Prediction of bearing capacity of pile foundation using deep learning approaches
The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LS...
Saved in:
Published in | Frontiers of Structural and Civil Engineering Vol. 18; no. 6; pp. 870 - 886 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-2430 2095-2449 |
DOI | 10.1007/s11709-024-1085-z |
Cover
Abstract | The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) algorithms utilizing a data set of 257 dynamic pile load tests for the first time. Also, this research illustrates the multicollinearity effect on DNN, CNN, RNN, LSTM, and BiLSTM models’ performance and accuracy for the first time. A comprehensive comparative analysis is conducted, employing various statistical performance parameters, rank analysis, and error matrix to evaluate the performance of these models. The performance is further validated using external validation, and visual interpretation is provided using the regression error characteristics (REC) curve and Taylor diagram. Results from the comparative analysis reveal that the DNN (Coefficient of determination (
R
2
)
training (TR)
= 0.97, root mean squared error (
RMSE
)
TR
= 0.0413;
R
testing (TS)
2
= 0.9,
RMSE
TS
= 0.08) followed by BiLSTM (
R
TR
2
= 0.91,
RMSE
TR
= 0.782;
R
TS
2
= 0.89,
RMSE
TS
= 0.0862) model demonstrates the highest performance accuracy. It is noted that the BiLSTM model is better than LSTM because the BiLSTM model, which increases the amount of information for the network, is a sequence processing model made up of two LSTMs, one of which takes the input in a forward manner, and the other in a backward direction. The prediction of pile-bearing capacity is strongly influenced by ram weight (having a considerable multicollinearity level), and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach. In this study, the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity. |
---|---|
AbstractList | The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) algorithms utilizing a data set of 257 dynamic pile load tests for the first time. Also, this research illustrates the multicollinearity effect on DNN, CNN, RNN, LSTM, and BiLSTM models’ performance and accuracy for the first time. A comprehensive comparative analysis is conducted, employing various statistical performance parameters, rank analysis, and error matrix to evaluate the performance of these models. The performance is further validated using external validation, and visual interpretation is provided using the regression error characteristics (REC) curve and Taylor diagram. Results from the comparative analysis reveal that the DNN (Coefficient of determination (
R
2
)
training (TR)
= 0.97, root mean squared error (
RMSE
)
TR
= 0.0413;
R
testing (TS)
2
= 0.9,
RMSE
TS
= 0.08) followed by BiLSTM (
R
TR
2
= 0.91,
RMSE
TR
= 0.782;
R
TS
2
= 0.89,
RMSE
TS
= 0.0862) model demonstrates the highest performance accuracy. It is noted that the BiLSTM model is better than LSTM because the BiLSTM model, which increases the amount of information for the network, is a sequence processing model made up of two LSTMs, one of which takes the input in a forward manner, and the other in a backward direction. The prediction of pile-bearing capacity is strongly influenced by ram weight (having a considerable multicollinearity level), and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach. In this study, the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity. The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) algorithms utilizing a data set of 257 dynamic pile load tests for the first time. Also, this research illustrates the multicollinearity effect on DNN, CNN, RNN, LSTM, and BiLSTM models’ performance and accuracy for the first time. A comprehensive comparative analysis is conducted, employing various statistical performance parameters, rank analysis, and error matrix to evaluate the performance of these models. The performance is further validated using external validation, and visual interpretation is provided using the regression error characteristics (REC) curve and Taylor diagram. Results from the comparative analysis reveal that the DNN (Coefficient of determination (R2)training (TR) = 0.97, root mean squared error (RMSE)TR = 0.0413; Rtesting (TS)2 = 0.9, RMSETS = 0.08) followed by BiLSTM (RTR2 = 0.91, RMSETR = 0.782; RTS2 = 0.89, RMSETS = 0.0862) model demonstrates the highest performance accuracy. It is noted that the BiLSTM model is better than LSTM because the BiLSTM model, which increases the amount of information for the network, is a sequence processing model made up of two LSTMs, one of which takes the input in a forward manner, and the other in a backward direction. The prediction of pile-bearing capacity is strongly influenced by ram weight (having a considerable multicollinearity level), and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach. In this study, the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity. |
Author | Grover, Kamaldeep Singh Kumar, Divesh Ranjan Khatti, Jitendra Samui, Pijush Kumar, Manish |
Author_xml | – sequence: 1 givenname: Manish surname: Kumar fullname: Kumar, Manish organization: Department of Civil Engineering, SRM Institute of Science and Technology Tiruchirappalli Campus – sequence: 2 givenname: Divesh Ranjan surname: Kumar fullname: Kumar, Divesh Ranjan organization: Department of Civil Engineering, National Institute of Technology Patna, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University – sequence: 3 givenname: Jitendra surname: Khatti fullname: Khatti, Jitendra email: jitendrakhatti197@gmail.com organization: Department of Civil Engineering, Rajasthan Technical University – sequence: 4 givenname: Pijush surname: Samui fullname: Samui, Pijush organization: Department of Civil Engineering, National Institute of Technology Patna – sequence: 5 givenname: Kamaldeep Singh surname: Grover fullname: Grover, Kamaldeep Singh organization: Department of Civil Engineering, Rajasthan Technical University |
BookMark | eNp9kE1LxDAQhoOs4LruD_BW8FydfLRpj7KoKyy4Bz2HaZJql9rWpD3s_nrTrSgIekoyPG9m5jkns6ZtLCGXFK4pgLzxlErIY2AippAl8eGEzBnkScyEyGffdw5nZOn9DgAoSA4Zn5Pt1llT6b5qm6gto8Kiq5rXSGOHuur3Y62rahuV7dAYPGKDHwljbRfVAW_GF3ada1G_WX9BTkusvV1-nQvycn_3vFrHm6eHx9XtJtacpn2cohDCsqJIec4QkBU8oxnVgFYbRJOKEqTWWSE5Z2CAGsMCTvPccG5Yzhfkavo3NP4YrO_Vrh1cE1oqDlLILEmTNFByorRrvXe2VGGr4xq9w6pWFNRoUE0GVTCoRoPqEJL0V7Jz1Tu6_b8ZNmV8N1q07memv0OfBz2F7w |
CitedBy_id | crossref_primary_10_1007_s40515_025_00532_9 crossref_primary_10_1038_s41598_024_84632_5 crossref_primary_10_1007_s42107_024_01205_7 crossref_primary_10_1038_s41598_024_83784_8 crossref_primary_10_1016_j_measurement_2024_116477 crossref_primary_10_1007_s41939_025_00808_0 crossref_primary_10_1007_s12517_025_12199_0 crossref_primary_10_3390_buildings14103078 crossref_primary_10_1007_s12652_024_04878_9 crossref_primary_10_1007_s40808_024_02279_7 crossref_primary_10_1007_s41024_024_00531_2 crossref_primary_10_1038_s41598_025_90648_2 crossref_primary_10_1007_s12145_024_01482_5 crossref_primary_10_1007_s12145_024_01571_5 crossref_primary_10_1007_s41939_024_00590_5 crossref_primary_10_1080_10589759_2024_2426703 crossref_primary_10_1007_s12665_025_12116_4 crossref_primary_10_1007_s13369_024_09793_x |
Cites_doi | 10.1016/j.sandf.2014.04.015 10.1111/0885-9507.00154 10.1016/j.tws.2022.110267 10.1016/j.sandf.2022.101163 10.1007/s00366-021-01586-2 10.1016/j.undsp.2020.01.003 10.1088/1757-899X/930/1/012036 10.1016/j.gsf.2014.10.002 10.1016/j.sandf.2015.10.001 10.1061/(ASCE)CF.1943-5509.0000624 10.1007/s40808-022-01637-7 10.1016/j.cma.2019.112790 10.1007/s00466-023-02287-x 10.1061/(ASCE)1090-0241(1998)124:9(846) 10.3390/app112210908 10.1007/s10462-021-09967-1 10.1016/j.jrmge.2022.12.034 10.1007/978-94-017-2473-9_29 10.1016/S0895-4356(96)00002-9 10.3390/app13116624 10.1016/j.oceaneng.2022.113398 10.15446/esrj.v19n1.38712 10.1016/j.cma.2021.113858 10.1061/41096(366)302 10.1016/j.measurement.2020.108362 10.1061/(ASCE)GM.1943-5622.0002245 10.1109/ACCESS.2022.3224184 10.1016/j.proeng.2015.07.101 10.1139/T09-094 10.1016/j.camwa.2023.05.014 10.1515/sgem-2017-0026 10.1016/j.asoc.2022.109623 10.1016/j.enggeo.2021.106103 10.1061/(ASCE)0733-9410(1985)111:3(367) 10.1016/j.engfailanal.2021.105866 10.1007/s13369-020-04683-4 10.1016/j.euromechsol.2021.104225 10.1007/s10462-021-10065-5 10.1061/(ASCE)1090-0241(1998)124:12(1177) 10.1080/17499518.2019.1628281 10.1007/s42107-019-00171-9 10.1016/S1093-3263(01)00123-1 10.1556/Pollack.8.2013.2.14 10.1007/s10706-023-02643-x 10.1016/j.tust.2021.104039 10.1061/(ASCE)GM.1943-5622.0002058 10.1016/j.measurement.2014.08.007 10.4186/ej.2020.24.2.41 10.3390/geosciences10070261 |
ContentType | Journal Article |
Copyright | Higher Education Press 2024 Higher Education Press 2024. |
Copyright_xml | – notice: Higher Education Press 2024 – notice: Higher Education Press 2024. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11709-024-1085-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-2449 |
EndPage | 886 |
ExternalDocumentID | 10_1007_s11709_024_1085_z |
GroupedDBID | -5B -5G -BR -EM -~C .VR 06D 0R~ 0VY 1-T 29~ 2J2 2JN 2JY 2KG 2KM 2LR 30V 3V. 4.4 406 408 40E 5VS 7WY 7X2 88I 8FE 8FG 8FH 8FL 8G5 95- 95. 96X AAAVM AABHQ AACDK AAHTB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABNWP ABPEJ ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ATCPS AVQMV AXYYD AZQEC B-. BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ CCPQU CHBEP CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HF~ HMJXF HRMNR HZ~ IKXTQ ITM IWAJR I~Z J-C JBSCW JZLTJ K50 K60 K6~ KOV L6V LLZTM M0C M0K M1D M2O M2P M4Y M7S MA- NPVJJ NQJWS NU0 O9- O9J P4S PADUT PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X R89 ROL RSV S16 SAP SCL SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 YLTOR Z7Y Z7Z ZMTXR ~IF -SC -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEC CITATION PHGZM PHGZT PMKZF Q-- U1G U5M ABRTQ |
ID | FETCH-LOGICAL-c316t-6a444e2bb6392a0a2b38181c0aecdaad64f07cc8b73320d01dd2e2b199d33d293 |
IEDL.DBID | AGYKE |
ISSN | 2095-2430 |
IngestDate | Thu Sep 18 00:04:47 EDT 2025 Tue Jul 01 00:58:40 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Fri Feb 21 02:40:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | high-strain dynamic pile test bearing capacity of the pile deep learning algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-6a444e2bb6392a0a2b38181c0aecdaad64f07cc8b73320d01dd2e2b199d33d293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3074785656 |
PQPubID | 105416 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3074785656 crossref_citationtrail_10_1007_s11709_024_1085_z crossref_primary_10_1007_s11709_024_1085_z springer_journals_10_1007_s11709_024_1085_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Shanghai |
PublicationTitle | Frontiers of Structural and Civil Engineering |
PublicationTitleAbbrev | Front. Struct. Civ. Eng |
PublicationYear | 2024 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Dang, Nguyen-Xuan, Wahab (CR16) 2023; 268 He, Lai, Li, Wang, Wang, Zhang (CR9) 2022; 120 CR32 Loganathan, Poulos (CR11) 1998; 124 Wang, Wang, Zhou, Liu, Dai, Du, Wahab (CR17) 2021; 169 Tu (CR25) 1996; 49 Shahin (CR37) 2016; 7 Momeni, Nazir, Armaghani, Maizir (CR49) 2015; 19 Kumar, Kumar, Rajagopal, Samui, Burman (CR45) 2023; 9 Tao, Sun, Cai (CR41) 2022; 22 Kiefa (CR51) 1998; 124 Al-Atroush, Hefny, Zaghloul, Sorour (CR12) 2020; 10 Park, Rilett (CR14) 1999; 14 Shahin (CR36) 2014; 54 CR6 Bak (CR8) 2013; 8 Shahin (CR50) 2010; 47 Heidarie Golafzani, Jamshidi Chenari, Eslami (CR2) 2020; 14 Cheng, Zhang, Liu, Wu (CR35) 2023; 13 Józefiak, Zbiciak, Maślakowski, Piotrowski (CR10) 2015; 111 Tran, Nguyen, Nguyen-Xuan, Wahab (CR15) 2023; 182 Khatti, Grover (CR53) 2023; 6 Pham, Nguyen, Duong (CR27) 2022 Momeni, Nazir, Armaghani, Maizir (CR22) 2014; 57 Gao, Wang, Lin, Guo, Liu, Zhang (CR39) 2021; 6 Ho, Trinh, De Roeck, Bui-Tien, Nguyen-Ngoc, Wahab (CR18) 2022; 131 Momeni, Dowlatshahi, Omidinasab, Maizir, Armaghani (CR48) 2020; 45 Biswas, Rai, Samui, Roy (CR24) 2020; 24 Kumar, Samui (CR57) 2022 Uncuoglu, Citakoglu, Latifoglu, Bayram, Laman, Ilkentapar, Oner (CR40) 2022; 129 Khatti, Grover (CR52) 2023; 15 CR55 CR54 Taherkhani, Mei, Han (CR34) 2023 Huynh, Nguyen, Nguyen, Nguyen, Nguyen (CR3) 2022; 62 Chen, Wu, Jia, Wang (CR43) 2022; 10 Whittle (CR7) 1993 Kordnaeij, Kalantary, Kordtabar, Mola-Abasi (CR21) 2015; 55 Krasiński, Wiszniewski (CR5) 2017; 39 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (CR19) 2020; 362 Kumar, Biswas, Kumar, Pradeep, Samui (CR46) 2022; 31 Wang, Zhang, Luo, He, Cheung (CR44) 2021; 288 Zhuang, Guo, Alajlan, Zhu, Rabczuk (CR33) 2021; 87 CR29 Guo, Zhuang, Chen, Alajlan, Rabczuk (CR31) 2022; 38 Guo, Zhuang, Alajlan, Rabczuk (CR30) 2023; 143 CR20 Benbouras, Petrişor, Zedira, Ghelani, Lefilef (CR26) 2021; 11 Chaallal, Arockiasamy, Godat (CR13) 2015; 29 Biswas, Samui, Rai (CR23) 2019; 20 Zhang, Yin (CR28) 2021; 382 Zhang, Li, Li, Liu, Chen, Ding (CR38) 2021; 54 Zhang, Yang, Yin (CR42) 2021; 21 Zein, Ayoub (CR4) 2016; 10 Golbraikh, Tropsha (CR56) 2002; 20 Rausche, Goble, Likins (CR1) 1985; 111 Armaghani, Harandizadeh, Momeni, Maizir, Zhou (CR47) 2022; 55 1085_CR29 A Golbraikh (1085_CR56) 2002; 20 1085_CR20 E Momeni (1085_CR22) 2014; 57 R Biswas (1085_CR23) 2019; 20 V H Huynh (1085_CR3) 2022; 62 M E Al-Atroush (1085_CR12) 2020; 10 O Chaallal (1085_CR13) 2015; 29 A Krasiński (1085_CR5) 2017; 39 E Momeni (1085_CR48) 2020; 45 S He (1085_CR9) 2022; 120 L V Ho (1085_CR18) 2022; 131 E Momeni (1085_CR49) 2015; 19 A K M Zein (1085_CR4) 2016; 10 M Kumar (1085_CR57) 2022 M Kumar (1085_CR46) 2022; 31 A H Taherkhani (1085_CR34) 2023 M A Shahin (1085_CR37) 2016; 7 1085_CR54 1085_CR55 1085_CR6 H Guo (1085_CR30) 2023; 143 W Zhang (1085_CR38) 2021; 54 P Zhang (1085_CR42) 2021; 21 M Kumar (1085_CR45) 2023; 9 V T Tran (1085_CR15) 2023; 182 M A Kiefa (1085_CR51) 1998; 124 M A Shahin (1085_CR36) 2014; 54 E Bak (1085_CR8) 2013; 8 E Samaniego (1085_CR19) 2020; 362 E Uncuoglu (1085_CR40) 2022; 129 K Józefiak (1085_CR10) 2015; 111 A J Whittle (1085_CR7) 1993 P Zhang (1085_CR28) 2021; 382 D Park (1085_CR14) 1999; 14 H Cheng (1085_CR35) 2023; 13 F Rausche (1085_CR1) 1985; 111 J Khatti (1085_CR52) 2023; 15 B Gao (1085_CR39) 2021; 6 J V Tu (1085_CR25) 1996; 49 M A Shahin (1085_CR50) 2010; 47 S Wang (1085_CR17) 2021; 169 B L Dang (1085_CR16) 2023; 268 M A Benbouras (1085_CR26) 2021; 11 H Guo (1085_CR31) 2022; 38 1085_CR32 S Heidarie Golafzani (1085_CR2) 2020; 14 Y Tao (1085_CR41) 2022; 22 J Khatti (1085_CR53) 2023; 6 H Wang (1085_CR44) 2021; 288 D J Armaghani (1085_CR47) 2022; 55 N Loganathan (1085_CR11) 1998; 124 C Chen (1085_CR43) 2022; 10 T A Pham (1085_CR27) 2022 X Zhuang (1085_CR33) 2021; 87 A Kordnaeij (1085_CR21) 2015; 55 R Biswas (1085_CR24) 2020; 24 |
References_xml | – volume: 29 start-page: 04014124 issue: 5 year: 2015 ident: CR13 article-title: Field test performance of buried flexible pipes under live truck loads publication-title: Journal of Performance of Constructed Facilities – volume: 124 start-page: 846 issue: 9 year: 1998 end-page: 856 ident: CR11 article-title: Analytical prediction for tunneling-induced ground movements in clays publication-title: Journal of Geotechnical and Geoenvironmental Engineering – volume: 38 start-page: 5173 issue: 6 year: 2022 end-page: 5198 ident: CR31 article-title: Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media publication-title: Engineering with Computers – volume: 45 start-page: 8255 issue: 10 year: 2020 end-page: 8267 ident: CR48 article-title: Gaussian process regression technique to estimate the pile bearing capacity publication-title: Arabian Journal for Science and Engineering – volume: 143 start-page: 303 year: 2023 end-page: 317 ident: CR30 article-title: Physics-informed deep learning for melting heat transfer analysis with model-based transfer learning publication-title: Computers & Mathematics with Applications – volume: 19 start-page: 85 issue: 1 year: 2015 end-page: 93 ident: CR49 article-title: Application of artificial neural network for predicting shaft and tip resistances of concrete piles publication-title: Earth Sciences Research Journal – volume: 10 start-page: 261 issue: 7 year: 2020 end-page: 281 ident: CR12 article-title: Behavior of a large diameter bored pile in drained and undrained conditions: comparative analysis publication-title: Geosciences – volume: 131 start-page: 105866 year: 2022 ident: CR18 article-title: An efficient stochastic-based coupled model for damage identification in plate structures publication-title: Engineering Failure Analysis – volume: 182 start-page: 110267 year: 2023 ident: CR15 article-title: Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm publication-title: Thin-walled Structures – ident: CR29 – volume: 13 start-page: 6624 issue: 11 year: 2023 ident: CR35 article-title: Prediction of undrained bearing capacity of skirted foundation in spatially variable soils based on convolutional neural network publication-title: Applied Sciences – ident: CR54 – volume: 111 start-page: 367 issue: 3 year: 1985 end-page: 383 ident: CR1 article-title: Dynamic determination of pile capacity publication-title: Journal of Geotechnical Engineering – volume: 55 start-page: 1335 issue: 6 year: 2015 end-page: 1345 ident: CR21 article-title: Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties publication-title: Soil and Foundation – volume: 39 start-page: 17 issue: 3 year: 2017 end-page: 25 ident: CR5 article-title: Static load test on instrumented pile–field data and numerical simulations publication-title: Studia Geotechnica et Mechanica – volume: 15 start-page: 3010 issue: 11 year: 2023 end-page: 3038 ident: CR52 article-title: Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models publication-title: Journal of Rock Mechanics and Geotechnical Engineering – volume: 20 start-page: 1109 issue: 8 year: 2019 end-page: 1118 ident: CR23 article-title: Determination of compressive strength using relevance vector machine and emotional neural network publication-title: Asian Journal of Civil Engineering – volume: 87 start-page: 104225 year: 2021 ident: CR33 article-title: Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning publication-title: European Journal of Mechanics A/Solids – start-page: 607 year: 1993 end-page: 643 ident: CR7 article-title: Assessment of an effective stress analysis for predicting the performance of driven piles in clays publication-title: SUT Offshore Site Investigation and Foundation Behaviour New Frontiers: Proceedings of an International Conference – volume: 7 start-page: 33 issue: 1 year: 2016 end-page: 44 ident: CR37 article-title: State-of-the-art review of some artificial intelligence applications in pile foundations publication-title: Geoscience Frontiers – volume: 62 start-page: 101163 issue: 4 year: 2022 ident: CR3 article-title: A novel direct SPT method to accurately estimate ultimate axial bearing capacity of bored PHC nodular piles with 81 case studies in Vietnam publication-title: Soil and Foundation – volume: 20 start-page: 269 issue: 4 year: 2002 end-page: 276 ident: CR56 article-title: Beware of q2 publication-title: Journal of Molecular Graphics & Modelling – volume: 120 start-page: 104039 year: 2022 ident: CR9 article-title: Pile group response induced by adjacent shield tunnelling in clay: Scale model test and numerical simulation publication-title: Tunnelling and Underground Space Technology – start-page: 220 year: 2023 end-page: 227 ident: CR34 article-title: A deep learning model to predict the lateral capacity of monopiles publication-title: Proceeding of Geo-Congress – volume: 129 start-page: 109623 year: 2022 ident: CR40 article-title: Comparison of neural network, Gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 Trees methods for solving civil engineering problems publication-title: Applied Soft Computing – ident: CR32 – volume: 268 start-page: 113398 year: 2023 ident: CR16 article-title: An effective approach for VARANS-VOF modelling interactions of wave and perforated breakwater using gradient boosting decision tree algorithm publication-title: Ocean Engineering – volume: 22 start-page: 04021250 issue: 1 year: 2022 ident: CR41 article-title: Predictions of deep excavation responses considering model uncertainty: Integrating BiLSTM neural networks with Bayesian updating publication-title: International Journal of Geomechanics – volume: 14 start-page: 216 issue: 3 year: 2020 end-page: 230 ident: CR2 article-title: Reliability based assessment of axial pile bearing capacity: static analysis, SPT and CPT-based methods publication-title: Georisk. Assessment and Management of Risk for Engineered Systems and Geohazards – volume: 10 start-page: 1636 issue: 19 year: 2016 end-page: 1643 ident: CR4 article-title: Evaluation of measured and interpreted failure loads of bored piles in alluvial soil deposits publication-title: GEOMATE Journal – volume: 382 start-page: 113858 year: 2021 ident: CR28 article-title: A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 14 start-page: 357 issue: 5 year: 1999 end-page: 367 ident: CR14 article-title: Forecasting freeway link travel times with a multilayer feedforward neural network publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 111 start-page: 356 year: 2015 end-page: 363 ident: CR10 article-title: Numerical modelling and bearing capacity analysis of pile foundation publication-title: Procedia Engineering – ident: CR6 – volume: 11 start-page: 10908 issue: 22 year: 2021 ident: CR26 article-title: Forecasting the bearing capacity of the driven piles using advanced machine-learning techniques publication-title: Applied Sciences – volume: 54 start-page: 1 issue: 8 year: 2021 end-page: 41 ident: CR38 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Artificial Intelligence Review – volume: 21 start-page: 04021096 issue: 7 year: 2021 ident: CR42 article-title: BiLSTM-based soil–structure interface modeling publication-title: International Journal of Geomechanics – volume: 57 start-page: 122 year: 2014 end-page: 131 ident: CR22 article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN publication-title: Measurement – volume: 24 start-page: 41 issue: 2 year: 2020 end-page: 52 ident: CR24 article-title: Estimating concrete compressive strength using MARS, LSSVM and GP publication-title: Engineering Journal – start-page: 1151 year: 2022 end-page: 1159 ident: CR57 article-title: Reliability analysis of pile foundation using GMDH, GP and MARS publication-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures – volume: 47 start-page: 230 issue: 2 year: 2010 end-page: 243 ident: CR50 article-title: Intelligent computing for modeling axial capacity of pile foundations publication-title: Canadian Geotechnical Journal – volume: 288 start-page: 106103 year: 2021 ident: CR44 article-title: AI-powered landslide susceptibility assessment in Hong Kong publication-title: Engineering Geology – volume: 49 start-page: 1225 issue: 11 year: 1996 end-page: 1231 ident: CR25 article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes publication-title: Journal of Clinical Epidemiology – start-page: 1815 year: 2022 end-page: 1823 ident: CR27 article-title: Development of deep learning neural network for estimating pile bearing capacity publication-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures – volume: 362 start-page: 112790 year: 2020 ident: CR19 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 55 start-page: 1 issue: 3 year: 2022 end-page: 38 ident: CR47 article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity publication-title: Artificial Intelligence Review – volume: 10 start-page: 123858 year: 2022 end-page: 123873 ident: CR43 article-title: A Novel Hybrid Deep Neural Network Prediction Model for Shield Tunneling Machine Thrust publication-title: IEEE Access: Practical Innovations, Open Solutions – volume: 9 start-page: 2533 issue: 2 year: 2023 end-page: 2551 ident: CR45 article-title: State of art soft computing-based simulation models for bearing capacity of pile foundation: a comparative study of hybrid ANNs and conventional models publication-title: Modeling Earth Systems and Environment – volume: 8 start-page: 131 issue: 2 year: 2013 end-page: 140 ident: CR8 article-title: Numerical modeling of pile load tests publication-title: Pollack Periodica – volume: 6 start-page: 718 issue: 6 year: 2021 end-page: 731 ident: CR39 article-title: TBM penetration rate prediction based on the long short-term memory neural network publication-title: Underground Space – volume: 124 start-page: 1177 issue: 12 year: 1998 end-page: 1185 ident: CR51 article-title: General regression neural networks for driven piles in cohesionless soils publication-title: Journal of Geotechnical and Geoenvironmental Engineering – volume: 54 start-page: 515 issue: 3 year: 2014 end-page: 522 ident: CR36 article-title: Load–settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks publication-title: Soil and Foundation – ident: CR55 – volume: 6 start-page: 199 issue: 2 year: 2023 end-page: 222 ident: CR53 article-title: Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, gaussian process regression, and gene expression programming. Multiscale and Multidisciplinary Modeling publication-title: Experiments and Design – ident: CR20 – volume: 169 start-page: 108362 year: 2021 ident: CR17 article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching publication-title: Measurement – volume: 31 start-page: 129 issue: 2 year: 2022 end-page: 147 ident: CR46 article-title: Metaheuristic models for the prediction of bearing capacity of pile foundation publication-title: Geomechanics and Engineering – ident: 1085_CR32 – volume: 54 start-page: 515 issue: 3 year: 2014 ident: 1085_CR36 publication-title: Soil and Foundation doi: 10.1016/j.sandf.2014.04.015 – volume: 14 start-page: 357 issue: 5 year: 1999 ident: 1085_CR14 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/0885-9507.00154 – volume: 182 start-page: 110267 year: 2023 ident: 1085_CR15 publication-title: Thin-walled Structures doi: 10.1016/j.tws.2022.110267 – ident: 1085_CR55 – volume: 62 start-page: 101163 issue: 4 year: 2022 ident: 1085_CR3 publication-title: Soil and Foundation doi: 10.1016/j.sandf.2022.101163 – volume: 38 start-page: 5173 issue: 6 year: 2022 ident: 1085_CR31 publication-title: Engineering with Computers doi: 10.1007/s00366-021-01586-2 – volume: 6 start-page: 718 issue: 6 year: 2021 ident: 1085_CR39 publication-title: Underground Space doi: 10.1016/j.undsp.2020.01.003 – ident: 1085_CR6 doi: 10.1088/1757-899X/930/1/012036 – volume: 10 start-page: 1636 issue: 19 year: 2016 ident: 1085_CR4 publication-title: GEOMATE Journal – volume: 7 start-page: 33 issue: 1 year: 2016 ident: 1085_CR37 publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2014.10.002 – volume: 31 start-page: 129 issue: 2 year: 2022 ident: 1085_CR46 publication-title: Geomechanics and Engineering – volume: 55 start-page: 1335 issue: 6 year: 2015 ident: 1085_CR21 publication-title: Soil and Foundation doi: 10.1016/j.sandf.2015.10.001 – volume: 29 start-page: 04014124 issue: 5 year: 2015 ident: 1085_CR13 publication-title: Journal of Performance of Constructed Facilities doi: 10.1061/(ASCE)CF.1943-5509.0000624 – volume: 9 start-page: 2533 issue: 2 year: 2023 ident: 1085_CR45 publication-title: Modeling Earth Systems and Environment doi: 10.1007/s40808-022-01637-7 – volume: 362 start-page: 112790 year: 2020 ident: 1085_CR19 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112790 – ident: 1085_CR29 doi: 10.1007/s00466-023-02287-x – start-page: 220 volume-title: Proceeding of Geo-Congress year: 2023 ident: 1085_CR34 – volume: 124 start-page: 846 issue: 9 year: 1998 ident: 1085_CR11 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)1090-0241(1998)124:9(846) – start-page: 1151 volume-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures year: 2022 ident: 1085_CR57 – volume: 11 start-page: 10908 issue: 22 year: 2021 ident: 1085_CR26 publication-title: Applied Sciences doi: 10.3390/app112210908 – start-page: 1815 volume-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures year: 2022 ident: 1085_CR27 – volume: 54 start-page: 1 issue: 8 year: 2021 ident: 1085_CR38 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-021-09967-1 – volume: 15 start-page: 3010 issue: 11 year: 2023 ident: 1085_CR52 publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2022.12.034 – start-page: 607 volume-title: SUT Offshore Site Investigation and Foundation Behaviour New Frontiers: Proceedings of an International Conference year: 1993 ident: 1085_CR7 doi: 10.1007/978-94-017-2473-9_29 – volume: 49 start-page: 1225 issue: 11 year: 1996 ident: 1085_CR25 publication-title: Journal of Clinical Epidemiology doi: 10.1016/S0895-4356(96)00002-9 – volume: 13 start-page: 6624 issue: 11 year: 2023 ident: 1085_CR35 publication-title: Applied Sciences doi: 10.3390/app13116624 – volume: 268 start-page: 113398 year: 2023 ident: 1085_CR16 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113398 – volume: 19 start-page: 85 issue: 1 year: 2015 ident: 1085_CR49 publication-title: Earth Sciences Research Journal doi: 10.15446/esrj.v19n1.38712 – volume: 382 start-page: 113858 year: 2021 ident: 1085_CR28 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.113858 – ident: 1085_CR20 doi: 10.1061/41096(366)302 – volume: 169 start-page: 108362 year: 2021 ident: 1085_CR17 publication-title: Measurement doi: 10.1016/j.measurement.2020.108362 – volume: 22 start-page: 04021250 issue: 1 year: 2022 ident: 1085_CR41 publication-title: International Journal of Geomechanics doi: 10.1061/(ASCE)GM.1943-5622.0002245 – volume: 10 start-page: 123858 year: 2022 ident: 1085_CR43 publication-title: IEEE Access: Practical Innovations, Open Solutions doi: 10.1109/ACCESS.2022.3224184 – volume: 111 start-page: 356 year: 2015 ident: 1085_CR10 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2015.07.101 – volume: 6 start-page: 199 issue: 2 year: 2023 ident: 1085_CR53 publication-title: Experiments and Design – volume: 47 start-page: 230 issue: 2 year: 2010 ident: 1085_CR50 publication-title: Canadian Geotechnical Journal doi: 10.1139/T09-094 – volume: 143 start-page: 303 year: 2023 ident: 1085_CR30 publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2023.05.014 – volume: 39 start-page: 17 issue: 3 year: 2017 ident: 1085_CR5 publication-title: Studia Geotechnica et Mechanica doi: 10.1515/sgem-2017-0026 – volume: 129 start-page: 109623 year: 2022 ident: 1085_CR40 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2022.109623 – volume: 288 start-page: 106103 year: 2021 ident: 1085_CR44 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2021.106103 – volume: 111 start-page: 367 issue: 3 year: 1985 ident: 1085_CR1 publication-title: Journal of Geotechnical Engineering doi: 10.1061/(ASCE)0733-9410(1985)111:3(367) – volume: 131 start-page: 105866 year: 2022 ident: 1085_CR18 publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2021.105866 – volume: 45 start-page: 8255 issue: 10 year: 2020 ident: 1085_CR48 publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-020-04683-4 – volume: 87 start-page: 104225 year: 2021 ident: 1085_CR33 publication-title: European Journal of Mechanics A/Solids doi: 10.1016/j.euromechsol.2021.104225 – volume: 55 start-page: 1 issue: 3 year: 2022 ident: 1085_CR47 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-021-10065-5 – volume: 124 start-page: 1177 issue: 12 year: 1998 ident: 1085_CR51 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)1090-0241(1998)124:12(1177) – volume: 14 start-page: 216 issue: 3 year: 2020 ident: 1085_CR2 publication-title: Georisk. Assessment and Management of Risk for Engineered Systems and Geohazards doi: 10.1080/17499518.2019.1628281 – volume: 20 start-page: 1109 issue: 8 year: 2019 ident: 1085_CR23 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-019-00171-9 – volume: 20 start-page: 269 issue: 4 year: 2002 ident: 1085_CR56 publication-title: Journal of Molecular Graphics & Modelling doi: 10.1016/S1093-3263(01)00123-1 – volume: 8 start-page: 131 issue: 2 year: 2013 ident: 1085_CR8 publication-title: Pollack Periodica doi: 10.1556/Pollack.8.2013.2.14 – ident: 1085_CR54 doi: 10.1007/s10706-023-02643-x – volume: 120 start-page: 104039 year: 2022 ident: 1085_CR9 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2021.104039 – volume: 21 start-page: 04021096 issue: 7 year: 2021 ident: 1085_CR42 publication-title: International Journal of Geomechanics doi: 10.1061/(ASCE)GM.1943-5622.0002058 – volume: 57 start-page: 122 year: 2014 ident: 1085_CR22 publication-title: Measurement doi: 10.1016/j.measurement.2014.08.007 – volume: 24 start-page: 41 issue: 2 year: 2020 ident: 1085_CR24 publication-title: Engineering Journal doi: 10.4186/ej.2020.24.2.41 – volume: 10 start-page: 261 issue: 7 year: 2020 ident: 1085_CR12 publication-title: Geosciences doi: 10.3390/geosciences10070261 |
SSID | ssj0001073083 |
Score | 2.448875 |
Snippet | The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 870 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Cities Civil Engineering Comparative analysis Countries Deep foundations Deep learning Engineering Information processing Load tests Long short-term memory Machine learning Neural networks Performance evaluation Pile bearing capacities Pile foundations Pile load tests Predictions Recurrent neural networks Regions Regression analysis Research Article Root-mean-square errors Statistical analysis Statistical models Structural integrity |
Title | Prediction of bearing capacity of pile foundation using deep learning approaches |
URI | https://link.springer.com/article/10.1007/s11709-024-1085-z https://www.proquest.com/docview/3074785656 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2095-2449 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: ADMLS dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2095-2449 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: AFBBN dateStart: 20070201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2095-2449 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: 8FG dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2095-2449 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTg24gi6cGTpmT72NeRGIFoNBwgwdNm-1gOGiCwXPj1tssui0RNuHbbZnem7Xw7M_0G4N5N4iBMuI91qF3MFVdYGEODiTL2gWvf45lP9-3d6w35y8gd5fe4F0W2exGSzE7q8rIb8a0jn3KcZcyvKlBz7f9JFWrt7sfrlmvFLtuMgJMaAIEpZ5t45m_z_LRIJczciYxmBqdzAoPiVdd5Jp-tZSpacrXD4rjnt5zCcQ5AUXu9Ys7gQE_O4WiLlvAC-v25Dd9YlaFpgoTZDKYdSWNXpQHttm1mDhOUbEoyIZs-P0ZK6xnK61CMUUFXrheXMOw8D556OK-8gCUjXoq9mHOuqRAGv9DYiamwhp1IJ9ZSxbHyeOL4UgbCZ4w6yiFKUdOdhKFiTBkEcQXVyXSirwEl2mPUV0wRA3USnwvNQy8Q1GPC9QXRdXAK6UcypyW31TG-opJQ2QorMsKybKZutKrDw2bIbM3J8V_nRqHSKN-ei4hlZQMslq3DY6Gh8vGfk93s1fsWDqlVceazaUA1nS_1nYEwqWhCJeh0m_nC_QZjkugm |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHNSDbyOK2oMnTcn2sa8jMSrKIxwgwdNm-1gOGiA8Lvx622UXkKgJ12632Z2Zdr7MTL8BuHeTOAgT7mMdahdzxRUWxtFgoox_4Nr3eBrTbba8Wpe_99xedo97kle75ynJ9KReXXYjvg3kU47Tivn5LhQ5CQJegGL19aO-FlqxZpsScFIDIDDlbJnP_G2dnx5pBTM3MqOpw3k5gk7-qYs6k8_KbCoqcr7B4rjlvxzDYQZAUXVhMSewowencLBGS3gG7fbYpm-sytAwQcJsBjOOpPGr0oB2OzYyhwlKli2ZkC2f7yOl9QhlfSj6KKcr15Nz6L48d55qOOu8gCUj3hR7MedcUyEMfqGxE1NhHTuRTqylimPl8cTxpQyEzxh1lEOUomY6CUPFmDII4gIKg-FAXwJKtMeor5giBuokPheah14gqMeE6wuiS-Dk0o9kRktuu2N8RStCZSusyAjLspm60bwED8tXRgtOjv8ml3OVRtn2nEQsbRtgsWwJHnMNrR7_udjVVrPvYK_WaTaixlurfg371Ko7jd-UoTAdz_SNgTNTcZuZ7zcCj-ox |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RSIwe_DaiqD140hS2ttvYkaiIooSDJHia68c4aIDAuPDX2-4DkKiJ8dq1zdbX7vfLe6-_B3DpRGHNj5iHla8czCSTmGugwbbU-MCU57LEp_vcdptd9thzelmd00me7Z6HJNM7DUalaRBXRzKqLi6-2Z5x6hOGk-z52ToUmQY3pwDF-v1ra8nNYrZwIsZJNJnAhNF5bPO7eb6i04JyrkRJE_Bp7MBb_tppzsl7ZRrzipitKDr-47t2YTsjpqie7qQ9WFODfdhakis8gE5nbMI6xpRoGCGuD4luR0LjrdBk3rSN9E8GRfNSTcik1feRVGqEsvoUfZTLmKvJIXQbdy83TZxVZMCC2m6M3ZAxpgjnmteQ0AoJN4BvCytUQoahdFlkeULUuEcpsaRlS0l0d9v3JaVSM4sjKAyGA3UMKFIuJZ6k0tYUKPIYV8x3a5y4lDset1UJrNwSgcjkyk3VjI9gIbRsFivQi2VUTp1gVoKr-ZBRqtXxW-dybt4gO7aTgCblBAzHLcF1bq3F4x8nO_lT7wvY6Nw2gqeHdusUNomxduLWKUMhHk_VmWY5MT_PdvInJTvzDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+bearing+capacity+of+pile+foundation+using+deep+learning+approaches&rft.jtitle=Frontiers+of+Structural+and+Civil+Engineering&rft.au=Kumar%2C+Manish&rft.au=Kumar%2C+Divesh+Ranjan&rft.au=Khatti%2C+Jitendra&rft.au=Samui%2C+Pijush&rft.date=2024-06-01&rft.issn=2095-2430&rft.eissn=2095-2449&rft.volume=18&rft.issue=6&rft.spage=870&rft.epage=886&rft_id=info:doi/10.1007%2Fs11709-024-1085-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11709_024_1085_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2430&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2430&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2430&client=summon |