Prediction of bearing capacity of pile foundation using deep learning approaches

The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LS...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Structural and Civil Engineering Vol. 18; no. 6; pp. 870 - 886
Main Authors Kumar, Manish, Kumar, Divesh Ranjan, Khatti, Jitendra, Samui, Pijush, Grover, Kamaldeep Singh
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-2430
2095-2449
DOI10.1007/s11709-024-1085-z

Cover

Abstract The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) algorithms utilizing a data set of 257 dynamic pile load tests for the first time. Also, this research illustrates the multicollinearity effect on DNN, CNN, RNN, LSTM, and BiLSTM models’ performance and accuracy for the first time. A comprehensive comparative analysis is conducted, employing various statistical performance parameters, rank analysis, and error matrix to evaluate the performance of these models. The performance is further validated using external validation, and visual interpretation is provided using the regression error characteristics (REC) curve and Taylor diagram. Results from the comparative analysis reveal that the DNN (Coefficient of determination ( R 2 ) training (TR) = 0.97, root mean squared error ( RMSE ) TR = 0.0413; R testing (TS) 2 = 0.9, RMSE TS = 0.08) followed by BiLSTM ( R TR 2 = 0.91, RMSE TR = 0.782; R TS 2 = 0.89, RMSE TS = 0.0862) model demonstrates the highest performance accuracy. It is noted that the BiLSTM model is better than LSTM because the BiLSTM model, which increases the amount of information for the network, is a sequence processing model made up of two LSTMs, one of which takes the input in a forward manner, and the other in a backward direction. The prediction of pile-bearing capacity is strongly influenced by ram weight (having a considerable multicollinearity level), and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach. In this study, the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity.
AbstractList The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) algorithms utilizing a data set of 257 dynamic pile load tests for the first time. Also, this research illustrates the multicollinearity effect on DNN, CNN, RNN, LSTM, and BiLSTM models’ performance and accuracy for the first time. A comprehensive comparative analysis is conducted, employing various statistical performance parameters, rank analysis, and error matrix to evaluate the performance of these models. The performance is further validated using external validation, and visual interpretation is provided using the regression error characteristics (REC) curve and Taylor diagram. Results from the comparative analysis reveal that the DNN (Coefficient of determination ( R 2 ) training (TR) = 0.97, root mean squared error ( RMSE ) TR = 0.0413; R testing (TS) 2 = 0.9, RMSE TS = 0.08) followed by BiLSTM ( R TR 2 = 0.91, RMSE TR = 0.782; R TS 2 = 0.89, RMSE TS = 0.0862) model demonstrates the highest performance accuracy. It is noted that the BiLSTM model is better than LSTM because the BiLSTM model, which increases the amount of information for the network, is a sequence processing model made up of two LSTMs, one of which takes the input in a forward manner, and the other in a backward direction. The prediction of pile-bearing capacity is strongly influenced by ram weight (having a considerable multicollinearity level), and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach. In this study, the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity.
The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) algorithms utilizing a data set of 257 dynamic pile load tests for the first time. Also, this research illustrates the multicollinearity effect on DNN, CNN, RNN, LSTM, and BiLSTM models’ performance and accuracy for the first time. A comprehensive comparative analysis is conducted, employing various statistical performance parameters, rank analysis, and error matrix to evaluate the performance of these models. The performance is further validated using external validation, and visual interpretation is provided using the regression error characteristics (REC) curve and Taylor diagram. Results from the comparative analysis reveal that the DNN (Coefficient of determination (R2)training (TR) = 0.97, root mean squared error (RMSE)TR = 0.0413; Rtesting (TS)2 = 0.9, RMSETS = 0.08) followed by BiLSTM (RTR2 = 0.91, RMSETR = 0.782; RTS2 = 0.89, RMSETS = 0.0862) model demonstrates the highest performance accuracy. It is noted that the BiLSTM model is better than LSTM because the BiLSTM model, which increases the amount of information for the network, is a sequence processing model made up of two LSTMs, one of which takes the input in a forward manner, and the other in a backward direction. The prediction of pile-bearing capacity is strongly influenced by ram weight (having a considerable multicollinearity level), and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach. In this study, the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity.
Author Grover, Kamaldeep Singh
Kumar, Divesh Ranjan
Khatti, Jitendra
Samui, Pijush
Kumar, Manish
Author_xml – sequence: 1
  givenname: Manish
  surname: Kumar
  fullname: Kumar, Manish
  organization: Department of Civil Engineering, SRM Institute of Science and Technology Tiruchirappalli Campus
– sequence: 2
  givenname: Divesh Ranjan
  surname: Kumar
  fullname: Kumar, Divesh Ranjan
  organization: Department of Civil Engineering, National Institute of Technology Patna, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University
– sequence: 3
  givenname: Jitendra
  surname: Khatti
  fullname: Khatti, Jitendra
  email: jitendrakhatti197@gmail.com
  organization: Department of Civil Engineering, Rajasthan Technical University
– sequence: 4
  givenname: Pijush
  surname: Samui
  fullname: Samui, Pijush
  organization: Department of Civil Engineering, National Institute of Technology Patna
– sequence: 5
  givenname: Kamaldeep Singh
  surname: Grover
  fullname: Grover, Kamaldeep Singh
  organization: Department of Civil Engineering, Rajasthan Technical University
BookMark eNp9kE1LxDAQhoOs4LruD_BW8FydfLRpj7KoKyy4Bz2HaZJql9rWpD3s_nrTrSgIekoyPG9m5jkns6ZtLCGXFK4pgLzxlErIY2AippAl8eGEzBnkScyEyGffdw5nZOn9DgAoSA4Zn5Pt1llT6b5qm6gto8Kiq5rXSGOHuur3Y62rahuV7dAYPGKDHwljbRfVAW_GF3ada1G_WX9BTkusvV1-nQvycn_3vFrHm6eHx9XtJtacpn2cohDCsqJIec4QkBU8oxnVgFYbRJOKEqTWWSE5Z2CAGsMCTvPccG5Yzhfkavo3NP4YrO_Vrh1cE1oqDlLILEmTNFByorRrvXe2VGGr4xq9w6pWFNRoUE0GVTCoRoPqEJL0V7Jz1Tu6_b8ZNmV8N1q07memv0OfBz2F7w
CitedBy_id crossref_primary_10_1007_s40515_025_00532_9
crossref_primary_10_1038_s41598_024_84632_5
crossref_primary_10_1007_s42107_024_01205_7
crossref_primary_10_1038_s41598_024_83784_8
crossref_primary_10_1016_j_measurement_2024_116477
crossref_primary_10_1007_s41939_025_00808_0
crossref_primary_10_1007_s12517_025_12199_0
crossref_primary_10_3390_buildings14103078
crossref_primary_10_1007_s12652_024_04878_9
crossref_primary_10_1007_s40808_024_02279_7
crossref_primary_10_1007_s41024_024_00531_2
crossref_primary_10_1038_s41598_025_90648_2
crossref_primary_10_1007_s12145_024_01482_5
crossref_primary_10_1007_s12145_024_01571_5
crossref_primary_10_1007_s41939_024_00590_5
crossref_primary_10_1080_10589759_2024_2426703
crossref_primary_10_1007_s12665_025_12116_4
crossref_primary_10_1007_s13369_024_09793_x
Cites_doi 10.1016/j.sandf.2014.04.015
10.1111/0885-9507.00154
10.1016/j.tws.2022.110267
10.1016/j.sandf.2022.101163
10.1007/s00366-021-01586-2
10.1016/j.undsp.2020.01.003
10.1088/1757-899X/930/1/012036
10.1016/j.gsf.2014.10.002
10.1016/j.sandf.2015.10.001
10.1061/(ASCE)CF.1943-5509.0000624
10.1007/s40808-022-01637-7
10.1016/j.cma.2019.112790
10.1007/s00466-023-02287-x
10.1061/(ASCE)1090-0241(1998)124:9(846)
10.3390/app112210908
10.1007/s10462-021-09967-1
10.1016/j.jrmge.2022.12.034
10.1007/978-94-017-2473-9_29
10.1016/S0895-4356(96)00002-9
10.3390/app13116624
10.1016/j.oceaneng.2022.113398
10.15446/esrj.v19n1.38712
10.1016/j.cma.2021.113858
10.1061/41096(366)302
10.1016/j.measurement.2020.108362
10.1061/(ASCE)GM.1943-5622.0002245
10.1109/ACCESS.2022.3224184
10.1016/j.proeng.2015.07.101
10.1139/T09-094
10.1016/j.camwa.2023.05.014
10.1515/sgem-2017-0026
10.1016/j.asoc.2022.109623
10.1016/j.enggeo.2021.106103
10.1061/(ASCE)0733-9410(1985)111:3(367)
10.1016/j.engfailanal.2021.105866
10.1007/s13369-020-04683-4
10.1016/j.euromechsol.2021.104225
10.1007/s10462-021-10065-5
10.1061/(ASCE)1090-0241(1998)124:12(1177)
10.1080/17499518.2019.1628281
10.1007/s42107-019-00171-9
10.1016/S1093-3263(01)00123-1
10.1556/Pollack.8.2013.2.14
10.1007/s10706-023-02643-x
10.1016/j.tust.2021.104039
10.1061/(ASCE)GM.1943-5622.0002058
10.1016/j.measurement.2014.08.007
10.4186/ej.2020.24.2.41
10.3390/geosciences10070261
ContentType Journal Article
Copyright Higher Education Press 2024
Higher Education Press 2024.
Copyright_xml – notice: Higher Education Press 2024
– notice: Higher Education Press 2024.
DBID AAYXX
CITATION
DOI 10.1007/s11709-024-1085-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-2449
EndPage 886
ExternalDocumentID 10_1007_s11709_024_1085_z
GroupedDBID -5B
-5G
-BR
-EM
-~C
.VR
06D
0R~
0VY
1-T
29~
2J2
2JN
2JY
2KG
2KM
2LR
30V
3V.
4.4
406
408
40E
5VS
7WY
7X2
88I
8FE
8FG
8FH
8FL
8G5
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHTB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ATCPS
AVQMV
AXYYD
AZQEC
B-.
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
CCPQU
CHBEP
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HF~
HMJXF
HRMNR
HZ~
IKXTQ
ITM
IWAJR
I~Z
J-C
JBSCW
JZLTJ
K50
K60
K6~
KOV
L6V
LLZTM
M0C
M0K
M1D
M2O
M2P
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
PADUT
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
R89
ROL
RSV
S16
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
YLTOR
Z7Y
Z7Z
ZMTXR
~IF
-SC
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEC
CITATION
PHGZM
PHGZT
PMKZF
Q--
U1G
U5M
ABRTQ
ID FETCH-LOGICAL-c316t-6a444e2bb6392a0a2b38181c0aecdaad64f07cc8b73320d01dd2e2b199d33d293
IEDL.DBID AGYKE
ISSN 2095-2430
IngestDate Thu Sep 18 00:04:47 EDT 2025
Tue Jul 01 00:58:40 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Fri Feb 21 02:40:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords high-strain dynamic pile test
bearing capacity of the pile
deep learning algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6a444e2bb6392a0a2b38181c0aecdaad64f07cc8b73320d01dd2e2b199d33d293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3074785656
PQPubID 105416
PageCount 17
ParticipantIDs proquest_journals_3074785656
crossref_citationtrail_10_1007_s11709_024_1085_z
crossref_primary_10_1007_s11709_024_1085_z
springer_journals_10_1007_s11709_024_1085_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Shanghai
PublicationTitle Frontiers of Structural and Civil Engineering
PublicationTitleAbbrev Front. Struct. Civ. Eng
PublicationYear 2024
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Dang, Nguyen-Xuan, Wahab (CR16) 2023; 268
He, Lai, Li, Wang, Wang, Zhang (CR9) 2022; 120
CR32
Loganathan, Poulos (CR11) 1998; 124
Wang, Wang, Zhou, Liu, Dai, Du, Wahab (CR17) 2021; 169
Tu (CR25) 1996; 49
Shahin (CR37) 2016; 7
Momeni, Nazir, Armaghani, Maizir (CR49) 2015; 19
Kumar, Kumar, Rajagopal, Samui, Burman (CR45) 2023; 9
Tao, Sun, Cai (CR41) 2022; 22
Kiefa (CR51) 1998; 124
Al-Atroush, Hefny, Zaghloul, Sorour (CR12) 2020; 10
Park, Rilett (CR14) 1999; 14
Shahin (CR36) 2014; 54
CR6
Bak (CR8) 2013; 8
Shahin (CR50) 2010; 47
Heidarie Golafzani, Jamshidi Chenari, Eslami (CR2) 2020; 14
Cheng, Zhang, Liu, Wu (CR35) 2023; 13
Józefiak, Zbiciak, Maślakowski, Piotrowski (CR10) 2015; 111
Tran, Nguyen, Nguyen-Xuan, Wahab (CR15) 2023; 182
Khatti, Grover (CR53) 2023; 6
Pham, Nguyen, Duong (CR27) 2022
Momeni, Nazir, Armaghani, Maizir (CR22) 2014; 57
Gao, Wang, Lin, Guo, Liu, Zhang (CR39) 2021; 6
Ho, Trinh, De Roeck, Bui-Tien, Nguyen-Ngoc, Wahab (CR18) 2022; 131
Momeni, Dowlatshahi, Omidinasab, Maizir, Armaghani (CR48) 2020; 45
Biswas, Rai, Samui, Roy (CR24) 2020; 24
Kumar, Samui (CR57) 2022
Uncuoglu, Citakoglu, Latifoglu, Bayram, Laman, Ilkentapar, Oner (CR40) 2022; 129
Khatti, Grover (CR52) 2023; 15
CR55
CR54
Taherkhani, Mei, Han (CR34) 2023
Huynh, Nguyen, Nguyen, Nguyen, Nguyen (CR3) 2022; 62
Chen, Wu, Jia, Wang (CR43) 2022; 10
Whittle (CR7) 1993
Kordnaeij, Kalantary, Kordtabar, Mola-Abasi (CR21) 2015; 55
Krasiński, Wiszniewski (CR5) 2017; 39
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (CR19) 2020; 362
Kumar, Biswas, Kumar, Pradeep, Samui (CR46) 2022; 31
Wang, Zhang, Luo, He, Cheung (CR44) 2021; 288
Zhuang, Guo, Alajlan, Zhu, Rabczuk (CR33) 2021; 87
CR29
Guo, Zhuang, Chen, Alajlan, Rabczuk (CR31) 2022; 38
Guo, Zhuang, Alajlan, Rabczuk (CR30) 2023; 143
CR20
Benbouras, Petrişor, Zedira, Ghelani, Lefilef (CR26) 2021; 11
Chaallal, Arockiasamy, Godat (CR13) 2015; 29
Biswas, Samui, Rai (CR23) 2019; 20
Zhang, Yin (CR28) 2021; 382
Zhang, Li, Li, Liu, Chen, Ding (CR38) 2021; 54
Zhang, Yang, Yin (CR42) 2021; 21
Zein, Ayoub (CR4) 2016; 10
Golbraikh, Tropsha (CR56) 2002; 20
Rausche, Goble, Likins (CR1) 1985; 111
Armaghani, Harandizadeh, Momeni, Maizir, Zhou (CR47) 2022; 55
1085_CR29
A Golbraikh (1085_CR56) 2002; 20
1085_CR20
E Momeni (1085_CR22) 2014; 57
R Biswas (1085_CR23) 2019; 20
V H Huynh (1085_CR3) 2022; 62
M E Al-Atroush (1085_CR12) 2020; 10
O Chaallal (1085_CR13) 2015; 29
A Krasiński (1085_CR5) 2017; 39
E Momeni (1085_CR48) 2020; 45
S He (1085_CR9) 2022; 120
L V Ho (1085_CR18) 2022; 131
E Momeni (1085_CR49) 2015; 19
A K M Zein (1085_CR4) 2016; 10
M Kumar (1085_CR57) 2022
M Kumar (1085_CR46) 2022; 31
A H Taherkhani (1085_CR34) 2023
M A Shahin (1085_CR37) 2016; 7
1085_CR54
1085_CR55
1085_CR6
H Guo (1085_CR30) 2023; 143
W Zhang (1085_CR38) 2021; 54
P Zhang (1085_CR42) 2021; 21
M Kumar (1085_CR45) 2023; 9
V T Tran (1085_CR15) 2023; 182
M A Kiefa (1085_CR51) 1998; 124
M A Shahin (1085_CR36) 2014; 54
E Bak (1085_CR8) 2013; 8
E Samaniego (1085_CR19) 2020; 362
E Uncuoglu (1085_CR40) 2022; 129
K Józefiak (1085_CR10) 2015; 111
A J Whittle (1085_CR7) 1993
P Zhang (1085_CR28) 2021; 382
D Park (1085_CR14) 1999; 14
H Cheng (1085_CR35) 2023; 13
F Rausche (1085_CR1) 1985; 111
J Khatti (1085_CR52) 2023; 15
B Gao (1085_CR39) 2021; 6
J V Tu (1085_CR25) 1996; 49
M A Shahin (1085_CR50) 2010; 47
S Wang (1085_CR17) 2021; 169
B L Dang (1085_CR16) 2023; 268
M A Benbouras (1085_CR26) 2021; 11
H Guo (1085_CR31) 2022; 38
1085_CR32
S Heidarie Golafzani (1085_CR2) 2020; 14
Y Tao (1085_CR41) 2022; 22
J Khatti (1085_CR53) 2023; 6
H Wang (1085_CR44) 2021; 288
D J Armaghani (1085_CR47) 2022; 55
N Loganathan (1085_CR11) 1998; 124
C Chen (1085_CR43) 2022; 10
T A Pham (1085_CR27) 2022
X Zhuang (1085_CR33) 2021; 87
A Kordnaeij (1085_CR21) 2015; 55
R Biswas (1085_CR24) 2020; 24
References_xml – volume: 29
  start-page: 04014124
  issue: 5
  year: 2015
  ident: CR13
  article-title: Field test performance of buried flexible pipes under live truck loads
  publication-title: Journal of Performance of Constructed Facilities
– volume: 124
  start-page: 846
  issue: 9
  year: 1998
  end-page: 856
  ident: CR11
  article-title: Analytical prediction for tunneling-induced ground movements in clays
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 38
  start-page: 5173
  issue: 6
  year: 2022
  end-page: 5198
  ident: CR31
  article-title: Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media
  publication-title: Engineering with Computers
– volume: 45
  start-page: 8255
  issue: 10
  year: 2020
  end-page: 8267
  ident: CR48
  article-title: Gaussian process regression technique to estimate the pile bearing capacity
  publication-title: Arabian Journal for Science and Engineering
– volume: 143
  start-page: 303
  year: 2023
  end-page: 317
  ident: CR30
  article-title: Physics-informed deep learning for melting heat transfer analysis with model-based transfer learning
  publication-title: Computers & Mathematics with Applications
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  end-page: 93
  ident: CR49
  article-title: Application of artificial neural network for predicting shaft and tip resistances of concrete piles
  publication-title: Earth Sciences Research Journal
– volume: 10
  start-page: 261
  issue: 7
  year: 2020
  end-page: 281
  ident: CR12
  article-title: Behavior of a large diameter bored pile in drained and undrained conditions: comparative analysis
  publication-title: Geosciences
– volume: 131
  start-page: 105866
  year: 2022
  ident: CR18
  article-title: An efficient stochastic-based coupled model for damage identification in plate structures
  publication-title: Engineering Failure Analysis
– volume: 182
  start-page: 110267
  year: 2023
  ident: CR15
  article-title: Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm
  publication-title: Thin-walled Structures
– ident: CR29
– volume: 13
  start-page: 6624
  issue: 11
  year: 2023
  ident: CR35
  article-title: Prediction of undrained bearing capacity of skirted foundation in spatially variable soils based on convolutional neural network
  publication-title: Applied Sciences
– ident: CR54
– volume: 111
  start-page: 367
  issue: 3
  year: 1985
  end-page: 383
  ident: CR1
  article-title: Dynamic determination of pile capacity
  publication-title: Journal of Geotechnical Engineering
– volume: 55
  start-page: 1335
  issue: 6
  year: 2015
  end-page: 1345
  ident: CR21
  article-title: Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties
  publication-title: Soil and Foundation
– volume: 39
  start-page: 17
  issue: 3
  year: 2017
  end-page: 25
  ident: CR5
  article-title: Static load test on instrumented pile–field data and numerical simulations
  publication-title: Studia Geotechnica et Mechanica
– volume: 15
  start-page: 3010
  issue: 11
  year: 2023
  end-page: 3038
  ident: CR52
  article-title: Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
– volume: 20
  start-page: 1109
  issue: 8
  year: 2019
  end-page: 1118
  ident: CR23
  article-title: Determination of compressive strength using relevance vector machine and emotional neural network
  publication-title: Asian Journal of Civil Engineering
– volume: 87
  start-page: 104225
  year: 2021
  ident: CR33
  article-title: Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning
  publication-title: European Journal of Mechanics A/Solids
– start-page: 607
  year: 1993
  end-page: 643
  ident: CR7
  article-title: Assessment of an effective stress analysis for predicting the performance of driven piles in clays
  publication-title: SUT Offshore Site Investigation and Foundation Behaviour New Frontiers: Proceedings of an International Conference
– volume: 7
  start-page: 33
  issue: 1
  year: 2016
  end-page: 44
  ident: CR37
  article-title: State-of-the-art review of some artificial intelligence applications in pile foundations
  publication-title: Geoscience Frontiers
– volume: 62
  start-page: 101163
  issue: 4
  year: 2022
  ident: CR3
  article-title: A novel direct SPT method to accurately estimate ultimate axial bearing capacity of bored PHC nodular piles with 81 case studies in Vietnam
  publication-title: Soil and Foundation
– volume: 20
  start-page: 269
  issue: 4
  year: 2002
  end-page: 276
  ident: CR56
  article-title: Beware of q2
  publication-title: Journal of Molecular Graphics & Modelling
– volume: 120
  start-page: 104039
  year: 2022
  ident: CR9
  article-title: Pile group response induced by adjacent shield tunnelling in clay: Scale model test and numerical simulation
  publication-title: Tunnelling and Underground Space Technology
– start-page: 220
  year: 2023
  end-page: 227
  ident: CR34
  article-title: A deep learning model to predict the lateral capacity of monopiles
  publication-title: Proceeding of Geo-Congress
– volume: 129
  start-page: 109623
  year: 2022
  ident: CR40
  article-title: Comparison of neural network, Gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 Trees methods for solving civil engineering problems
  publication-title: Applied Soft Computing
– ident: CR32
– volume: 268
  start-page: 113398
  year: 2023
  ident: CR16
  article-title: An effective approach for VARANS-VOF modelling interactions of wave and perforated breakwater using gradient boosting decision tree algorithm
  publication-title: Ocean Engineering
– volume: 22
  start-page: 04021250
  issue: 1
  year: 2022
  ident: CR41
  article-title: Predictions of deep excavation responses considering model uncertainty: Integrating BiLSTM neural networks with Bayesian updating
  publication-title: International Journal of Geomechanics
– volume: 14
  start-page: 216
  issue: 3
  year: 2020
  end-page: 230
  ident: CR2
  article-title: Reliability based assessment of axial pile bearing capacity: static analysis, SPT and CPT-based methods
  publication-title: Georisk. Assessment and Management of Risk for Engineered Systems and Geohazards
– volume: 10
  start-page: 1636
  issue: 19
  year: 2016
  end-page: 1643
  ident: CR4
  article-title: Evaluation of measured and interpreted failure loads of bored piles in alluvial soil deposits
  publication-title: GEOMATE Journal
– volume: 382
  start-page: 113858
  year: 2021
  ident: CR28
  article-title: A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 14
  start-page: 357
  issue: 5
  year: 1999
  end-page: 367
  ident: CR14
  article-title: Forecasting freeway link travel times with a multilayer feedforward neural network
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 111
  start-page: 356
  year: 2015
  end-page: 363
  ident: CR10
  article-title: Numerical modelling and bearing capacity analysis of pile foundation
  publication-title: Procedia Engineering
– ident: CR6
– volume: 11
  start-page: 10908
  issue: 22
  year: 2021
  ident: CR26
  article-title: Forecasting the bearing capacity of the driven piles using advanced machine-learning techniques
  publication-title: Applied Sciences
– volume: 54
  start-page: 1
  issue: 8
  year: 2021
  end-page: 41
  ident: CR38
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Artificial Intelligence Review
– volume: 21
  start-page: 04021096
  issue: 7
  year: 2021
  ident: CR42
  article-title: BiLSTM-based soil–structure interface modeling
  publication-title: International Journal of Geomechanics
– volume: 57
  start-page: 122
  year: 2014
  end-page: 131
  ident: CR22
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
– volume: 24
  start-page: 41
  issue: 2
  year: 2020
  end-page: 52
  ident: CR24
  article-title: Estimating concrete compressive strength using MARS, LSSVM and GP
  publication-title: Engineering Journal
– start-page: 1151
  year: 2022
  end-page: 1159
  ident: CR57
  article-title: Reliability analysis of pile foundation using GMDH, GP and MARS
  publication-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures
– volume: 47
  start-page: 230
  issue: 2
  year: 2010
  end-page: 243
  ident: CR50
  article-title: Intelligent computing for modeling axial capacity of pile foundations
  publication-title: Canadian Geotechnical Journal
– volume: 288
  start-page: 106103
  year: 2021
  ident: CR44
  article-title: AI-powered landslide susceptibility assessment in Hong Kong
  publication-title: Engineering Geology
– volume: 49
  start-page: 1225
  issue: 11
  year: 1996
  end-page: 1231
  ident: CR25
  article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
  publication-title: Journal of Clinical Epidemiology
– start-page: 1815
  year: 2022
  end-page: 1823
  ident: CR27
  article-title: Development of deep learning neural network for estimating pile bearing capacity
  publication-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures
– volume: 362
  start-page: 112790
  year: 2020
  ident: CR19
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 55
  start-page: 1
  issue: 3
  year: 2022
  end-page: 38
  ident: CR47
  article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity
  publication-title: Artificial Intelligence Review
– volume: 10
  start-page: 123858
  year: 2022
  end-page: 123873
  ident: CR43
  article-title: A Novel Hybrid Deep Neural Network Prediction Model for Shield Tunneling Machine Thrust
  publication-title: IEEE Access: Practical Innovations, Open Solutions
– volume: 9
  start-page: 2533
  issue: 2
  year: 2023
  end-page: 2551
  ident: CR45
  article-title: State of art soft computing-based simulation models for bearing capacity of pile foundation: a comparative study of hybrid ANNs and conventional models
  publication-title: Modeling Earth Systems and Environment
– volume: 8
  start-page: 131
  issue: 2
  year: 2013
  end-page: 140
  ident: CR8
  article-title: Numerical modeling of pile load tests
  publication-title: Pollack Periodica
– volume: 6
  start-page: 718
  issue: 6
  year: 2021
  end-page: 731
  ident: CR39
  article-title: TBM penetration rate prediction based on the long short-term memory neural network
  publication-title: Underground Space
– volume: 124
  start-page: 1177
  issue: 12
  year: 1998
  end-page: 1185
  ident: CR51
  article-title: General regression neural networks for driven piles in cohesionless soils
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 54
  start-page: 515
  issue: 3
  year: 2014
  end-page: 522
  ident: CR36
  article-title: Load–settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks
  publication-title: Soil and Foundation
– ident: CR55
– volume: 6
  start-page: 199
  issue: 2
  year: 2023
  end-page: 222
  ident: CR53
  article-title: Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, gaussian process regression, and gene expression programming. Multiscale and Multidisciplinary Modeling
  publication-title: Experiments and Design
– ident: CR20
– volume: 169
  start-page: 108362
  year: 2021
  ident: CR17
  article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching
  publication-title: Measurement
– volume: 31
  start-page: 129
  issue: 2
  year: 2022
  end-page: 147
  ident: CR46
  article-title: Metaheuristic models for the prediction of bearing capacity of pile foundation
  publication-title: Geomechanics and Engineering
– ident: 1085_CR32
– volume: 54
  start-page: 515
  issue: 3
  year: 2014
  ident: 1085_CR36
  publication-title: Soil and Foundation
  doi: 10.1016/j.sandf.2014.04.015
– volume: 14
  start-page: 357
  issue: 5
  year: 1999
  ident: 1085_CR14
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/0885-9507.00154
– volume: 182
  start-page: 110267
  year: 2023
  ident: 1085_CR15
  publication-title: Thin-walled Structures
  doi: 10.1016/j.tws.2022.110267
– ident: 1085_CR55
– volume: 62
  start-page: 101163
  issue: 4
  year: 2022
  ident: 1085_CR3
  publication-title: Soil and Foundation
  doi: 10.1016/j.sandf.2022.101163
– volume: 38
  start-page: 5173
  issue: 6
  year: 2022
  ident: 1085_CR31
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-021-01586-2
– volume: 6
  start-page: 718
  issue: 6
  year: 2021
  ident: 1085_CR39
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2020.01.003
– ident: 1085_CR6
  doi: 10.1088/1757-899X/930/1/012036
– volume: 10
  start-page: 1636
  issue: 19
  year: 2016
  ident: 1085_CR4
  publication-title: GEOMATE Journal
– volume: 7
  start-page: 33
  issue: 1
  year: 2016
  ident: 1085_CR37
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2014.10.002
– volume: 31
  start-page: 129
  issue: 2
  year: 2022
  ident: 1085_CR46
  publication-title: Geomechanics and Engineering
– volume: 55
  start-page: 1335
  issue: 6
  year: 2015
  ident: 1085_CR21
  publication-title: Soil and Foundation
  doi: 10.1016/j.sandf.2015.10.001
– volume: 29
  start-page: 04014124
  issue: 5
  year: 2015
  ident: 1085_CR13
  publication-title: Journal of Performance of Constructed Facilities
  doi: 10.1061/(ASCE)CF.1943-5509.0000624
– volume: 9
  start-page: 2533
  issue: 2
  year: 2023
  ident: 1085_CR45
  publication-title: Modeling Earth Systems and Environment
  doi: 10.1007/s40808-022-01637-7
– volume: 362
  start-page: 112790
  year: 2020
  ident: 1085_CR19
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112790
– ident: 1085_CR29
  doi: 10.1007/s00466-023-02287-x
– start-page: 220
  volume-title: Proceeding of Geo-Congress
  year: 2023
  ident: 1085_CR34
– volume: 124
  start-page: 846
  issue: 9
  year: 1998
  ident: 1085_CR11
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
– start-page: 1151
  volume-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures
  year: 2022
  ident: 1085_CR57
– volume: 11
  start-page: 10908
  issue: 22
  year: 2021
  ident: 1085_CR26
  publication-title: Applied Sciences
  doi: 10.3390/app112210908
– start-page: 1815
  volume-title: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures
  year: 2022
  ident: 1085_CR27
– volume: 54
  start-page: 1
  issue: 8
  year: 2021
  ident: 1085_CR38
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-021-09967-1
– volume: 15
  start-page: 3010
  issue: 11
  year: 2023
  ident: 1085_CR52
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2022.12.034
– start-page: 607
  volume-title: SUT Offshore Site Investigation and Foundation Behaviour New Frontiers: Proceedings of an International Conference
  year: 1993
  ident: 1085_CR7
  doi: 10.1007/978-94-017-2473-9_29
– volume: 49
  start-page: 1225
  issue: 11
  year: 1996
  ident: 1085_CR25
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/S0895-4356(96)00002-9
– volume: 13
  start-page: 6624
  issue: 11
  year: 2023
  ident: 1085_CR35
  publication-title: Applied Sciences
  doi: 10.3390/app13116624
– volume: 268
  start-page: 113398
  year: 2023
  ident: 1085_CR16
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113398
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  ident: 1085_CR49
  publication-title: Earth Sciences Research Journal
  doi: 10.15446/esrj.v19n1.38712
– volume: 382
  start-page: 113858
  year: 2021
  ident: 1085_CR28
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.113858
– ident: 1085_CR20
  doi: 10.1061/41096(366)302
– volume: 169
  start-page: 108362
  year: 2021
  ident: 1085_CR17
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108362
– volume: 22
  start-page: 04021250
  issue: 1
  year: 2022
  ident: 1085_CR41
  publication-title: International Journal of Geomechanics
  doi: 10.1061/(ASCE)GM.1943-5622.0002245
– volume: 10
  start-page: 123858
  year: 2022
  ident: 1085_CR43
  publication-title: IEEE Access: Practical Innovations, Open Solutions
  doi: 10.1109/ACCESS.2022.3224184
– volume: 111
  start-page: 356
  year: 2015
  ident: 1085_CR10
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2015.07.101
– volume: 6
  start-page: 199
  issue: 2
  year: 2023
  ident: 1085_CR53
  publication-title: Experiments and Design
– volume: 47
  start-page: 230
  issue: 2
  year: 2010
  ident: 1085_CR50
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/T09-094
– volume: 143
  start-page: 303
  year: 2023
  ident: 1085_CR30
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2023.05.014
– volume: 39
  start-page: 17
  issue: 3
  year: 2017
  ident: 1085_CR5
  publication-title: Studia Geotechnica et Mechanica
  doi: 10.1515/sgem-2017-0026
– volume: 129
  start-page: 109623
  year: 2022
  ident: 1085_CR40
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109623
– volume: 288
  start-page: 106103
  year: 2021
  ident: 1085_CR44
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2021.106103
– volume: 111
  start-page: 367
  issue: 3
  year: 1985
  ident: 1085_CR1
  publication-title: Journal of Geotechnical Engineering
  doi: 10.1061/(ASCE)0733-9410(1985)111:3(367)
– volume: 131
  start-page: 105866
  year: 2022
  ident: 1085_CR18
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2021.105866
– volume: 45
  start-page: 8255
  issue: 10
  year: 2020
  ident: 1085_CR48
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-020-04683-4
– volume: 87
  start-page: 104225
  year: 2021
  ident: 1085_CR33
  publication-title: European Journal of Mechanics A/Solids
  doi: 10.1016/j.euromechsol.2021.104225
– volume: 55
  start-page: 1
  issue: 3
  year: 2022
  ident: 1085_CR47
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-021-10065-5
– volume: 124
  start-page: 1177
  issue: 12
  year: 1998
  ident: 1085_CR51
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1998)124:12(1177)
– volume: 14
  start-page: 216
  issue: 3
  year: 2020
  ident: 1085_CR2
  publication-title: Georisk. Assessment and Management of Risk for Engineered Systems and Geohazards
  doi: 10.1080/17499518.2019.1628281
– volume: 20
  start-page: 1109
  issue: 8
  year: 2019
  ident: 1085_CR23
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-019-00171-9
– volume: 20
  start-page: 269
  issue: 4
  year: 2002
  ident: 1085_CR56
  publication-title: Journal of Molecular Graphics & Modelling
  doi: 10.1016/S1093-3263(01)00123-1
– volume: 8
  start-page: 131
  issue: 2
  year: 2013
  ident: 1085_CR8
  publication-title: Pollack Periodica
  doi: 10.1556/Pollack.8.2013.2.14
– ident: 1085_CR54
  doi: 10.1007/s10706-023-02643-x
– volume: 120
  start-page: 104039
  year: 2022
  ident: 1085_CR9
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2021.104039
– volume: 21
  start-page: 04021096
  issue: 7
  year: 2021
  ident: 1085_CR42
  publication-title: International Journal of Geomechanics
  doi: 10.1061/(ASCE)GM.1943-5622.0002058
– volume: 57
  start-page: 122
  year: 2014
  ident: 1085_CR22
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
– volume: 24
  start-page: 41
  issue: 2
  year: 2020
  ident: 1085_CR24
  publication-title: Engineering Journal
  doi: 10.4186/ej.2020.24.2.41
– volume: 10
  start-page: 261
  issue: 7
  year: 2020
  ident: 1085_CR12
  publication-title: Geosciences
  doi: 10.3390/geosciences10070261
SSID ssj0001073083
Score 2.448875
Snippet The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations. This research compares the Deep...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 870
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Cities
Civil Engineering
Comparative analysis
Countries
Deep foundations
Deep learning
Engineering
Information processing
Load tests
Long short-term memory
Machine learning
Neural networks
Performance evaluation
Pile bearing capacities
Pile foundations
Pile load tests
Predictions
Recurrent neural networks
Regions
Regression analysis
Research Article
Root-mean-square errors
Statistical analysis
Statistical models
Structural integrity
Title Prediction of bearing capacity of pile foundation using deep learning approaches
URI https://link.springer.com/article/10.1007/s11709-024-1085-z
https://www.proquest.com/docview/3074785656
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2095-2449
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0001073083
  issn: 2095-2430
  databaseCode: ADMLS
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2095-2449
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001073083
  issn: 2095-2430
  databaseCode: AFBBN
  dateStart: 20070201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2095-2449
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001073083
  issn: 2095-2430
  databaseCode: 8FG
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2095-2449
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001073083
  issn: 2095-2430
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTg24gi6cGTpmT72NeRGIFoNBwgwdNm-1gOGiCwXPj1tssui0RNuHbbZnem7Xw7M_0G4N5N4iBMuI91qF3MFVdYGEODiTL2gWvf45lP9-3d6w35y8gd5fe4F0W2exGSzE7q8rIb8a0jn3KcZcyvKlBz7f9JFWrt7sfrlmvFLtuMgJMaAIEpZ5t45m_z_LRIJczciYxmBqdzAoPiVdd5Jp-tZSpacrXD4rjnt5zCcQ5AUXu9Ys7gQE_O4WiLlvAC-v25Dd9YlaFpgoTZDKYdSWNXpQHttm1mDhOUbEoyIZs-P0ZK6xnK61CMUUFXrheXMOw8D556OK-8gCUjXoq9mHOuqRAGv9DYiamwhp1IJ9ZSxbHyeOL4UgbCZ4w6yiFKUdOdhKFiTBkEcQXVyXSirwEl2mPUV0wRA3USnwvNQy8Q1GPC9QXRdXAK6UcypyW31TG-opJQ2QorMsKybKZutKrDw2bIbM3J8V_nRqHSKN-ei4hlZQMslq3DY6Gh8vGfk93s1fsWDqlVceazaUA1nS_1nYEwqWhCJeh0m_nC_QZjkugm
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHNSDbyOK2oMnTcn2sa8jMSrKIxwgwdNm-1gOGiA8Lvx622UXkKgJ12632Z2Zdr7MTL8BuHeTOAgT7mMdahdzxRUWxtFgoox_4Nr3eBrTbba8Wpe_99xedo97kle75ynJ9KReXXYjvg3kU47Tivn5LhQ5CQJegGL19aO-FlqxZpsScFIDIDDlbJnP_G2dnx5pBTM3MqOpw3k5gk7-qYs6k8_KbCoqcr7B4rjlvxzDYQZAUXVhMSewowencLBGS3gG7fbYpm-sytAwQcJsBjOOpPGr0oB2OzYyhwlKli2ZkC2f7yOl9QhlfSj6KKcr15Nz6L48d55qOOu8gCUj3hR7MedcUyEMfqGxE1NhHTuRTqylimPl8cTxpQyEzxh1lEOUomY6CUPFmDII4gIKg-FAXwJKtMeor5giBuokPheah14gqMeE6wuiS-Dk0o9kRktuu2N8RStCZSusyAjLspm60bwED8tXRgtOjv8ml3OVRtn2nEQsbRtgsWwJHnMNrR7_udjVVrPvYK_WaTaixlurfg371Ko7jd-UoTAdz_SNgTNTcZuZ7zcCj-ox
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RSIwe_DaiqD140hS2ttvYkaiIooSDJHia68c4aIDAuPDX2-4DkKiJ8dq1zdbX7vfLe6-_B3DpRGHNj5iHla8czCSTmGugwbbU-MCU57LEp_vcdptd9thzelmd00me7Z6HJNM7DUalaRBXRzKqLi6-2Z5x6hOGk-z52ToUmQY3pwDF-v1ra8nNYrZwIsZJNJnAhNF5bPO7eb6i04JyrkRJE_Bp7MBb_tppzsl7ZRrzipitKDr-47t2YTsjpqie7qQ9WFODfdhakis8gE5nbMI6xpRoGCGuD4luR0LjrdBk3rSN9E8GRfNSTcik1feRVGqEsvoUfZTLmKvJIXQbdy83TZxVZMCC2m6M3ZAxpgjnmteQ0AoJN4BvCytUQoahdFlkeULUuEcpsaRlS0l0d9v3JaVSM4sjKAyGA3UMKFIuJZ6k0tYUKPIYV8x3a5y4lDset1UJrNwSgcjkyk3VjI9gIbRsFivQi2VUTp1gVoKr-ZBRqtXxW-dybt4gO7aTgCblBAzHLcF1bq3F4x8nO_lT7wvY6Nw2gqeHdusUNomxduLWKUMhHk_VmWY5MT_PdvInJTvzDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+bearing+capacity+of+pile+foundation+using+deep+learning+approaches&rft.jtitle=Frontiers+of+Structural+and+Civil+Engineering&rft.au=Kumar%2C+Manish&rft.au=Kumar%2C+Divesh+Ranjan&rft.au=Khatti%2C+Jitendra&rft.au=Samui%2C+Pijush&rft.date=2024-06-01&rft.issn=2095-2430&rft.eissn=2095-2449&rft.volume=18&rft.issue=6&rft.spage=870&rft.epage=886&rft_id=info:doi/10.1007%2Fs11709-024-1085-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11709_024_1085_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2430&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2430&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2430&client=summon