Natural Vector Spaces (inward power and Minkowski norm of a Natural Vector, Natural Boolean Hypercubes) and a Fermat’s Last Theorem conjecture

In order to use the structure and operations of Molecular Similarity semispaces, Natural Vector Semispaces are considered in this study as vector spaces defined over the set of natural numbers, with zero added if necessary. The complete sum and inward power of a vector, defined as basic tools in Qua...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical chemistry Vol. 55; no. 4; pp. 914 - 940
Main Author Carbó-Dorca, Ramon
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0259-9791
1572-8897
DOI10.1007/s10910-016-0708-6

Cover

Abstract In order to use the structure and operations of Molecular Similarity semispaces, Natural Vector Semispaces are considered in this study as vector spaces defined over the set of natural numbers, with zero added if necessary. The complete sum and inward power of a vector, defined as basic tools in Quantum Molecular Similarity, are now applied to a Natural Vector to describe Minkowski norms in these vector spaces. The structure and behavior of the Minkowski norm of Natural Vector inward powers and the Boolean Hypercube vertex translation into natural numbers are further used to conjecture a plausible general set up of Fermat’s Last Theorem.
AbstractList In order to use the structure and operations of Molecular Similarity semispaces, Natural Vector Semispaces are considered in this study as vector spaces defined over the set of natural numbers, with zero added if necessary. The complete sum and inward power of a vector, defined as basic tools in Quantum Molecular Similarity, are now applied to a Natural Vector to describe Minkowski norms in these vector spaces. The structure and behavior of the Minkowski norm of Natural Vector inward powers and the Boolean Hypercube vertex translation into natural numbers are further used to conjecture a plausible general set up of Fermat’s Last Theorem.
Author Carbó-Dorca, Ramon
Author_xml – sequence: 1
  givenname: Ramon
  orcidid: 0000-0002-9219-0686
  surname: Carbó-Dorca
  fullname: Carbó-Dorca, Ramon
  email: ramoncarbodorca@gmail.com
  organization: Secció de Química Quàntica i Matemàtica, Centre Europeu de Recerca Teòrica, Universitat de Girona
BookMark eNp9kMFOGzEQhi1EpQboA_RmiUsrscV21mvvsUVQkEJ7KO3VGpwx3ZDY27FXETceoVdejyfp0iBUKrWn0Uj_98_o22HbMUVk7LUU76QQ5jBL0UpRCdlUwghbNVtsIrVRlbWt2WYToXRbtaaVL9lOzgshRGsbO2E_P0EZCJb8G_qSiH_pwWPmb7q4BprzPq2ROMQ5P-_idVrn647HRCueAgf-nD142j-ktESI_PSmR_LDJea3vzuAnyCtoNzf3mU-g1z4xXdMhCvuU1yMJQPhHnsRYJnx1ePcZV9Pji-OTqvZ549nR-9nlZ_KplQ62HpuQdUGMWiQWtYeQ_BqamucazXK8FpZo8RlwFopROsVyDrYMa5bnO6y_U1vT-nHgLm4RRoojiedtFYYrafKjCmzSXlKORMG57sCpUuxEHRLJ4V70O82-t2o3z3od81Iyr_InroV0M1_GbVh8piNV0h__PRP6BcesZvB
CitedBy_id crossref_primary_10_4236_jamp_2023_111011
crossref_primary_10_1007_s10910_018_0913_6
crossref_primary_10_1007_s10910_020_01196_1
crossref_primary_10_1007_s00214_021_02719_y
crossref_primary_10_1007_s10910_018_00990_2
crossref_primary_10_1007_s10910_018_0866_9
crossref_primary_10_1007_s10910_018_00997_9
crossref_primary_10_1007_s11227_021_03727_2
crossref_primary_10_1007_s10910_021_01227_5
crossref_primary_10_1007_s10910_021_01229_3
crossref_primary_10_1007_s10910_021_01266_y
crossref_primary_10_1007_s10910_021_01267_x
crossref_primary_10_32323_ujma_738463
crossref_primary_10_33187_jmsm_413116
crossref_primary_10_4236_jamp_2024_121004
crossref_primary_10_3390_sym15020557
crossref_primary_10_1007_s10910_023_01479_3
crossref_primary_10_33187_jmsm_972781
crossref_primary_10_1002_jcc_26402
crossref_primary_10_33187_jmsm_776898
crossref_primary_10_1007_s10910_017_0766_4
crossref_primary_10_1007_s10910_020_01137_y
crossref_primary_10_1002_jcc_26044
crossref_primary_10_1007_s10910_021_01301_y
crossref_primary_10_1007_s10910_021_01296_6
crossref_primary_10_1007_s10910_018_0978_2
crossref_primary_10_4236_jamp_2025_132034
Cites_doi 10.1023/A:1019123914357
10.1007/s10910-008-9442-z
10.1007/s10910-016-0648-1
10.1016/0097-8485(94)85005-4
10.1007/s10910-011-9906-4
10.1016/S0166-1280(00)00661-8
10.1007/BF01165573
10.1007/s10910-015-0585-4
10.1002/1097-461X(2000)79:3<163::AID-QUA2>3.0.CO;2-0
10.1201/b15459-15
10.1080/00268976.2015.1093663
10.1002/qua.20191
10.1023/B:JOMC.0000038793.21806.65
10.1007/s10910-014-0419-9
10.1007/s10910-015-0516-4
10.1021/ci00010a005
10.1002/qua.560420608
10.1002/jcc.23198
10.1007/s10910-016-0649-0
10.1023/A:1019185627987
10.1023/A:1018832008106
10.1002/qua.560170612
10.1007/s10910-016-0628-5
10.1007/978-0-387-30440-3_440
10.2307/2118559
10.1007/s10910-016-0672-1
10.1023/A:1021250527289
10.1002/qua.560420607
10.1007/BF01166602
10.1002/wcms.1223
10.1007/s10910-011-9960-y
10.1023/A:1024742724706
ContentType Journal Article
Copyright Springer International Publishing Switzerland 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer International Publishing Switzerland 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s10910-016-0708-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Mathematics
EISSN 1572-8897
EndPage 940
ExternalDocumentID 10_1007_s10910_016_0708_6
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z83
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c316t-5f84d8a247eef5a1514ceffc2384ed52910c528720bfe422ee8c2a14f8ef559e3
IEDL.DBID AGYKE
ISSN 0259-9791
IngestDate Wed Sep 17 13:41:07 EDT 2025
Wed Oct 01 04:30:11 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Fri Feb 21 02:37:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Inward vector powers
Minkowski norms
Fermat’s Last Theorem
Fermat Natural Vectors
Quantum molecular similarity
Fermat discrete probability distributions
Complete vector sums
Natural Vector Semispaces
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5f84d8a247eef5a1514ceffc2384ed52910c528720bfe422ee8c2a14f8ef559e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9219-0686
PQID 1880755327
PQPubID 2043851
PageCount 27
ParticipantIDs proquest_journals_1880755327
crossref_citationtrail_10_1007_s10910_016_0708_6
crossref_primary_10_1007_s10910_016_0708_6
springer_journals_10_1007_s10910_016_0708_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Journal of mathematical chemistry
PublicationTitleAbbrev J Math Chem
PublicationYear 2017
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Carbó-DorcaRJ. Mol. Struct. Teochem.2001537415410.1016/S0166-1280(00)00661-8
Carbó-DorcaRBesalúEJ. Math. Chem.20125021021910.1007/s10910-011-9906-4
Carbó-DorcaRJ. Math. Chem.19982335336410.1023/A:1019185627987
See, for instance: http://www.mersenne.org/primes
Carbó-DorcaRMol. Phys.20161147–81236124910.1080/00268976.2015.1093663
Carbó-DorcaRJ. Math. Chem.19972214314710.1023/A:1019123914357
Carbó-DorcaRBarragánDWIREs Comput. Mol. Sci.2015538040410.1002/wcms.1223
Carbó-DorcaRJ. Math. Chem.20155317118210.1007/s10910-014-0419-9
http://mathworld.wolfram.com/EulersSumofPowersConjecture.html
R. Carbó-Dorca; Adv. Mol. Simil. 2, 43–72. (1998) (Editors: R. Carbó, P.G. Mezey, JAI Press Inc. Greenwich (Conn.))
R. Carbó-Dorca, A Theorem on the Gram matrix of a Polyhedron IQCC Technical report TC-2015-14. J. Math. Chem. (2016). doi:10.1007/s10910-016-0672-1
Carbó-DorcaRJ. Comp. Chem.20133476677910.1002/jcc.23198
CarbóRBesalúEComput. Chem.19941811712610.1016/0097-8485(94)85005-4
Carbó-DorcaRJ. Math. Chem.20084462863610.1007/s10910-008-9442-z
Carbó-DorcaRJ. Math. Chem.20155318671884
Carbó-DorcaRJ. Math. Chem.2016541213122010.1007/s10910-016-0628-5
CarbóRCalabuigBInt. J. Quant. Chem.1992421681169310.1002/qua.560420607
CarbóRCalabuigBJ. Chem. Inf. Comp. Sci.19923260060610.1021/ci00010a005
Carbó-DorcaRVan DammeSAfinidad200764147153
Carbó-DorcaRJ. Math. Chem.2016541798180910.1007/s10910-016-0649-0
Carbó-DorcaRJ. Math. Chem.20023220122310.1023/A:1021250527289
R. Carbó-Dorca, A. Gallegos, in Encyclopedia of Complexity and Systems Science, ed. R. Meyers. Quantum Similarity and Quantum QSPR (QQSPR). Entry: 176, vol. 8. (Springer, New York, 2009), p. 7422–7480
Carbó-DorcaRJ. Math. Chem.2016541751175710.1007/s10910-016-0648-1
Carbó-DorcaRJ. Math. Chem.20165465766010.1007/s10910-015-0585-4
R. Carbó, Ll. Leida, M. Arnau, Int. J. Quant. Chem. 17, 1185–1189 (1980)
BesalúECarbóRJ. Math. Chem.199518377210.1007/BF01166602
Carbo-DorcaRGironésXInt. J. Quant. Chem.20051018201:CAS:528:DC%2BD2cXhtVWgsLrF10.1002/qua.20191
Carbó-DorcaRInt. J. Quant. Chem.20007916317710.1002/1097-461X(2000)79:3<163::AID-QUA2>3.0.CO;2-0
R. Carbó, B. Calabuig, in Chapter 6 ofMolecular Similarity ed. by M.A. Johnson, G.M. Maggiora. Molecular Similarity and Quantum Chemistry (Wiley, New York, 1990)
CarbóRBesalúEJ. Math. Chem.19931333134210.1007/BF01165573
Carbó-DorcaRJ. Math. Chem.20002735737610.1023/A:1018832008106
L. Euler, Vollständige Anleitung zur Algebra. R. Acad. Sci. St. Petersburg (1770)
WilesAAnnal. Math.199514144355110.2307/2118559
https://en.wikipedia.org/wiki/Euler%27s_sum_of_powers_conjecture
Carbó-DorcaRJ. Math. Chem.20033322724410.1023/A:1024742724706
BultinckPCarbó-DorcaRJ. Math. Chem.2004361912001:CAS:528:DC%2BD2cXmvV2ns70%3D10.1023/B:JOMC.0000038793.21806.65
Carbó-DorcaRJ. Math. Chem.2015531750175810.1007/s10910-015-0516-4
Carbó-DorcaRBesalúEJ. Math. Chem.2012501161117810.1007/s10910-011-9960-y
E. Besalú, R. Carbó, in Strategies and Applications in Quantum Chemistry: from Astrophysics to Molecular Engineering An Hommage to Prof. G. Berthier, ed. by M. Defranceschi, Y. Ellinger. Applications of Nested Summation Symbols to Quantum Chemistry: Formalism and Programming Techniques (Kluwer Academic Pub., Amsterdam, 1996), p. 229–248
Carbó-DorcaRGonzálezSManag. Stud.201643347
CarbóRCalabuigBInt. J. Quant. Chem.1992421695170910.1002/qua.560420608
Carbó-DorcaRJ. Math. Chem2016545171
G. Shimura, Y. Taniyama; Complex multiplication of Abelian varieties and its applications to number theory. Math. Soc. Jpn. (1961)
R. Carbó-Dorca, in Quantum Chemistry: Theory and Practice, ed. T. Chakraborty. Triple Density Quantum Similarity Measures and the Tensorial Representation of Quantum Object Sets, vol. 2 (Apple Academic Press, Taylor & Francis Group, USA, 2012)
T. Gowers (ed.), The Princeton Companoin to Mathematics (Princeton Univ. Press, Princeton, Oxford, 2008)
R Carbó-Dorca (708_CR10) 2002; 32
R Carbó-Dorca (708_CR6) 2016; 54
708_CR1
R Carbó-Dorca (708_CR34) 2016; 114
708_CR3
R Carbó-Dorca (708_CR8) 1998; 23
708_CR24
E Besalú (708_CR44) 1995; 18
708_CR45
708_CR25
R Carbó-Dorca (708_CR4) 2016; 54
708_CR9
A Wiles (708_CR2) 1995; 141
R Carbó-Dorca (708_CR36) 2016; 54
R Carbó-Dorca (708_CR15) 2012; 50
R Carbó (708_CR14) 1992; 42
R Carbó-Dorca (708_CR11) 2008; 44
R Carbó-Dorca (708_CR33) 2015; 53
R Carbó-Dorca (708_CR35) 2016; 4
708_CR41
R Carbó-Dorca (708_CR22) 2000; 27
R Carbó-Dorca (708_CR21) 2000; 79
708_CR17
708_CR16
708_CR38
R Carbó (708_CR23) 1992; 32
R Carbó-Dorca (708_CR12) 2012; 50
708_CR18
R Carbó-Dorca (708_CR19) 2013; 34
R Carbó-Dorca (708_CR5) 2016; 54
R Carbó-Dorca (708_CR40) 2001; 537
P Bultinck (708_CR26) 2004; 36
R Carbó-Dorca (708_CR32) 2015; 53
R Carbó-Dorca (708_CR39) 2003; 33
R Carbó-Dorca (708_CR7) 1997; 22
R Carbó (708_CR13) 1992; 42
R Carbo-Dorca (708_CR20) 2005; 101
R Carbó-Dorca (708_CR27) 2007; 64
708_CR31
708_CR30
R Carbó-Dorca (708_CR37) 2016; 54
R Carbó (708_CR42) 1993; 13
R Carbó (708_CR43) 1994; 18
R Carbó-Dorca (708_CR28) 2015; 53
R Carbó-Dorca (708_CR29) 2015; 5
References_xml – reference: Carbó-DorcaRJ. Math. Chem.20033322724410.1023/A:1024742724706
– reference: Carbó-DorcaRJ. Math. Chem.19972214314710.1023/A:1019123914357
– reference: CarbóRBesalúEJ. Math. Chem.19931333134210.1007/BF01165573
– reference: CarbóRCalabuigBInt. J. Quant. Chem.1992421681169310.1002/qua.560420607
– reference: CarbóRCalabuigBJ. Chem. Inf. Comp. Sci.19923260060610.1021/ci00010a005
– reference: R. Carbó, B. Calabuig, in Chapter 6 ofMolecular Similarity ed. by M.A. Johnson, G.M. Maggiora. Molecular Similarity and Quantum Chemistry (Wiley, New York, 1990)
– reference: Carbó-DorcaRJ. Mol. Struct. Teochem.2001537415410.1016/S0166-1280(00)00661-8
– reference: See, for instance: http://www.mersenne.org/primes/
– reference: G. Shimura, Y. Taniyama; Complex multiplication of Abelian varieties and its applications to number theory. Math. Soc. Jpn. (1961)
– reference: Carbó-DorcaRJ. Math. Chem.2016541798180910.1007/s10910-016-0649-0
– reference: L. Euler, Vollständige Anleitung zur Algebra. R. Acad. Sci. St. Petersburg (1770)
– reference: Carbó-DorcaRJ. Math. Chem.20002735737610.1023/A:1018832008106
– reference: Carbó-DorcaRJ. Math. Chem2016545171
– reference: R. Carbó-Dorca; Adv. Mol. Simil. 2, 43–72. (1998) (Editors: R. Carbó, P.G. Mezey, JAI Press Inc. Greenwich (Conn.))
– reference: Carbó-DorcaRBarragánDWIREs Comput. Mol. Sci.2015538040410.1002/wcms.1223
– reference: R. Carbó-Dorca, A. Gallegos, in Encyclopedia of Complexity and Systems Science, ed. R. Meyers. Quantum Similarity and Quantum QSPR (QQSPR). Entry: 176, vol. 8. (Springer, New York, 2009), p. 7422–7480
– reference: http://mathworld.wolfram.com/EulersSumofPowersConjecture.html
– reference: R. Carbó, Ll. Leida, M. Arnau, Int. J. Quant. Chem. 17, 1185–1189 (1980)
– reference: T. Gowers (ed.), The Princeton Companoin to Mathematics (Princeton Univ. Press, Princeton, Oxford, 2008)
– reference: Carbó-DorcaRJ. Math. Chem.2015531750175810.1007/s10910-015-0516-4
– reference: CarbóRCalabuigBInt. J. Quant. Chem.1992421695170910.1002/qua.560420608
– reference: Carbó-DorcaRInt. J. Quant. Chem.20007916317710.1002/1097-461X(2000)79:3<163::AID-QUA2>3.0.CO;2-0
– reference: Carbó-DorcaRJ. Math. Chem.20155317118210.1007/s10910-014-0419-9
– reference: WilesAAnnal. Math.199514144355110.2307/2118559
– reference: CarbóRBesalúEComput. Chem.19941811712610.1016/0097-8485(94)85005-4
– reference: BesalúECarbóRJ. Math. Chem.199518377210.1007/BF01166602
– reference: R. Carbó-Dorca, in Quantum Chemistry: Theory and Practice, ed. T. Chakraborty. Triple Density Quantum Similarity Measures and the Tensorial Representation of Quantum Object Sets, vol. 2 (Apple Academic Press, Taylor & Francis Group, USA, 2012)
– reference: Carbó-DorcaRGonzálezSManag. Stud.201643347
– reference: E. Besalú, R. Carbó, in Strategies and Applications in Quantum Chemistry: from Astrophysics to Molecular Engineering An Hommage to Prof. G. Berthier, ed. by M. Defranceschi, Y. Ellinger. Applications of Nested Summation Symbols to Quantum Chemistry: Formalism and Programming Techniques (Kluwer Academic Pub., Amsterdam, 1996), p. 229–248
– reference: Carbó-DorcaRMol. Phys.20161147–81236124910.1080/00268976.2015.1093663
– reference: Carbo-DorcaRGironésXInt. J. Quant. Chem.20051018201:CAS:528:DC%2BD2cXhtVWgsLrF10.1002/qua.20191
– reference: Carbó-DorcaRJ. Math. Chem.2016541213122010.1007/s10910-016-0628-5
– reference: Carbó-DorcaRBesalúEJ. Math. Chem.2012501161117810.1007/s10910-011-9960-y
– reference: Carbó-DorcaRVan DammeSAfinidad200764147153
– reference: Carbó-DorcaRJ. Comp. Chem.20133476677910.1002/jcc.23198
– reference: Carbó-DorcaRJ. Math. Chem.19982335336410.1023/A:1019185627987
– reference: Carbó-DorcaRJ. Math. Chem.20165465766010.1007/s10910-015-0585-4
– reference: BultinckPCarbó-DorcaRJ. Math. Chem.2004361912001:CAS:528:DC%2BD2cXmvV2ns70%3D10.1023/B:JOMC.0000038793.21806.65
– reference: Carbó-DorcaRJ. Math. Chem.20084462863610.1007/s10910-008-9442-z
– reference: Carbó-DorcaRBesalúEJ. Math. Chem.20125021021910.1007/s10910-011-9906-4
– reference: https://en.wikipedia.org/wiki/Euler%27s_sum_of_powers_conjecture
– reference: Carbó-DorcaRJ. Math. Chem.20023220122310.1023/A:1021250527289
– reference: Carbó-DorcaRJ. Math. Chem.20155318671884
– reference: Carbó-DorcaRJ. Math. Chem.2016541751175710.1007/s10910-016-0648-1
– reference: R. Carbó-Dorca, A Theorem on the Gram matrix of a Polyhedron IQCC Technical report TC-2015-14. J. Math. Chem. (2016). doi:10.1007/s10910-016-0672-1
– volume: 22
  start-page: 143
  year: 1997
  ident: 708_CR7
  publication-title: J. Math. Chem.
  doi: 10.1023/A:1019123914357
– volume: 44
  start-page: 628
  year: 2008
  ident: 708_CR11
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-008-9442-z
– volume: 54
  start-page: 1751
  year: 2016
  ident: 708_CR37
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-016-0648-1
– volume: 4
  start-page: 33
  year: 2016
  ident: 708_CR35
  publication-title: Manag. Stud.
– volume: 18
  start-page: 117
  year: 1994
  ident: 708_CR43
  publication-title: Comput. Chem.
  doi: 10.1016/0097-8485(94)85005-4
– ident: 708_CR31
– volume: 50
  start-page: 210
  year: 2012
  ident: 708_CR12
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-011-9906-4
– volume: 537
  start-page: 41
  year: 2001
  ident: 708_CR40
  publication-title: J. Mol. Struct. Teochem.
  doi: 10.1016/S0166-1280(00)00661-8
– volume: 13
  start-page: 331
  year: 1993
  ident: 708_CR42
  publication-title: J. Math. Chem.
  doi: 10.1007/BF01165573
– volume: 54
  start-page: 657
  year: 2016
  ident: 708_CR4
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-015-0585-4
– volume: 79
  start-page: 163
  year: 2000
  ident: 708_CR21
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/1097-461X(2000)79:3<163::AID-QUA2>3.0.CO;2-0
– ident: 708_CR16
  doi: 10.1201/b15459-15
– volume: 114
  start-page: 1236
  issue: 7–8
  year: 2016
  ident: 708_CR34
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2015.1093663
– ident: 708_CR24
– ident: 708_CR41
– volume: 54
  start-page: 51
  year: 2016
  ident: 708_CR36
  publication-title: J. Math. Chem
– volume: 101
  start-page: 8
  year: 2005
  ident: 708_CR20
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.20191
– volume: 53
  start-page: 1867
  year: 2015
  ident: 708_CR33
  publication-title: J. Math. Chem.
– volume: 36
  start-page: 191
  year: 2004
  ident: 708_CR26
  publication-title: J. Math. Chem.
  doi: 10.1023/B:JOMC.0000038793.21806.65
– volume: 53
  start-page: 171
  year: 2015
  ident: 708_CR28
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-014-0419-9
– ident: 708_CR45
– volume: 53
  start-page: 1750
  year: 2015
  ident: 708_CR32
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-015-0516-4
– volume: 32
  start-page: 600
  year: 1992
  ident: 708_CR23
  publication-title: J. Chem. Inf. Comp. Sci.
  doi: 10.1021/ci00010a005
– volume: 42
  start-page: 1695
  year: 1992
  ident: 708_CR14
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.560420608
– volume: 34
  start-page: 766
  year: 2013
  ident: 708_CR19
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.23198
– volume: 54
  start-page: 1798
  year: 2016
  ident: 708_CR6
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-016-0649-0
– ident: 708_CR30
– ident: 708_CR9
– volume: 23
  start-page: 353
  year: 1998
  ident: 708_CR8
  publication-title: J. Math. Chem.
  doi: 10.1023/A:1019185627987
– volume: 27
  start-page: 357
  year: 2000
  ident: 708_CR22
  publication-title: J. Math. Chem.
  doi: 10.1023/A:1018832008106
– ident: 708_CR17
  doi: 10.1002/qua.560170612
– ident: 708_CR1
– volume: 54
  start-page: 1213
  year: 2016
  ident: 708_CR5
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-016-0628-5
– ident: 708_CR3
– ident: 708_CR18
  doi: 10.1007/978-0-387-30440-3_440
– volume: 141
  start-page: 443
  year: 1995
  ident: 708_CR2
  publication-title: Annal. Math.
  doi: 10.2307/2118559
– ident: 708_CR38
  doi: 10.1007/s10910-016-0672-1
– volume: 32
  start-page: 201
  year: 2002
  ident: 708_CR10
  publication-title: J. Math. Chem.
  doi: 10.1023/A:1021250527289
– volume: 42
  start-page: 1681
  year: 1992
  ident: 708_CR13
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.560420607
– volume: 18
  start-page: 37
  year: 1995
  ident: 708_CR44
  publication-title: J. Math. Chem.
  doi: 10.1007/BF01166602
– ident: 708_CR25
– volume: 64
  start-page: 147
  year: 2007
  ident: 708_CR27
  publication-title: Afinidad
– volume: 5
  start-page: 380
  year: 2015
  ident: 708_CR29
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1223
– volume: 50
  start-page: 1161
  year: 2012
  ident: 708_CR15
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-011-9960-y
– volume: 33
  start-page: 227
  year: 2003
  ident: 708_CR39
  publication-title: J. Math. Chem.
  doi: 10.1023/A:1024742724706
SSID ssj0009868
Score 2.2296793
Snippet In order to use the structure and operations of Molecular Similarity semispaces, Natural Vector Semispaces are considered in this study as vector spaces...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 914
SubjectTerms Boolean algebra
Chemistry
Chemistry and Materials Science
Hypercubes
Math. Applications in Chemistry
Molecular structure
Norms
Number theory
Original Paper
Physical Chemistry
Similarity
Theorems
Theoretical and Computational Chemistry
Vector spaces
Title Natural Vector Spaces (inward power and Minkowski norm of a Natural Vector, Natural Boolean Hypercubes) and a Fermat’s Last Theorem conjecture
URI https://link.springer.com/article/10.1007/s10910-016-0708-6
https://www.proquest.com/docview/1880755327
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1572-8897
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009868
  issn: 0259-9791
  databaseCode: ABDBF
  dateStart: 20080122
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1572-8897
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009868
  issn: 0259-9791
  databaseCode: AMVHM
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8897
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009868
  issn: 0259-9791
  databaseCode: AFBBN
  dateStart: 19870301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8897
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009868
  issn: 0259-9791
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009868
  issn: 0259-9791
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGH7FugNw4GOA6BjVe-DAV6bWsRP72E4rFdBeWNE4RbZjS2NbUi2pkDjxE7jy9_gl2G7SbhMg7RjFthx_vc-b9_HzArwQPNapGbAoZzSPqBUiUj7IK4nkiVVK0RBon86SyZy-P2bHzT3uqmW7tyHJcFJfuuwmAonKecBpn0fJFmwHua0ObA_ffflwuNHa5eEGnLPmIhKpGLTBzL81ctUcbTDmtbBosDbj-3DU9nNFMjndX9ZqX3-_JuF4ww95APca9InD1XJ5CLdMsQO3D9qkbztwd7qWca0ewc-ZDLIc-Dn828dPC0_gwpcnhefa4sJnWENZ5Dh13Si_VacnWDgMjKVFiVfrvl0_j8ryzMgCJ84DvtBLZapXoQ2JY28l6t8_flX4UVY1Bt0Ac47OZf-6CnU8hvn48OhgEjUpHCIdD5I6YpbTnEtCU2Mskw5eUG2s1Q4oUJMz4gZCM-e0kb6yhhJiDNdEDqjlrjgTJn4CnaIszFNAh3u4jf2RZJVDPVTGOhFuHzCvMWgU7UK_nclMN_rmPs3GWbZRZvYDn3lOmx_4LOnC63WVxUrc43-F99rlkTX7vMq8ml3KWEzSLrxpZ_vS6381tnuj0s_gDvFoIhCG9qBTXyzNc4eFatVza388Gs16zR7owdacDP8AxcgCng
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB7xcwAOFb_qUlrm0EMLRNpN7MQ-UsRqaXf3UhZxi2zHliiQrEgQVx6h174eT4LtTXYBFSSOUeyR4rE932RmvgH4ylmkEt2hQUZJFhDDeSBdkFeEgsVGSkl8oH0wjHsj8vOcntd13GWT7d6EJP1N_aTYjfskKusBJ20WxPOw6PirHGH-KDycMe0yX_9mbTkPeMI7TSjzfyKeG6MZwnwRFPW2prsKH2qQiIcTra7BnM7XYemo6c22DiuDKdtquQF_h8KzZ-CZ_wWPv8cuzwq_XeQuJRbHrhEaijzDgf3s4q68vMDcQlUsDAp8Pvdg-vyjKK60yLFnHdUbdSt1-d3LENh1l3n1cP-vxL4oK_Tl_foarWf9ZxKR2IRR9_j0qBfUnRYCFXXiKqCGkYyJkCRaGyosCiBKG6OsPSc6o6FdNUWtbxW2pdF20bVmKhQdYpgdTrmOtmAhL3L9EdDCE2Yid3MYacEJEZGKud2u1FEBakla0G6WPFU1DbnrhnGVzgiUnZZSl3rmtJTGLdibThlPODjeGrzT6DGtj2OZOtK5hNIoTFqw3-j2yevXhG2_a_QuLPVOB_20fzL89QmWQwcAfI7PDixUN7f6s4Uvlfzit-sjCJ_mSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB61VKLtoeKniKUU5tADtI3YdezEPlLKakvZFVK7iFtkO7YEhWRFgnrtI_Ta1-uT1PYmu1BRpB6j2HOYmXg-Z2a-AXgjeKxT02NRzmgeUStEpHySVxLJE6uUoiHRPhwlgzE9OmNnzZzTqq12b1OS054Gz9JU1HuT3O7danwToaDK3YbTLo-Sx_CEep4E59Bjsj9n3eWhF87FdRGJVPTatOZ9Iu4Gpjna_CtBGuJOfwleNIAR96cWXoZHpliBpwftnLYVeD6cMa9Wq_BzJAOTBp6G3_H4ZeJrrnDnvPDlsTjxQ9FQFjkOnQrK79W3cywcbMXSosS7e9_Pnj-U5aWRBQ7cpfVa3yhT7QYZEvv-YK9___hV4bGsagyt_uYKnTovptmJlzDuH349GETN1IVIx72kjpjlNOeS0NQYy6RDBFQba7WL7dTkjDitaebuWaSrrKGEGMM1kT1quVvOhInXYKEoC7MO6KAKt7E_RaxyQIXKWCfCuS7ztIBG0Q50W5VnuqEk95MxLrM5mbK3UubL0LyVsqQDb2dbJlM-jocWb7Z2zJpPs8o8AV3KWEzSDrxrbXvr9b-EbfzX6m1YPPnYz44_jT6_gmfEY4FQ7rMJC_X1jXntkEyttoK3_gFO4uqH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Vector+Spaces+%28inward+power+and+Minkowski+norm+of+a+Natural+Vector%2C+Natural+Boolean+Hypercubes%29+and+a+Fermat%E2%80%99s+Last+Theorem+conjecture&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=Carb%C3%B3-Dorca%2C+Ramon&rft.date=2017-04-01&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=55&rft.issue=4&rft.spage=914&rft.epage=940&rft_id=info:doi/10.1007%2Fs10910-016-0708-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10910_016_0708_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon