Improved salp swarm algorithm based on particle swarm optimization for feature selection
Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article pr...
Saved in:
| Published in | Journal of ambient intelligence and humanized computing Vol. 10; no. 8; pp. 3155 - 3169 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1868-5137 1868-5145 |
| DOI | 10.1007/s12652-018-1031-9 |
Cover
| Abstract | Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article presents a hybrid optimization method for the FS problem; it combines the slap swarm algorithm (SSA) with the particle swarm optimization. The hybridization between both approaches creates an algorithm called SSAPSO, in which the efficacy of the exploration and the exploitation steps is improved. To verify the performance of the proposed algorithm, it is tested over two experimental series, in the first one, it is compared with other similar approaches using benchmark functions. Meanwhile, in the second set of experiments, the SSAPSO is used to determine the best set of features using different UCI datasets. Where the redundant or the confusing features are removed from the original dataset while keeping or yielding a better accuracy. The experimental results provide the evidence of the enhancement in the SSAPSO regarding the performance and the accuracy without affecting the computational effort. |
|---|---|
| AbstractList | Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article presents a hybrid optimization method for the FS problem; it combines the slap swarm algorithm (SSA) with the particle swarm optimization. The hybridization between both approaches creates an algorithm called SSAPSO, in which the efficacy of the exploration and the exploitation steps is improved. To verify the performance of the proposed algorithm, it is tested over two experimental series, in the first one, it is compared with other similar approaches using benchmark functions. Meanwhile, in the second set of experiments, the SSAPSO is used to determine the best set of features using different UCI datasets. Where the redundant or the confusing features are removed from the original dataset while keeping or yielding a better accuracy. The experimental results provide the evidence of the enhancement in the SSAPSO regarding the performance and the accuracy without affecting the computational effort. |
| Author | Ibrahim, Rehab Ali Ewees, Ahmed A. Oliva, Diego Abd Elaziz, Mohamed Lu, Songfeng |
| Author_xml | – sequence: 1 givenname: Rehab Ali surname: Ibrahim fullname: Ibrahim, Rehab Ali organization: School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 2 givenname: Ahmed A. surname: Ewees fullname: Ewees, Ahmed A. organization: University of Bisha, Department of Computer, Damietta University – sequence: 3 givenname: Diego surname: Oliva fullname: Oliva, Diego organization: Departamento de Ciencias Computacionales, Universidad de Guadalajara – sequence: 4 givenname: Mohamed surname: Abd Elaziz fullname: Abd Elaziz, Mohamed organization: Department of Mathematics, Faculty of Science, Zagazig University – sequence: 5 givenname: Songfeng surname: Lu fullname: Lu, Songfeng email: lusongfeng@hust.edu.cn organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Shenzhen Huazhong University of Science and Technology Research Institute |
| BookMark | eNp9kEtLAzEUhYNUsGp_gLsB16O5kyYzWUrxUSi4UXAXMnnUlHmZpIr-elOnKAiazQ0557u59xyjSdd3BqEzwBeAcXkZoGC0yDFUOWACOT9AU6hYlVOY08n3nZRHaBbCBqdDOAGAKXpatoPvX43OgmyGLLxJ32ayWffexec2q2VIUt9lg_TRqcbsHf0QXes-ZHRJs73PrJFx65NsGqN2r6fo0MommNm-nqDHm-uHxV2-ur9dLq5WuSLAYs601bqmfF7xmjNLKs2xVbgkHCula1aWhla6IPXc4pqCklZCUTCwkhM-14ycoPOxb1rjZWtCFJt-67v0pSg4cIYxpSS5ytGlfB-CN1YoF7-mj166RgAWuyTFmKRISYpdkoInEn6Rg3et9O__MsXIhOTt1sb_zPQ39Alwd4iV |
| CitedBy_id | crossref_primary_10_1007_s00366_020_01028_5 crossref_primary_10_1007_s10462_023_10618_w crossref_primary_10_1007_s00366_020_01067_y crossref_primary_10_1109_ACCESS_2022_3221194 crossref_primary_10_1371_journal_pone_0275104 crossref_primary_10_32604_cmc_2024_053627 crossref_primary_10_1109_ACCESS_2023_3296255 crossref_primary_10_1016_j_procs_2020_03_321 crossref_primary_10_1016_j_aej_2022_03_078 crossref_primary_10_1016_j_autcon_2022_104576 crossref_primary_10_1007_s10115_021_01641_w crossref_primary_10_1007_s40747_020_00189_6 crossref_primary_10_32604_cmc_2022_022797 crossref_primary_10_1007_s10489_022_03976_5 crossref_primary_10_1007_s11042_020_09831_4 crossref_primary_10_1007_s42235_024_00515_5 crossref_primary_10_32604_cmc_2022_024619 crossref_primary_10_3390_e23081065 crossref_primary_10_1016_j_heliyon_2024_e37165 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1007_s10462_020_09860_3 crossref_primary_10_3390_sym12091460 crossref_primary_10_1016_j_eswa_2025_126737 crossref_primary_10_1038_s41598_023_50959_8 crossref_primary_10_1007_s00521_021_06751_8 crossref_primary_10_1007_s12652_019_01330_1 crossref_primary_10_1007_s00521_020_05621_z crossref_primary_10_1007_s00500_020_05431_4 crossref_primary_10_3390_math10183327 crossref_primary_10_1155_2021_9590969 crossref_primary_10_3390_electronics12081778 crossref_primary_10_1016_j_eswa_2022_116516 crossref_primary_10_1007_s42107_022_00534_9 crossref_primary_10_1016_j_imu_2022_100983 crossref_primary_10_1016_j_apm_2020_08_014 crossref_primary_10_1016_j_apm_2019_10_069 crossref_primary_10_1016_j_egyr_2021_06_008 crossref_primary_10_3233_IDT_200049 crossref_primary_10_1117_1_JEI_27_6_063008 crossref_primary_10_1186_s13673_019_0174_9 crossref_primary_10_3390_diagnostics13091579 crossref_primary_10_1007_s12652_021_03234_5 crossref_primary_10_1007_s41870_024_02122_3 crossref_primary_10_1016_j_compbiomed_2021_104558 crossref_primary_10_1038_s41598_024_73991_8 crossref_primary_10_1016_j_cirpj_2024_07_002 crossref_primary_10_3934_math_2023256 crossref_primary_10_1016_j_eswa_2021_116029 crossref_primary_10_1016_j_cie_2020_107078 crossref_primary_10_1007_s00500_020_05130_0 crossref_primary_10_1007_s40722_023_00282_1 crossref_primary_10_1109_ACCESS_2022_3202894 crossref_primary_10_1007_s11664_024_11547_2 crossref_primary_10_1007_s00500_023_09487_w crossref_primary_10_3233_IDA_230540 crossref_primary_10_3390_machines10070561 crossref_primary_10_1016_j_eswa_2020_114368 crossref_primary_10_1016_j_jocs_2022_101597 crossref_primary_10_1016_j_eswa_2019_113103 crossref_primary_10_1016_j_asoc_2023_110583 crossref_primary_10_3934_mbe_2022247 crossref_primary_10_1007_s11227_024_06100_1 crossref_primary_10_7717_peerj_cs_261 crossref_primary_10_1007_s12652_019_01364_5 crossref_primary_10_1016_j_asoc_2021_107745 crossref_primary_10_1007_s00530_021_00785_7 crossref_primary_10_32604_csse_2023_031063 crossref_primary_10_1016_j_knosys_2021_107603 crossref_primary_10_3233_JIFS_230459 crossref_primary_10_1007_s00354_022_00165_3 crossref_primary_10_3390_s22114275 crossref_primary_10_7717_peerj_cs_424 crossref_primary_10_1007_s11042_024_18473_9 crossref_primary_10_1007_s11053_019_09587_1 crossref_primary_10_2174_2666145416666230124143912 crossref_primary_10_3390_sym16060726 crossref_primary_10_1109_ACCESS_2020_2991968 crossref_primary_10_1142_S0218348X2140017X crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_1007_s12652_021_03226_5 crossref_primary_10_1155_2022_9193511 crossref_primary_10_3390_electronics11213463 crossref_primary_10_1007_s00366_020_01099_4 crossref_primary_10_1142_S0218001421570044 crossref_primary_10_1038_s41598_024_77440_4 crossref_primary_10_1007_s10846_024_02190_4 crossref_primary_10_1109_ACCESS_2021_3108533 crossref_primary_10_1016_j_advengsoft_2022_103338 crossref_primary_10_1007_s42235_022_00262_5 crossref_primary_10_1111_coin_12522 crossref_primary_10_1109_ACCESS_2021_3063218 crossref_primary_10_1007_s00366_020_01252_z crossref_primary_10_1108_IJSI_04_2024_0066 crossref_primary_10_1007_s00366_021_01464_x crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_1007_s11831_021_09694_4 crossref_primary_10_1111_exsy_12786 crossref_primary_10_3389_fgene_2024_1491602 crossref_primary_10_1016_j_eswa_2022_117993 crossref_primary_10_1007_s13042_024_02111_9 crossref_primary_10_1007_s00521_021_06406_8 crossref_primary_10_1016_j_cie_2020_106628 crossref_primary_10_3390_math11061362 crossref_primary_10_1007_s10489_021_02862_w crossref_primary_10_1093_jcde_qwad108 crossref_primary_10_1007_s00366_021_01342_6 crossref_primary_10_1038_s41598_025_93817_5 crossref_primary_10_3390_app13021087 crossref_primary_10_1049_cth2_12277 crossref_primary_10_1007_s10489_021_03118_3 crossref_primary_10_1080_02533839_2022_2101541 crossref_primary_10_1155_2020_6371085 crossref_primary_10_1088_1742_6596_1865_4_042091 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1109_ACCESS_2022_3211263 crossref_primary_10_1007_s13042_024_02107_5 crossref_primary_10_1007_s42835_021_00889_0 crossref_primary_10_1109_ACCESS_2019_2959325 crossref_primary_10_3390_en16155665 crossref_primary_10_4316_AECE_2022_02010 crossref_primary_10_1007_s00500_023_08449_6 crossref_primary_10_1016_j_envres_2020_110607 crossref_primary_10_1016_j_ins_2022_01_026 crossref_primary_10_1109_ACCESS_2021_3102095 crossref_primary_10_3390_computers10110136 crossref_primary_10_3390_pr11061827 crossref_primary_10_1007_s11042_023_15467_x crossref_primary_10_1016_j_engappai_2019_01_011 crossref_primary_10_32604_cmc_2024_058115 crossref_primary_10_3390_math10030464 crossref_primary_10_3390_su142416429 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_1007_s13198_024_02569_4 crossref_primary_10_1155_2022_3991870 crossref_primary_10_1007_s10489_022_03269_x crossref_primary_10_1007_s10489_022_03438_y crossref_primary_10_1109_ACCESS_2023_3313630 crossref_primary_10_1016_j_bbe_2022_09_001 crossref_primary_10_1016_j_asoc_2023_110838 crossref_primary_10_1016_j_irbm_2022_05_003 crossref_primary_10_1016_j_rico_2023_100225 crossref_primary_10_1109_TCBB_2022_3215129 crossref_primary_10_1109_ACCESS_2021_3061503 crossref_primary_10_18273_revuin_v21n2_2022011 crossref_primary_10_3390_e25020259 crossref_primary_10_1007_s11063_021_10607_6 crossref_primary_10_1016_j_eswa_2020_113897 crossref_primary_10_1111_exsy_12854 crossref_primary_10_1007_s12652_022_04444_1 crossref_primary_10_1007_s12652_020_01733_5 crossref_primary_10_1038_s41598_025_92187_2 crossref_primary_10_1016_j_eswa_2021_115895 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_1155_2024_4217192 crossref_primary_10_1007_s00530_022_01029_y crossref_primary_10_3390_math10152770 crossref_primary_10_1007_s00521_022_07852_8 crossref_primary_10_1007_s00500_022_06970_8 crossref_primary_10_1007_s12652_020_02786_2 crossref_primary_10_1109_ACCESS_2020_3033757 crossref_primary_10_1016_j_compag_2023_107767 crossref_primary_10_1080_10589759_2023_2249583 crossref_primary_10_1371_journal_pone_0295579 crossref_primary_10_3390_math9212786 crossref_primary_10_1016_j_knosys_2022_108833 crossref_primary_10_1016_j_heliyon_2024_e26799 crossref_primary_10_53600_ajesa_1321186 crossref_primary_10_3390_biomimetics9090572 crossref_primary_10_3390_s24247879 crossref_primary_10_3390_math9182321 crossref_primary_10_1016_j_knosys_2024_111578 crossref_primary_10_1007_s40430_023_04057_5 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_1007_s11042_023_17044_8 crossref_primary_10_1108_IJPCC_09_2020_0130 crossref_primary_10_1186_s12859_023_05502_x crossref_primary_10_1007_s12652_019_01247_9 crossref_primary_10_1016_j_eswa_2021_114788 crossref_primary_10_3390_data9020020 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1007_s11277_023_10654_3 crossref_primary_10_3389_fphy_2020_00224 crossref_primary_10_1007_s13369_021_05646_z crossref_primary_10_1016_j_compbiomed_2021_105015 crossref_primary_10_1007_s13042_024_02143_1 crossref_primary_10_1016_j_cmpb_2021_105949 crossref_primary_10_32604_cmc_2023_032287 crossref_primary_10_1016_j_advengsoft_2022_103283 crossref_primary_10_3390_math10193566 crossref_primary_10_1049_ipr2_12490 crossref_primary_10_3390_e23091189 crossref_primary_10_1007_s10462_024_10802_6 crossref_primary_10_1007_s10489_021_02831_3 crossref_primary_10_1080_08839514_2020_1861407 crossref_primary_10_1007_s00366_020_01233_2 crossref_primary_10_3390_sym13061092 crossref_primary_10_1007_s12652_021_03271_0 crossref_primary_10_1002_adts_202100246 crossref_primary_10_1016_j_swevo_2023_101430 crossref_primary_10_3934_mbe_2021129 crossref_primary_10_1111_coin_12499 crossref_primary_10_1007_s11063_020_10271_2 crossref_primary_10_1007_s00500_023_08565_3 crossref_primary_10_1007_s11831_024_10090_x crossref_primary_10_1007_s12652_020_01839_w crossref_primary_10_1007_s12633_022_01904_3 crossref_primary_10_1155_2022_4254932 crossref_primary_10_1007_s00521_022_07391_2 crossref_primary_10_32604_cmc_2023_031867 crossref_primary_10_1007_s12065_021_00579_w crossref_primary_10_1109_ACCESS_2020_2997783 crossref_primary_10_1109_ACCESS_2022_3153038 crossref_primary_10_1007_s11042_022_12001_3 crossref_primary_10_1016_j_eswa_2023_121128 crossref_primary_10_1371_journal_pone_0274850 crossref_primary_10_32604_iasc_2021_013643 crossref_primary_10_1007_s40747_021_00389_8 crossref_primary_10_32604_cmc_2022_020449 crossref_primary_10_1016_j_knosys_2021_107467 crossref_primary_10_1093_jcde_qwac095 crossref_primary_10_1007_s11227_021_03773_w crossref_primary_10_32604_cmc_2023_034005 crossref_primary_10_1007_s00366_021_01545_x crossref_primary_10_1109_ACCESS_2020_3007336 crossref_primary_10_1007_s12652_020_02109_5 crossref_primary_10_1007_s42235_021_00114_8 crossref_primary_10_1007_s00521_020_04789_8 crossref_primary_10_1016_j_aej_2022_09_036 crossref_primary_10_1007_s00477_021_02150_6 crossref_primary_10_1016_j_procs_2023_10_188 crossref_primary_10_1007_s00521_023_09120_9 crossref_primary_10_1016_j_asoc_2020_107052 crossref_primary_10_1007_s00500_022_07280_9 crossref_primary_10_1016_j_eswa_2021_114901 crossref_primary_10_1109_ACCESS_2021_3117853 crossref_primary_10_1007_s00521_022_06921_2 crossref_primary_10_1016_j_compeleceng_2022_107942 crossref_primary_10_1016_j_measurement_2023_113525 crossref_primary_10_1016_j_eswa_2020_113873 crossref_primary_10_3934_era_2024165 crossref_primary_10_3390_app13158960 crossref_primary_10_1002_ett_4606 crossref_primary_10_1016_j_health_2023_100170 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_1049_gtd2_12731 |
| Cites_doi | 10.1007/s12652-017-0452-1 10.1023/A:1011219601502 10.1093/bioinformatics/18.5.725 10.1016/j.advengsoft.2013.12.007 10.1007/978-3-319-70139-4_16 10.1021/ci9000103 10.1007/s12652-015-0333-4 10.1117/1.JATIS.4.3.038001 10.1016/j.asoc.2009.07.001 10.1007/s12652-015-0285-8 10.1007/978-3-540-36212-8_6 10.1016/j.ejor.2010.02.032 10.1007/s11042-018-5840-9 10.1016/j.knosys.2015.04.007 10.1016/j.eswa.2013.07.067 10.1023/A:1013685612819 10.1016/S1672-6529(11)60020-6 10.1098/rsif.2017.0298 10.1016/j.cmpb.2010.12.004 10.1007/978-3-319-70139-4_15 10.1023/A:1022602019183 10.1139/z90-111 10.1007/s10994-005-1505-9 10.1016/j.eswa.2018.06.023 10.1007/978-3-319-63754-9_2 10.1016/j.tree.2016.06.007 10.1016/j.cmpb.2013.10.007 10.1016/S0004-3702(03)00079-1 10.1016/j.patcog.2005.09.002 10.1089/cmb.2007.0211 10.21474/IJAR01/1544 10.7551/mitpress/4594.001.0001 10.1023/A:1012487302797 10.1007/s11265-008-0273-8 10.1016/S0031-3203(01)00046-2 10.1007/s10898-007-9149-x 10.1016/j.eswa.2013.09.023 10.1109/4235.850656 10.1016/j.patrec.2005.12.018 10.1098/rspb.1980.0153 10.1016/j.advengsoft.2017.07.002 10.1007/s12652-017-0637-7 10.1109/ICCCNT.2017.8203950 10.1109/ADCOM.2006.4289903 10.1007/11759966_204 10.1016/j.amc.2014.04.039 10.1007/s12652-017-0621-2 10.1109/IRI.2012.6303031 10.1109/ICENCO.2015.7416361 10.1007/s00521-017-3131-4 10.1109/MHS.1995.494215 10.1109/PowerAfrica.2017.7991209 10.1007/s12652-017-0655-5 10.1007/3-540-56602-3_138 10.1007/s12652-018-0895-z 10.1109/IJCNN.2007.4371101 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s12652-018-1031-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1868-5145 |
| EndPage | 3169 |
| ExternalDocumentID | 10_1007_s12652_018_1031_9 |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HCIFZ HG6 HMJXF HQYDN HRMNR I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P2P P9P PT4 QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 2VQ AARHV AAYXX AAYZH ABBRH ABDBE ABFSG ABRTQ ABULA ACSTC ADKFA AEBTG AEZWR AFDZB AFHIU AFLOW AFOHR AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA BSONS CITATION H13 HF~ HZ~ O9- PHGZM PHGZT PQGLB PUEGO S1Z 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-6dfddb59489b96f38d90fc07390ccdb677e58d23b4f0b51cafa12261fa9394d63 |
| IEDL.DBID | AGYKE |
| ISSN | 1868-5137 |
| IngestDate | Fri Jul 25 22:15:28 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Wed Oct 01 03:06:29 EDT 2025 Fri Feb 21 02:34:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Salp swarm algorithm Swarm techniques Feature selection Global optimization Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-6dfddb59489b96f38d90fc07390ccdb677e58d23b4f0b51cafa12261fa9394d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2919600553 |
| PQPubID | 2043913 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2919600553 crossref_citationtrail_10_1007_s12652_018_1031_9 crossref_primary_10_1007_s12652_018_1031_9 springer_journals_10_1007_s12652_018_1031_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190801 2019-8-00 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 8 year: 2019 text: 20190801 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of ambient intelligence and humanized computing |
| PublicationTitleAbbrev | J Ambient Intell Human Comput |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Neumann, Schnörr, Steidl (CR47) 2005; 61 Niknam, Amiri (CR48) 2010; 10 Chikh, Chikhi (CR7) 2017 Yeh, Yang, Lai (CR63) 2016; 2 Li, Wong (CR39) 2002; 18 Noman, Shamsuddin, Hassanien, Hassanien, Abraham, Vasilakos, Pedrycz (CR49) 2009 Zhang, Sun (CR64) 2002; 35 Yang, Slattery, Ghani (CR61) 2002; 18 CR35 Saravanan, Rajesh Babu (CR53) 2017 CR33 El Aziz, Ewees, Hassanien (CR14) 2018; 77 Han, Pei, Kamber (CR25) 2011 CR32 Al-Ayyoub, Jararweh, Rababah, Aldwairi (CR1) 2017; 8 Wang, Cen, Zhao, Zhang, Kan, Hu (CR58) 2018 Guyon, Elisseeff (CR22) 2003; 3 Prabukumar, Agilandeeswari, Ganesan (CR50) 2017 Sutherland, Weihs (CR54) 2017; 14 Yamuna, Thamaraichelvi (CR60) 2016; 4 Ewees, Elaziz, Houssein (CR19) 2018; 112 CR4 Zhong (CR65) 2001; 16 Moradi, Rostami (CR46) 2015; 84 El Aziz, Ewees, Hassanien, Mudhsh, Xiong, Hassanien, Oliva (CR15) 2018 Jensen, Goodarzi, Freitas (CR30) 2009; 49 CR45 El Aziz, Ewees, Hassanien, Bhattacharyya, Dutta, De, Klepac (CR12) 2016 Elaziz, Ewees, Oliva, Duan, Xiong, Liu, Xie, Li, Zhao, El-Alfy (CR16) 2017 Dash, Liu (CR10) 2003; 151 Chuang, Yang, Yang (CR8) 2009; 16 Arigbabu, Mahmood, Ahmad, Arigbabu (CR3) 2016; 7 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR44) 2017; 114 Karaboga, Basturk (CR31) 2007; 39 Ewees, El Aziz, Hassanien (CR18) 2017 Yao, Karmeshu (CR62) 2003 Kohane, Butte, Kho (CR34) 2002 Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (CR52) 2014; 41 Menghour, Souici-Meslati (CR42) 2016; 9 Unler, Murat (CR57) 2010; 206 Cuevas, Cienfuegos (CR9) 2014; 41 Li, Wang (CR38) 2015; 6 CR17 CR59 Gasca (CR20) 2006; 39 CR13 CR56 CR11 CR55 Henschke, Everett, Richardson, Suthers (CR26) 2016; 31 Goldberg, Holland (CR21) 1988; 3 Lai, Reinders, Wessels (CR37) 2006; 27 Inbarani, Azar, Jothi (CR29) 2014; 113 Anderson, Bone (CR2) 1980; 210 Chen, Yang, jing Wang, Wang, zhong Li, bin Liu (CR6) 2014; 239 Ibrahim, Oliva, Ewees, Lu, Liu, Xie, Li, Zhao, El-Alfy (CR27) 2017 Madin (CR41) 1990; 68 CR24 Kung, Luo, Mak (CR36) 2010; 61 Ibrahim, Elaziz, Ewees, Selim, Lu (CR28) 2018; 4 Mirjalili, Mirjalili, Lewis (CR43) 2014; 69 Raymer, Punch, Goodman, Kuhn, Jain (CR51) 2000; 4 Liu, Wang, Chen, Dong, Zhu, Wang (CR40) 2011; 8 Guyon, Weston, Barnhill, Vapnik (CR23) 2002; 46 Chang, Lin, Liu (CR5) 2012; 107 K Menghour (1031_CR42) 2016; 9 J Neumann (1031_CR47) 2005; 61 1031_CR4 LP Madin (1031_CR41) 1990; 68 HH Inbarani (1031_CR29) 2014; 113 IS Kohane (1031_CR34) 2002 DJN Zhong (1031_CR65) 2001; 16 X Li (1031_CR38) 2015; 6 Y Wang (1031_CR58) 2018 I Guyon (1031_CR22) 2003; 3 1031_CR24 S Mirjalili (1031_CR44) 2017; 114 N Henschke (1031_CR26) 2016; 31 KR Sutherland (1031_CR54) 2017; 14 PC Chang (1031_CR5) 2012; 107 G Yamuna (1031_CR60) 2016; 4 R Jensen (1031_CR30) 2009; 49 MEA Elaziz (1031_CR16) 2017 M Al-Ayyoub (1031_CR1) 2017; 8 SJARE Gasca (1031_CR20) 2006; 39 A Unler (1031_CR57) 2010; 206 1031_CR17 S Mirjalili (1031_CR43) 2014; 69 1031_CR59 1031_CR13 1031_CR56 1031_CR11 1031_CR55 R Chikh (1031_CR7) 2017 YY Yao (1031_CR62) 2003 Y Yang (1031_CR61) 2002; 18 AA Ewees (1031_CR19) 2018; 112 SY Kung (1031_CR36) 2010; 61 LH Chen (1031_CR6) 2014; 239 RA Ibrahim (1031_CR28) 2018; 4 MA Aziz El (1031_CR14) 2018; 77 T Niknam (1031_CR48) 2010; 10 M Dash (1031_CR10) 2003; 151 Y Liu (1031_CR40) 2011; 8 ML Raymer (1031_CR51) 2000; 4 RA Ibrahim (1031_CR27) 2017 RA Saravanan (1031_CR53) 2017 H Zhang (1031_CR64) 2002; 35 1031_CR45 P Moradi (1031_CR46) 2015; 84 J Han (1031_CR25) 2011 D Karaboga (1031_CR31) 2007; 39 J Li (1031_CR39) 2002; 18 C Lai (1031_CR37) 2006; 27 DE Goldberg (1031_CR21) 1988; 3 OA Arigbabu (1031_CR3) 2016; 7 M Prabukumar (1031_CR50) 2017 LY Chuang (1031_CR8) 2009; 16 I Guyon (1031_CR23) 2002; 46 1031_CR35 E Cuevas (1031_CR9) 2014; 41 AA Ewees (1031_CR18) 2017 1031_CR33 S Noman (1031_CR49) 2009 1031_CR32 PA Anderson (1031_CR2) 1980; 210 D Rodrigues (1031_CR52) 2014; 41 MA Aziz El (1031_CR15) 2018 MA Aziz El (1031_CR12) 2016 WC Yeh (1031_CR63) 2016; 2 |
| References_xml | – volume: 239 start-page: 180 year: 2014 end-page: 197 ident: CR6 article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy publication-title: Appl Math Comput – ident: CR45 – volume: 2 start-page: 263 issue: 3 year: 2016 end-page: 275 ident: CR63 article-title: A hybrid simplified swarm optimization method for imbalanced data feature selection publication-title: Aust Acad Bus Econ Rev – volume: 8 start-page: 383 issue: 3 year: 2017 end-page: 393 ident: CR1 article-title: Feature extraction and selection for arabic tweets authorship authentication publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-017-0452-1 – year: 2017 ident: CR7 article-title: Clustered negative selection algorithm and fruit fly optimization for email spam detection publication-title: J Ambient Intell Humaniz Comput – volume: 16 start-page: 199 year: 2001 end-page: 214 ident: CR65 article-title: Using rough sets with heuristics for feature selection publication-title: J Intell Inform Syst doi: 10.1023/A:1011219601502 – year: 2017 ident: CR53 article-title: Enhanced text mining approach based on ontology for clustering research project selection publication-title: J Ambient Intell Humaniz Comput – ident: CR4 – volume: 18 start-page: 725 year: 2002 end-page: 734 ident: CR39 article-title: Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.5.725 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR43 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: CR35 – start-page: 156 year: 2017 end-page: 166 ident: CR27 article-title: Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning publication-title: International conference on neural information processing doi: 10.1007/978-3-319-70139-4_16 – volume: 49 start-page: 824 year: 2009 end-page: 832 ident: CR30 article-title: Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities publication-title: J Chem Inf Model doi: 10.1021/ci9000103 – volume: 7 start-page: 415 issue: 3 year: 2016 end-page: 426 ident: CR3 article-title: Smile detection using hybrid face representation publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-015-0333-4 – volume: 4 start-page: 038001 issue: 3 year: 2018 ident: CR28 article-title: Galaxy images classification using hybrid brain storm optimization with moth flame optimization publication-title: J Astron Telesc Instrum Syst doi: 10.1117/1.JATIS.4.3.038001 – volume: 10 start-page: 183 issue: 1 year: 2010 end-page: 197 ident: CR48 article-title: An efficient hybrid approach based on pso, aco and k-means for cluster analysis publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.07.001 – volume: 6 start-page: 675 issue: 5 year: 2015 end-page: 688 ident: CR38 article-title: Optimal band selection for hyperspectral data with improved differential evolution publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-015-0285-8 – start-page: 115 year: 2003 end-page: 136 ident: CR62 article-title: Information-theoretic measures for knowledge discovery and data mining publication-title: Entropy measures, maximum entropy principle and emerging applications doi: 10.1007/978-3-540-36212-8_6 – volume: 206 start-page: 528 issue: 3 year: 2010 end-page: 539 ident: CR57 article-title: A discrete particle swarm optimization method for feature selection in binary classification problems publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.02.032 – volume: 77 start-page: 26135 year: 2018 end-page: 26172 ident: CR14 article-title: Multi-objective whale optimization algorithm for content-based image retrieval publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5840-9 – volume: 84 start-page: 144 year: 2015 end-page: 161 ident: CR46 article-title: Integration of graph clustering with ant colony optimization for feature selection publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.04.007 – volume: 41 start-page: 412 issue: 2 year: 2014 end-page: 425 ident: CR9 article-title: A new algorithm inspired in the behavior of the social-spider for constrained optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.07.067 – ident: CR11 – ident: CR32 – volume: 18 start-page: 219 issue: 2 year: 2002 end-page: 241 ident: CR61 article-title: A study of approaches to hypertext categorization publication-title: J Intell Inform Syst doi: 10.1023/A:1013685612819 – year: 2017 ident: CR50 article-title: An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier publication-title: J Ambient Intell Humaniz Comput – volume: 8 start-page: 191 issue: 2 year: 2011 end-page: 200 ident: CR40 article-title: An improved particle swarm optimization for feature selection publication-title: J Bionic Eng doi: 10.1016/S1672-6529(11)60020-6 – volume: 14 start-page: 20170,298 issue: 133 year: 2017 ident: CR54 article-title: Hydrodynamic advantages of swimming by salp chains publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0298 – start-page: 381 year: 2009 end-page: 397 ident: CR49 article-title: Hybrid learning enhancement of rbf network with particle swarm optimization publication-title: Foundations of computational, intelligence – volume: 107 start-page: 382 issue: 3 year: 2012 end-page: 392 ident: CR5 article-title: An attribute weight assignment and particle swarm optimization algorithm for medical database classifications publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2010.12.004 – start-page: 145 year: 2017 end-page: 155 ident: CR16 article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection publication-title: International conference on neural information processing doi: 10.1007/978-3-319-70139-4_15 – volume: 3 start-page: 95 issue: 2 year: 1988 end-page: 99 ident: CR21 article-title: Genetic algorithms and machine learning publication-title: Machine Learn doi: 10.1023/A:1022602019183 – year: 2018 ident: CR58 article-title: Compressed sensing based feature fusion for image retrieval publication-title: J Ambient Intell Humaniz Comput – volume: 68 start-page: 765 issue: 4 year: 1990 end-page: 777 ident: CR41 article-title: Aspects of jet propulsion in salps publication-title: Can J Zool doi: 10.1139/z90-111 – start-page: 1 year: 2016 end-page: 21 ident: CR12 article-title: Hybrid swarms optimization based image segmentation publication-title: Hybrid soft computing for image segmentation – ident: CR33 – year: 2011 ident: CR25 publication-title: Data mining: concepts and techniques – volume: 61 start-page: 129 issue: 1–3 year: 2005 end-page: 150 ident: CR47 article-title: Combined svm-based feature selection and classification publication-title: Mach Learn doi: 10.1007/s10994-005-1505-9 – volume: 112 start-page: 156 year: 2018 end-page: 172 ident: CR19 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.06.023 – ident: CR56 – start-page: 23 year: 2018 end-page: 39 ident: CR15 article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation publication-title: Advances in soft computing and machine learning in image processing doi: 10.1007/978-3-319-63754-9_2 – volume: 31 start-page: 720 issue: 9 year: 2016 end-page: 733 ident: CR26 article-title: Rethinking the role of salps in the ocean publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2016.06.007 – volume: 113 start-page: 175 issue: 1 year: 2014 end-page: 185 ident: CR29 article-title: Supervised hybrid feature selection based on pso and rough sets for medical diagnosis publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2013.10.007 – volume: 151 start-page: 155 issue: 1–2 year: 2003 end-page: 176 ident: CR10 article-title: Consistency-based search in feature selection publication-title: Artif Intell doi: 10.1016/S0004-3702(03)00079-1 – volume: 39 start-page: 313 issue: 2 year: 2006 end-page: 315 ident: CR20 article-title: Eliminating redundancy and irrelevance using a new mlp-based feature selection method publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.09.002 – volume: 16 start-page: 1689 issue: 12 year: 2009 end-page: 1703 ident: CR8 article-title: Tabu search and binary particle swarm optimization for feature selection using microarray data publication-title: J Comput Biol doi: 10.1089/cmb.2007.0211 – volume: 4 start-page: 744 issue: 9 year: 2016 end-page: 760 ident: CR60 article-title: Hybrid firefly swarm intelligence based feature selection for medical data classification and segmentation in svd–nsct domain publication-title: Int J Adv Res doi: 10.21474/IJAR01/1544 – year: 2002 ident: CR34 publication-title: Microarrays for an integrative genomics doi: 10.7551/mitpress/4594.001.0001 – volume: 46 start-page: 389 issue: 1–3 year: 2002 end-page: 422 ident: CR23 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 61 start-page: 3 issue: 1 year: 2010 end-page: 20 ident: CR36 article-title: Feature selection for genomic signal processing: unsupervised, supervised, and self-supervised scenarios publication-title: J Signal Process Syst doi: 10.1007/s11265-008-0273-8 – volume: 35 start-page: 701 issue: 3 year: 2002 end-page: 711 ident: CR64 article-title: Feature selection using tabu search method publication-title: Pattern Recognit doi: 10.1016/S0031-3203(01)00046-2 – ident: CR17 – volume: 39 start-page: 459 issue: 3 year: 2007 end-page: 471 ident: CR31 article-title: A powerful and efficient algorithm for numerical function optimization: artificial beecolony (abc) algorithm publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – year: 2017 ident: CR18 article-title: Chaotic multi-verse optimizer-based feature selection publication-title: Neural Comput Appl – ident: CR13 – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: CR22 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 41 start-page: 2250 issue: 5 year: 2014 end-page: 2258 ident: CR52 article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.023 – ident: CR55 – volume: 4 start-page: 164 issue: 2 year: 2000 end-page: 171 ident: CR51 article-title: Dimensionality reduction using genetic algorithms publication-title: IEEE transactions on evolutionary computation doi: 10.1109/4235.850656 – volume: 27 start-page: 1067 issue: 10 year: 2006 end-page: 1076 ident: CR37 article-title: Random subspace method for multivariate feature selection publication-title: Pattern recognition letters doi: 10.1016/j.patrec.2005.12.018 – ident: CR59 – volume: 9 start-page: 65 issue: 3 year: 2016 end-page: 79 ident: CR42 article-title: Hybrid aco-pso based approaches for feature selection publication-title: Int J Intell Eng Syst – ident: CR24 – volume: 210 start-page: 559 issue: 1181 year: 1980 end-page: 574 ident: CR2 article-title: Communication between individuals in salp chains II. Physiology publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1980.0153 – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR44 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 16 start-page: 199 year: 2001 ident: 1031_CR65 publication-title: J Intell Inform Syst doi: 10.1023/A:1011219601502 – ident: 1031_CR35 – volume: 35 start-page: 701 issue: 3 year: 2002 ident: 1031_CR64 publication-title: Pattern Recognit doi: 10.1016/S0031-3203(01)00046-2 – start-page: 1 volume-title: Hybrid soft computing for image segmentation year: 2016 ident: 1031_CR12 – start-page: 145 volume-title: International conference on neural information processing year: 2017 ident: 1031_CR16 doi: 10.1007/978-3-319-70139-4_15 – volume: 61 start-page: 129 issue: 1–3 year: 2005 ident: 1031_CR47 publication-title: Mach Learn doi: 10.1007/s10994-005-1505-9 – volume: 210 start-page: 559 issue: 1181 year: 1980 ident: 1031_CR2 publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1980.0153 – volume: 69 start-page: 46 year: 2014 ident: 1031_CR43 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 1031_CR23 publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 151 start-page: 155 issue: 1–2 year: 2003 ident: 1031_CR10 publication-title: Artif Intell doi: 10.1016/S0004-3702(03)00079-1 – year: 2017 ident: 1031_CR53 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-017-0637-7 – volume: 16 start-page: 1689 issue: 12 year: 2009 ident: 1031_CR8 publication-title: J Comput Biol doi: 10.1089/cmb.2007.0211 – ident: 1031_CR17 doi: 10.1109/ICCCNT.2017.8203950 – volume: 18 start-page: 725 year: 2002 ident: 1031_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.5.725 – volume: 39 start-page: 313 issue: 2 year: 2006 ident: 1031_CR20 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.09.002 – ident: 1031_CR32 doi: 10.1109/ADCOM.2006.4289903 – ident: 1031_CR59 doi: 10.1007/11759966_204 – volume: 6 start-page: 675 issue: 5 year: 2015 ident: 1031_CR38 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-015-0285-8 – volume: 18 start-page: 219 issue: 2 year: 2002 ident: 1031_CR61 publication-title: J Intell Inform Syst doi: 10.1023/A:1013685612819 – volume: 8 start-page: 383 issue: 3 year: 2017 ident: 1031_CR1 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-017-0452-1 – volume: 27 start-page: 1067 issue: 10 year: 2006 ident: 1031_CR37 publication-title: Pattern recognition letters doi: 10.1016/j.patrec.2005.12.018 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 1031_CR31 publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – start-page: 115 volume-title: Entropy measures, maximum entropy principle and emerging applications year: 2003 ident: 1031_CR62 doi: 10.1007/978-3-540-36212-8_6 – volume: 9 start-page: 65 issue: 3 year: 2016 ident: 1031_CR42 publication-title: Int J Intell Eng Syst – volume: 49 start-page: 824 year: 2009 ident: 1031_CR30 publication-title: J Chem Inf Model doi: 10.1021/ci9000103 – volume: 77 start-page: 26135 year: 2018 ident: 1031_CR14 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5840-9 – volume: 61 start-page: 3 issue: 1 year: 2010 ident: 1031_CR36 publication-title: J Signal Process Syst doi: 10.1007/s11265-008-0273-8 – volume: 107 start-page: 382 issue: 3 year: 2012 ident: 1031_CR5 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2010.12.004 – volume: 239 start-page: 180 year: 2014 ident: 1031_CR6 publication-title: Appl Math Comput doi: 10.1016/j.amc.2014.04.039 – year: 2017 ident: 1031_CR7 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-017-0621-2 – ident: 1031_CR33 – ident: 1031_CR4 doi: 10.1109/IRI.2012.6303031 – volume: 10 start-page: 183 issue: 1 year: 2010 ident: 1031_CR48 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.07.001 – volume: 2 start-page: 263 issue: 3 year: 2016 ident: 1031_CR63 publication-title: Aust Acad Bus Econ Rev – volume: 41 start-page: 412 issue: 2 year: 2014 ident: 1031_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.07.067 – ident: 1031_CR56 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 1031_CR21 publication-title: Machine Learn doi: 10.1023/A:1022602019183 – volume: 4 start-page: 164 issue: 2 year: 2000 ident: 1031_CR51 publication-title: IEEE transactions on evolutionary computation doi: 10.1109/4235.850656 – volume: 113 start-page: 175 issue: 1 year: 2014 ident: 1031_CR29 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2013.10.007 – volume: 84 start-page: 144 year: 2015 ident: 1031_CR46 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.04.007 – volume: 206 start-page: 528 issue: 3 year: 2010 ident: 1031_CR57 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.02.032 – volume: 4 start-page: 038001 issue: 3 year: 2018 ident: 1031_CR28 publication-title: J Astron Telesc Instrum Syst doi: 10.1117/1.JATIS.4.3.038001 – volume: 68 start-page: 765 issue: 4 year: 1990 ident: 1031_CR41 publication-title: Can J Zool doi: 10.1139/z90-111 – volume-title: Microarrays for an integrative genomics year: 2002 ident: 1031_CR34 doi: 10.7551/mitpress/4594.001.0001 – volume: 8 start-page: 191 issue: 2 year: 2011 ident: 1031_CR40 publication-title: J Bionic Eng doi: 10.1016/S1672-6529(11)60020-6 – ident: 1031_CR24 doi: 10.1109/ICENCO.2015.7416361 – start-page: 381 volume-title: Foundations of computational, intelligence year: 2009 ident: 1031_CR49 – year: 2017 ident: 1031_CR18 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3131-4 – start-page: 23 volume-title: Advances in soft computing and machine learning in image processing year: 2018 ident: 1031_CR15 doi: 10.1007/978-3-319-63754-9_2 – ident: 1031_CR11 doi: 10.1109/MHS.1995.494215 – volume: 7 start-page: 415 issue: 3 year: 2016 ident: 1031_CR3 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-015-0333-4 – ident: 1031_CR13 doi: 10.1109/PowerAfrica.2017.7991209 – volume: 14 start-page: 20170,298 issue: 133 year: 2017 ident: 1031_CR54 publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0298 – volume: 31 start-page: 720 issue: 9 year: 2016 ident: 1031_CR26 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2016.06.007 – year: 2017 ident: 1031_CR50 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-017-0655-5 – volume: 112 start-page: 156 year: 2018 ident: 1031_CR19 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.06.023 – volume: 4 start-page: 744 issue: 9 year: 2016 ident: 1031_CR60 publication-title: Int J Adv Res doi: 10.21474/IJAR01/1544 – start-page: 156 volume-title: International conference on neural information processing year: 2017 ident: 1031_CR27 doi: 10.1007/978-3-319-70139-4_16 – ident: 1031_CR45 doi: 10.1007/3-540-56602-3_138 – volume-title: Data mining: concepts and techniques year: 2011 ident: 1031_CR25 – year: 2018 ident: 1031_CR58 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-0895-z – ident: 1031_CR55 doi: 10.1109/IJCNN.2007.4371101 – volume: 3 start-page: 1157 year: 2003 ident: 1031_CR22 publication-title: J Mach Learn Res – volume: 114 start-page: 163 year: 2017 ident: 1031_CR44 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 41 start-page: 2250 issue: 5 year: 2014 ident: 1031_CR52 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.023 |
| SSID | ssj0000393111 |
| Score | 2.5775263 |
| Snippet | Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3155 |
| SubjectTerms | Algorithms Artificial Intelligence Classification Computational Intelligence Datasets Engineering Feature selection Foraging behavior Gene expression Genetic algorithms Heuristic Image retrieval Machine learning Methods Optimization techniques Original Research Particle swarm optimization Performance evaluation Robotics and Automation User Interfaces and Human Computer Interaction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ze_FFFBWnU_LgkxJsmyZtHkRUNobgEHGwt5Jf1YdtrdvEf99cl64ouNc2DfTuenfN3X0fQpfMpMpFmZRYGlMSG56S1MqQMCqklcIwqmFQ-HnEh-P4acImLTSqZ2GgrbL2iZWjNoWGM_KbSDhbAcQoeld-EmCNgupqTaEhPbWCua0gxnZQJwJkrDbqPPRHL6-bUxeYRA0rUl6AiScspEld6qzm6SLOoFMBEE9pSMTvYNVkoH-KplUsGuyjPZ9E4vu11g9Qy84P0WR9PmANXsppiZffcjHDcvruXmL1McMQrgwu5rj0xuJXFM5nzPwwJnYZLM5thfWJlxVDjrt6hMaD_tvjkHjeBKJpyFeEm9wYBTgsQgme09SIINdQkgu0NooniWWpiaiK80CxUMtchi4LC3MpqHDqoseoPS_m9gRhroSVqc61NO5HRYtUWCUDJmXEZMKF7qKgFlCmPag4cFtMswYOGWSaOZlmINNMdNHV5pFyjaixbXGvlnrmP65l1phCF13Xmmhu_7vZ6fbNztCuy4bEuruvh9qrxZc9dxnHSl14M_oBe_PTCA priority: 102 providerName: ProQuest |
| Title | Improved salp swarm algorithm based on particle swarm optimization for feature selection |
| URI | https://link.springer.com/article/10.1007/s12652-018-1031-9 https://www.proquest.com/docview/2919600553 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: AFBBN dateStart: 20100301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-5145 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: U2A dateStart: 20100301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8rI9AGObKJTKD3sCGSVx7dqPBVHQplXTRKXyFPkrA9EvNamQ-OuxE2cZCJB4iuRcrOTu4jv77n4H8J0arpyV4diSHsE9wzjmVsaYEiGtFIYS7QuFf43Y5bj3Y0InoY47r7Pd65BkuVI3xW4Joz6NwMORkhiLDdgs4bZasDm4uP7ZHK34ctO47LzrseAxjUm_jme-NM9Ti9S4mc8io6XBGW7DVf2qVZ7J3cm6UCf64RmK4zu_ZQe2ggOKBpXGfIYPdr4Ln_6DJfwCk-qkwRqUy-kS5fdyNUNy-nexui1uZsgbPoMWc7QMahcoFm71mYWyTuR8YZTZEjUU5WWvHTf6FcbD86uzSxw6MGBNYlZgZjJjlEd0EUqwjHAjokz74F6ktVGs37eUm4SoXhYpGmuZydj5c3EmBRFO8OQbtOaLud0DxJSwkutMS-O2PFpwYZWMqJQJlX0mdBuiWgqpDvDkvkvGNG2AlT3TUse01DMtFW04-vfIssLmeIu4U4s2Db9pnibCLUAehoy04biWVHP71cn230V9AB-dmyWqtMEOtIrV2h46V6ZQXdjgw4tuUGB3PT0f_f7jRsfJ4BGBse2_ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHOCCQIAoFPABLiCLJI7d-FAhVrUsFUIg9Ra8BQ7daIoQP8e3YacOFUhw6zWxLeV54hl7PO8B7FGdSOtlEmxITHCsWYITI0JMCRdGcE2JcoXCty3WeIyv2rQ9A59lLYy7VlmuicVCrfvKnZEfRdzaimOMIseDV-xUo1x2tZTQEF5aQdcLijFf2HFtPt7tFi6vN8_tfO9H0eXFw1kDe5UBrEjIRpjpTGvpWEu45CwjieZBplwCK1BKS1arGZroiMg4CyQNlchEaGOWMBOccPtxxI47C_Mxibnd_M2fXrTu7r9PeVzla1iIADtaekxDUitTq0X9XsSouxnhGFZJiPlP5ziJeH8laQvfd7kMSz5oRSdjK1uBGdNbhfb4PMJolIvOAOXvYthFovNsQRu9dJFzjxr1e2jgjdO36Ns1quuLP5GNmFFmCm5RlBeKPPbpGjxOBcF1mOv1e2YDEJPciERlSmi7MVI84UaKgAoRUVFjXFUgKAFKlScxd1oanXRCv-wwTS2mqcM05RU4-O4yGDN4_Ne4WqKe-p85TyemV4HDciYmr_8cbPP_wXZhofFwe5PeNFvXW7BoIzE-vllYhbnR8M1s22hnJHe8SSF4mrYVfwGkvhC3 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgAllN4tiNxwqoyqtioFK3yE8Y2iRqivj72Hk0gACJNbl4uLv4PvvuvgPgnKhI2CgTIY1DjEJFIxRp7iOCGdecKYKlaxR-HNHhOLybkEk15zSvq93rlGTZ0-BYmpJFN1Om2zS-BZS4kgJHTYp9xFbBWuh4EqxDj4P-8pLFNZ76xQxexwqPiI97dWbzp1W-xqYGcH7LkRahZ7ANtirMCPulkXfAik52weYnJsE9MCkvB7SCOZ9mMH_n8xnk05fUnv1fZ9DFKgXTBGaVp1QSqd0wZlUnJrTwFRpdEH3CvBiPY5_ug_Hg5vlqiKqhCUhiny4QVUYp4UhYmGDU4Egxz0iXj_OkVIL2eppEKsAiNJ4gvuSG-xaC-YYzzKyt8AFoJWmiDwGkgmkeSSO5sqcUySKmBfcI5wHhPcpkG3i1umJZMYq7wRbTuOFCdhqOrYZjp-GYtcHF8pOspNP4S7hT2yCu_qw8DpjdMxxzGG6Dy9ouzetfFzv6l_QZWH-6HsQPt6P7Y7BhQRIri_46oLWYv-kTC0QW4rRwtg8LO9Sz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+salp+swarm+algorithm+based+on+particle+swarm+optimization+for+feature+selection&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Ibrahim%2C+Rehab+Ali&rft.au=Ewees%2C+Ahmed+A.&rft.au=Oliva%2C+Diego&rft.au=Abd+Elaziz%2C+Mohamed&rft.date=2019-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=10&rft.issue=8&rft.spage=3155&rft.epage=3169&rft_id=info:doi/10.1007%2Fs12652-018-1031-9&rft.externalDocID=10_1007_s12652_018_1031_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon |