  ident: CR51
  article-title: Dimensionality reduction using genetic algorithms
  publication-title: IEEE transactions on evolutionary computation
  doi: 10.1109/4235.850656
– volume: 27
  start-page: 1067
  issue: 10
  year: 2006
  end-page: 1076
  ident: CR37
  article-title: Random subspace method for multivariate feature selection
  publication-title: Pattern recognition letters
  doi: 10.1016/j.patrec.2005.12.018
– ident: CR59
– volume: 9
  start-page: 65
  issue: 3
  year: 2016
  end-page: 79
  ident: CR42
  article-title: Hybrid aco-pso based approaches for feature selection
  publication-title: Int J Intell Eng Syst
– ident: CR24
– volume: 210
  start-page: 559
  issue: 1181
  year: 1980
  end-page: 574
  ident: CR2
  article-title: Communication between individuals in salp chains II. Physiology
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1980.0153
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: CR44
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 16
  start-page: 199
  year: 2001
  ident: 1031_CR65
  publication-title: J Intell Inform Syst
  doi: 10.1023/A:1011219601502
– ident: 1031_CR35
– volume: 35
  start-page: 701
  issue: 3
  year: 2002
  ident: 1031_CR64
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(01)00046-2
– start-page: 1
  volume-title: Hybrid soft computing for image segmentation
  year: 2016
  ident: 1031_CR12
– start-page: 145
  volume-title: International conference on neural information processing
  year: 2017
  ident: 1031_CR16
  doi: 10.1007/978-3-319-70139-4_15
– volume: 61
  start-page: 129
  issue: 1–3
  year: 2005
  ident: 1031_CR47
  publication-title: Mach Learn
  doi: 10.1007/s10994-005-1505-9
– volume: 210
  start-page: 559
  issue: 1181
  year: 1980
  ident: 1031_CR2
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1980.0153
– volume: 69
  start-page: 46
  year: 2014
  ident: 1031_CR43
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 1031_CR23
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 151
  start-page: 155
  issue: 1–2
  year: 2003
  ident: 1031_CR10
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(03)00079-1
– year: 2017
  ident: 1031_CR53
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0637-7
– volume: 16
  start-page: 1689
  issue: 12
  year: 2009
  ident: 1031_CR8
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2007.0211
– ident: 1031_CR17
  doi: 10.1109/ICCCNT.2017.8203950
– volume: 18
  start-page: 725
  year: 2002
  ident: 1031_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.5.725
– volume: 39
  start-page: 313
  issue: 2
  year: 2006
  ident: 1031_CR20
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.09.002
– ident: 1031_CR32
  doi: 10.1109/ADCOM.2006.4289903
– ident: 1031_CR59
  doi: 10.1007/11759966_204
– volume: 6
  start-page: 675
  issue: 5
  year: 2015
  ident: 1031_CR38
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-015-0285-8
– volume: 18
  start-page: 219
  issue: 2
  year: 2002
  ident: 1031_CR61
  publication-title: J Intell Inform Syst
  doi: 10.1023/A:1013685612819
– volume: 8
  start-page: 383
  issue: 3
  year: 2017
  ident: 1031_CR1
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0452-1
– volume: 27
  start-page: 1067
  issue: 10
  year: 2006
  ident: 1031_CR37
  publication-title: Pattern recognition letters
  doi: 10.1016/j.patrec.2005.12.018
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 1031_CR31
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– start-page: 115
  volume-title: Entropy measures, maximum entropy principle and emerging applications
  year: 2003
  ident: 1031_CR62
  doi: 10.1007/978-3-540-36212-8_6
– volume: 9
  start-page: 65
  issue: 3
  year: 2016
  ident: 1031_CR42
  publication-title: Int J Intell Eng Syst
– volume: 49
  start-page: 824
  year: 2009
  ident: 1031_CR30
  publication-title: J Chem Inf Model
  doi: 10.1021/ci9000103
– volume: 77
  start-page: 26135
  year: 2018
  ident: 1031_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5840-9
– volume: 61
  start-page: 3
  issue: 1
  year: 2010
  ident: 1031_CR36
  publication-title: J Signal Process Syst
  doi: 10.1007/s11265-008-0273-8
– volume: 107
  start-page: 382
  issue: 3
  year: 2012
  ident: 1031_CR5
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2010.12.004
– volume: 239
  start-page: 180
  year: 2014
  ident: 1031_CR6
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.04.039
– year: 2017
  ident: 1031_CR7
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0621-2
– ident: 1031_CR33
– ident: 1031_CR4
  doi: 10.1109/IRI.2012.6303031
– volume: 10
  start-page: 183
  issue: 1
  year: 2010
  ident: 1031_CR48
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.07.001
– volume: 2
  start-page: 263
  issue: 3
  year: 2016
  ident: 1031_CR63
  publication-title: Aust Acad Bus Econ Rev
– volume: 41
  start-page: 412
  issue: 2
  year: 2014
  ident: 1031_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.07.067
– ident: 1031_CR56
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 1031_CR21
  publication-title: Machine Learn
  doi: 10.1023/A:1022602019183
– volume: 4
  start-page: 164
  issue: 2
  year: 2000
  ident: 1031_CR51
  publication-title: IEEE transactions on evolutionary computation
  doi: 10.1109/4235.850656
– volume: 113
  start-page: 175
  issue: 1
  year: 2014
  ident: 1031_CR29
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2013.10.007
– volume: 84
  start-page: 144
  year: 2015
  ident: 1031_CR46
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.04.007
– volume: 206
  start-page: 528
  issue: 3
  year: 2010
  ident: 1031_CR57
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.02.032
– volume: 4
  start-page: 038001
  issue: 3
  year: 2018
  ident: 1031_CR28
  publication-title: J Astron Telesc Instrum Syst
  doi: 10.1117/1.JATIS.4.3.038001
– volume: 68
  start-page: 765
  issue: 4
  year: 1990
  ident: 1031_CR41
  publication-title: Can J Zool
  doi: 10.1139/z90-111
– volume-title: Microarrays for an integrative genomics
  year: 2002
  ident: 1031_CR34
  doi: 10.7551/mitpress/4594.001.0001
– volume: 8
  start-page: 191
  issue: 2
  year: 2011
  ident: 1031_CR40
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(11)60020-6
– ident: 1031_CR24
  doi: 10.1109/ICENCO.2015.7416361
– start-page: 381
  volume-title: Foundations of computational, intelligence
  year: 2009
  ident: 1031_CR49
– year: 2017
  ident: 1031_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3131-4
– start-page: 23
  volume-title: Advances in soft computing and machine learning in image processing
  year: 2018
  ident: 1031_CR15
  doi: 10.1007/978-3-319-63754-9_2
– ident: 1031_CR11
  doi: 10.1109/MHS.1995.494215
– volume: 7
  start-page: 415
  issue: 3
  year: 2016
  ident: 1031_CR3
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-015-0333-4
– ident: 1031_CR13
  doi: 10.1109/PowerAfrica.2017.7991209
– volume: 14
  start-page: 20170,298
  issue: 133
  year: 2017
  ident: 1031_CR54
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0298
– volume: 31
  start-page: 720
  issue: 9
  year: 2016
  ident: 1031_CR26
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2016.06.007
– year: 2017
  ident: 1031_CR50
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0655-5
– volume: 112
  start-page: 156
  year: 2018
  ident: 1031_CR19
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.06.023
– volume: 4
  start-page: 744
  issue: 9
  year: 2016
  ident: 1031_CR60
  publication-title: Int J Adv Res
  doi: 10.21474/IJAR01/1544
– start-page: 156
  volume-title: International conference on neural information processing
  year: 2017
  ident: 1031_CR27
  doi: 10.1007/978-3-319-70139-4_16
– ident: 1031_CR45
  doi: 10.1007/3-540-56602-3_138
– volume-title: Data mining: concepts and techniques
  year: 2011
  ident: 1031_CR25
– year: 2018
  ident: 1031_CR58
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-0895-z
– ident: 1031_CR55
  doi: 10.1109/IJCNN.2007.4371101
– volume: 3
  start-page: 1157
  year: 2003
  ident: 1031_CR22
  publication-title: J Mach Learn Res
– volume: 114
  start-page: 163
  year: 2017
  ident: 1031_CR44
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  ident: 1031_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
SSID ssj0000393111
Score 2.5775263
Snippet Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3155
SubjectTerms Algorithms
Artificial Intelligence
Classification
Computational Intelligence
Datasets
Engineering
Feature selection
Foraging behavior
Gene expression
Genetic algorithms
Heuristic
Image retrieval
Machine learning
Methods
Optimization techniques
Original Research
Particle swarm optimization
Performance evaluation
Robotics and Automation
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ze_FFFBWnU_LgkxJsmyZtHkRUNobgEHGwt5Jf1YdtrdvEf99cl64ouNc2DfTuenfN3X0fQpfMpMpFmZRYGlMSG56S1MqQMCqklcIwqmFQ-HnEh-P4acImLTSqZ2GgrbL2iZWjNoWGM_KbSDhbAcQoeld-EmCNgupqTaEhPbWCua0gxnZQJwJkrDbqPPRHL6-bUxeYRA0rUl6AiScspEld6qzm6SLOoFMBEE9pSMTvYNVkoH-KplUsGuyjPZ9E4vu11g9Qy84P0WR9PmANXsppiZffcjHDcvruXmL1McMQrgwu5rj0xuJXFM5nzPwwJnYZLM5thfWJlxVDjrt6hMaD_tvjkHjeBKJpyFeEm9wYBTgsQgme09SIINdQkgu0NooniWWpiaiK80CxUMtchi4LC3MpqHDqoseoPS_m9gRhroSVqc61NO5HRYtUWCUDJmXEZMKF7qKgFlCmPag4cFtMswYOGWSaOZlmINNMdNHV5pFyjaixbXGvlnrmP65l1phCF13Xmmhu_7vZ6fbNztCuy4bEuruvh9qrxZc9dxnHSl14M_oBe_PTCA
  priority: 102
  providerName: ProQuest
Title Improved salp swarm algorithm based on particle swarm optimization for feature selection
URI https://link.springer.com/article/10.1007/s12652-018-1031-9
https://www.proquest.com/docview/2919600553
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: AFBBN
  dateStart: 20100301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-5145
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: U2A
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8rI9AGObKJTKD3sCGSVx7dqPBVHQplXTRKXyFPkrA9EvNamQ-OuxE2cZCJB4iuRcrOTu4jv77n4H8J0arpyV4diSHsE9wzjmVsaYEiGtFIYS7QuFf43Y5bj3Y0InoY47r7Pd65BkuVI3xW4Joz6NwMORkhiLDdgs4bZasDm4uP7ZHK34ctO47LzrseAxjUm_jme-NM9Ti9S4mc8io6XBGW7DVf2qVZ7J3cm6UCf64RmK4zu_ZQe2ggOKBpXGfIYPdr4Ln_6DJfwCk-qkwRqUy-kS5fdyNUNy-nexui1uZsgbPoMWc7QMahcoFm71mYWyTuR8YZTZEjUU5WWvHTf6FcbD86uzSxw6MGBNYlZgZjJjlEd0EUqwjHAjokz74F6ktVGs37eUm4SoXhYpGmuZydj5c3EmBRFO8OQbtOaLud0DxJSwkutMS-O2PFpwYZWMqJQJlX0mdBuiWgqpDvDkvkvGNG2AlT3TUse01DMtFW04-vfIssLmeIu4U4s2Db9pnibCLUAehoy04biWVHP71cn230V9AB-dmyWqtMEOtIrV2h46V6ZQXdjgw4tuUGB3PT0f_f7jRsfJ4BGBse2_
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHOCCQIAoFPABLiCLJI7d-FAhVrUsFUIg9Ra8BQ7daIoQP8e3YacOFUhw6zWxLeV54hl7PO8B7FGdSOtlEmxITHCsWYITI0JMCRdGcE2JcoXCty3WeIyv2rQ9A59lLYy7VlmuicVCrfvKnZEfRdzaimOMIseDV-xUo1x2tZTQEF5aQdcLijFf2HFtPt7tFi6vN8_tfO9H0eXFw1kDe5UBrEjIRpjpTGvpWEu45CwjieZBplwCK1BKS1arGZroiMg4CyQNlchEaGOWMBOccPtxxI47C_Mxibnd_M2fXrTu7r9PeVzla1iIADtaekxDUitTq0X9XsSouxnhGFZJiPlP5ziJeH8laQvfd7kMSz5oRSdjK1uBGdNbhfb4PMJolIvOAOXvYthFovNsQRu9dJFzjxr1e2jgjdO36Ns1quuLP5GNmFFmCm5RlBeKPPbpGjxOBcF1mOv1e2YDEJPciERlSmi7MVI84UaKgAoRUVFjXFUgKAFKlScxd1oanXRCv-wwTS2mqcM05RU4-O4yGDN4_Ne4WqKe-p85TyemV4HDciYmr_8cbPP_wXZhofFwe5PeNFvXW7BoIzE-vllYhbnR8M1s22hnJHe8SSF4mrYVfwGkvhC3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgAllN4tiNxwqoyqtioFK3yE8Y2iRqivj72Hk0gACJNbl4uLv4PvvuvgPgnKhI2CgTIY1DjEJFIxRp7iOCGdecKYKlaxR-HNHhOLybkEk15zSvq93rlGTZ0-BYmpJFN1Om2zS-BZS4kgJHTYp9xFbBWuh4EqxDj4P-8pLFNZ76xQxexwqPiI97dWbzp1W-xqYGcH7LkRahZ7ANtirMCPulkXfAik52weYnJsE9MCkvB7SCOZ9mMH_n8xnk05fUnv1fZ9DFKgXTBGaVp1QSqd0wZlUnJrTwFRpdEH3CvBiPY5_ug_Hg5vlqiKqhCUhiny4QVUYp4UhYmGDU4Egxz0iXj_OkVIL2eppEKsAiNJ4gvuSG-xaC-YYzzKyt8AFoJWmiDwGkgmkeSSO5sqcUySKmBfcI5wHhPcpkG3i1umJZMYq7wRbTuOFCdhqOrYZjp-GYtcHF8pOspNP4S7hT2yCu_qw8DpjdMxxzGG6Dy9ouzetfFzv6l_QZWH-6HsQPt6P7Y7BhQRIri_46oLWYv-kTC0QW4rRwtg8LO9Sz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+salp+swarm+algorithm+based+on+particle+swarm+optimization+for+feature+selection&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Ibrahim%2C+Rehab+Ali&rft.au=Ewees%2C+Ahmed+A.&rft.au=Oliva%2C+Diego&rft.au=Abd+Elaziz%2C+Mohamed&rft.date=2019-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=10&rft.issue=8&rft.spage=3155&rft.epage=3169&rft_id=info:doi/10.1007%2Fs12652-018-1031-9&rft.externalDocID=10_1007_s12652_018_1031_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon