Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes

Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li 2 SO 4 and α-Na 3 PO 4 based inorganic ionic plastic crystal electro...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 37; no. 6; pp. 497 - 503
Main Authors Zhao, Qian, Pan, Li, Li, Yuan-Ji, Chen, Li-Quan, Shi, Si-Qi
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1001-0521
1867-7185
DOI10.1007/s12598-018-1058-2

Cover

Abstract Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li 2 SO 4 and α-Na 3 PO 4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li 10 MP 2 S 12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion.
AbstractList Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li 2 SO 4 and α-Na 3 PO 4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li 10 MP 2 S 12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion.
Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li2SO4 and α-Na3PO4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li10MP2S12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion.
Author Shi, Si-Qi
Chen, Li-Quan
Li, Yuan-Ji
Pan, Li
Zhao, Qian
Author_xml – sequence: 1
  givenname: Qian
  surname: Zhao
  fullname: Zhao, Qian
  organization: Materials Genome Institute, Shanghai University
– sequence: 2
  givenname: Li
  surname: Pan
  fullname: Pan, Li
  organization: School of Materials Science and Engineering, Shanghai University
– sequence: 3
  givenname: Yuan-Ji
  surname: Li
  fullname: Li, Yuan-Ji
  organization: Qianweichang College, Shanghai University
– sequence: 4
  givenname: Li-Quan
  surname: Chen
  fullname: Chen, Li-Quan
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Si-Qi
  orcidid: 0000-0001-8988-9763
  surname: Shi
  fullname: Shi, Si-Qi
  email: sqshi@shu.edu.cn
  organization: Materials Genome Institute, Shanghai University, School of Materials Science and Engineering, Shanghai University
BookMark eNp9kE1LAzEQhoMo2FZ_gLeA59WZ_UiyRyl-QUEQPYc0m9WU7aYm2Ur_vVlWEAQ9ZQLv8zLzzMlx73pDyAXCFQLw64B5VYsMUGQIlcjyIzJDwXjGUVTHaQbADKocT8k8hA1AWTIGMxKfXVTRul51dOvGgbqW7lx3UP342RsfhkD3rhu2hpq2NTpSFYLTVkXT0E8b32kKWk2165tBR7u38TCWBJPgVBtcZxtqukT61BtNOCMnreqCOf9-F-T17vZl-ZCtnu4flzerTBfIYlaJRjQtNGXdmlKvldC8qVGUShjFWwYa17XgWHPOoFC8zBG5qEvOciYqZppiQS6n3p13H4MJUW7c4NOpQeZQiFJAUdQpxaeU9i4Eb1qp7eQkemU7iSBHxXJSLJNiOSqWeSLxF7nzdqv84V8mn5iQsv2b8T87_Q19AdrjklA
CitedBy_id crossref_primary_10_1021_acsenergylett_1c01781
crossref_primary_10_1007_s11426_022_1488_9
crossref_primary_10_1016_j_jpowsour_2021_230718
crossref_primary_10_1016_j_mtcomm_2020_101588
crossref_primary_10_1016_j_jpowsour_2025_236720
crossref_primary_10_1021_acs_jpcc_0c07880
crossref_primary_10_1063_5_0002992
crossref_primary_10_1021_acsami_3c01570
crossref_primary_10_34133_energymatadv_0015
crossref_primary_10_1002_adfm_202003087
crossref_primary_10_1016_j_physb_2021_413590
crossref_primary_10_1038_s43246_024_00550_z
crossref_primary_10_7498_aps_69_20201519
crossref_primary_10_7498_aps_71_20221050
crossref_primary_10_1021_acsmaterialslett_9b00322
crossref_primary_10_1021_acsami_1c20910
crossref_primary_10_1021_acs_chemmater_1c00124
crossref_primary_10_1002_asia_202001414
crossref_primary_10_1016_j_nanoen_2020_105407
crossref_primary_10_1002_aenm_202302550
crossref_primary_10_1002_eem2_12612
crossref_primary_10_1016_j_jmat_2021_05_006
crossref_primary_10_1007_s12598_023_02295_z
crossref_primary_10_1016_j_scib_2022_01_026
crossref_primary_10_1016_j_vacuum_2020_109313
crossref_primary_10_1039_D1TA01367J
crossref_primary_10_1039_D0NJ04850J
crossref_primary_10_1021_acs_jpcc_1c07347
crossref_primary_10_1016_j_cossms_2020_100875
crossref_primary_10_1016_j_physb_2020_412489
crossref_primary_10_1039_D4QI01141D
crossref_primary_10_1021_acsaem_0c02519
crossref_primary_10_1039_D2CP01340A
crossref_primary_10_1002_adsu_202401028
crossref_primary_10_1360_SSC_2023_0255
crossref_primary_10_1016_j_ensm_2021_05_033
crossref_primary_10_1016_j_jpowsour_2025_236591
crossref_primary_10_1039_D1DT02864B
crossref_primary_10_1021_acs_jpcc_9b00436
crossref_primary_10_1016_j_esci_2024_100278
crossref_primary_10_1016_j_actamat_2020_116490
crossref_primary_10_1007_s41918_023_00191_9
crossref_primary_10_1039_C8TA08412B
Cites_doi 10.1038/natrevmats.2016.103
10.1524/zpch.2009.6083
10.1021/acs.chemrev.5b00563
10.1039/C2EE23355J
10.1039/C2CP43267F
10.1039/C7EE03083E
10.1088/0022-3719/13/35/004
10.1088/1674-1056/25/1/018211
10.1016/0167-2738(92)90149-J
10.1021/jp973296c
10.1002/aenm.201300060
10.1021/acs.chemmater.5b04082
10.1021/ja508723m
10.1002/anie.199115471
10.1021/ja407393y
10.1016/0167-2738(91)90043-B
10.1016/j.ssi.2014.07.011
10.1016/0022-4596(91)90133-3
10.1039/C4FD00143E
10.1016/j.jpowsour.2006.04.085
10.1016/0022-4596(84)90114-2
10.1039/c0cs00081g
10.1039/C7TA01147D
10.1016/0167-2738(86)90190-6
10.1038/nmat3066
10.1016/0167-2738(90)90425-Q
10.1111/jace.13694
10.1021/acsami.6b00833
10.1016/0167-2738(85)90002-5
10.1016/j.jeurceramsoc.2007.02.118
10.1107/S0567739476001551
10.1021/ja3091438
10.1016/0025-5408(87)90233-9
10.1039/c2jm16688g
10.1016/0167-2738(94)90310-7
10.1038/nenergy.2016.30
10.1016/0167-2738(95)00193-A
10.1149/1.2133537
10.1038/srep14227
10.1016/S0167-2738(88)80027-4
10.1023/A:1012775801761
10.1073/pnas.1704086114
10.1016/j.mseb.2016.03.005
10.1016/S0921-4526(98)01494-X
10.1016/0167-2738(82)90060-1
10.1021/cm203303y
ContentType Journal Article
Copyright The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Rare Metals is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Rare Metals is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8BQ
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s12598-018-1058-2
DatabaseName CrossRef
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 503
ExternalDocumentID 10_1007_s12598_018_1058_2
GrantInformation_xml – fundername: National Natural Science Foundation of China (CN)
  grantid: Nos. U1430104; 51622207; 51372228
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB0701600
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8BQ
8FD
ABRTQ
AEUYN
DWQXO
JG9
L6V
M7S
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PUEGO
ID FETCH-LOGICAL-c316t-58d8df0d49fe4cba8c7d9184a8ea7f60c1b9871977603a7421178947626856ed3
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Thu Sep 25 00:41:53 EDT 2025
Tue Jul 01 01:30:05 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 21 02:43:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Volume effect
Inorganic plastic crystal electrolyte
Rotational motion of polyanion
Ionic conductivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-58d8df0d49fe4cba8c7d9184a8ea7f60c1b9871977603a7421178947626856ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8988-9763
PQID 2038480339
PQPubID 326325
PageCount 7
ParticipantIDs proquest_journals_2038480339
crossref_citationtrail_10_1007_s12598_018_1058_2
crossref_primary_10_1007_s12598_018_1058_2
springer_journals_10_1007_s12598_018_1058_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180600
2018-6-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2018
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Burmakin, Mosin, Shekhtman (CR38) 2001; 37
Kamaya, Homma, Yamakawa, Hirayama, Kanno, Yonemura, Kamiyama, Kato, Hama, Kawamoto, Mitsui (CR40) 2011; 10
Khorassani, West (CR18) 1982; 7
Mo, Ong, Ceder (CR41) 2011; 24
Touboul, Elfakir, Quarton (CR36) 1995; 82
Quartarone, Mustarelli (CR1) 2011; 40
Lundén, Dissanayake (CR33) 1991; 90
Wilmer, Funke, Witschas, Banhatti, Jansen, Korus, Fitter, Lechner (CR28) 1999; 266
Gao, Zhao, Shi, Li (CR12) 2015; 25
Martínez-Juárez, Pecharromán, Iglesias, Rojo (CR20) 1998; 102
Bachman, Muy, Grimaud, Chang, Pour, Lux, Paschos, Maglia, Lupart, Lamp, Giordano, Shao-Horn (CR15) 2016; 116
Rangasamy, Liu, Gobet, Pilar, Sahu, Zhou, Wu, Greenbaum, Liang (CR10) 2015; 137
Pringle (CR25) 2013; 15
Burmakin, Shekhtman (CR39) 2014; 265
Nilsson, Thomas, Tofield (CR24) 1980; 13
Zhang, Ramos, Lalère, Assoud, Kaup, Hartman, Nazar (CR8) 2018; 11
Bron, Johansson, Zick, Schmedt auf der Günne, Dehnen, Roling (CR42) 2013; 135
Hori, Suzuki, Hirayama, Kato, Saito, Yonemura, Kanno (CR46) 2014; 176
Manthiram, Yu, Wang (CR7) 2017; 2
Chu, Nguyen, Hy, Lin, Wang, Xu, Deng, Meng, Ong (CR6) 2016; 8
Xu, Xia, Li, Zhang, Wang, Tu (CR4) 2017; 5
Adams, Prasada (CR44) 2012; 22
Secco (CR32) 1988; 28–30
Xiao, Li, Chen (CR14) 2015; 5
Jansen (CR27) 1991; 30
Kato, Hori, Saito, Suzuki, Hirayama, Mitsui, Yonemura, Iba, Kanno (CR2) 2016; 1
Andersen, Bandaranayake, Careem, Dissanayake, Wijayasekera, Kaber, Lundén, Mellander, Nilsson (CR31) 1992; 57
Fujimura, Seko, Koyama, Kuwabara, Kishida, Shitara, Fisher, Moriwake, Tanaka (CR13) 2013; 3
Shannon (CR23) 1976; 32
Dissanayake, Mellander (CR34) 1986; 21
Khorassani, West (CR19) 1984; 53
Hori, Kato, Suzuki, Hirayama, Kato, Kanno, Sprenkle (CR45) 2015; 98
Adams (CR11) 2006; 159
Arbi, Rojo, Sanz (CR21) 2007; 27
Richards, Miara, Wang, Kim, Ceder (CR5) 2015; 28
Rodger, Kuwano, West (CR16) 1985; 15
Itoh, Inaguma, Jung, Chen, Nakamura (CR22) 1994; 70
Dissanayake, Careem, Bandaranayake, Wijayasekera (CR30) 1991; 48
Goodenough, Park (CR3) 2013; 135
Liu, Zhu, Feng, Guerfi, Vijh, Zaghib (CR9) 2016; 213
Touboul, Sephar, Quarton (CR35) 1990; 38
Ong, Mo, Richards, Miara, Lee, Ceder (CR43) 2013; 6
Wilmer, Meyer (CR29) 2009; 223
Irvine, West (CR37) 1987; 22
Hu, Raistrick, Huggins (CR17) 1977; 124
Fang, Jena (CR26) 2017; 114
A Khorassani (1058_CR19) 1984; 53
Y Kato (1058_CR2) 2016; 1
YW Hu (1058_CR17) 1977; 124
M Itoh (1058_CR22) 1994; 70
JM Pringle (1058_CR25) 2013; 15
L Nilsson (1058_CR24) 1980; 13
H Fang (1058_CR26) 2017; 114
D Liu (1058_CR9) 2016; 213
S Adams (1058_CR44) 2012; 22
A Martínez-Juárez (1058_CR20) 1998; 102
A Manthiram (1058_CR7) 2017; 2
JB Goodenough (1058_CR3) 2013; 135
J Gao (1058_CR12) 2015; 25
WD Richards (1058_CR5) 2015; 28
JC Bachman (1058_CR15) 2016; 116
D Wilmer (1058_CR29) 2009; 223
NH Andersen (1058_CR31) 1992; 57
JTS Irvine (1058_CR37) 1987; 22
SP Ong (1058_CR43) 2013; 6
K Fujimura (1058_CR13) 2013; 3
P Bron (1058_CR42) 2013; 135
E Quartarone (1058_CR1) 2011; 40
EI Burmakin (1058_CR39) 2014; 265
S Hori (1058_CR45) 2015; 98
R Xu (1058_CR4) 2017; 5
N Kamaya (1058_CR40) 2011; 10
M Jansen (1058_CR27) 1991; 30
A Khorassani (1058_CR18) 1982; 7
D Wilmer (1058_CR28) 1999; 266
Z Zhang (1058_CR8) 2018; 11
M Touboul (1058_CR36) 1995; 82
K Arbi (1058_CR21) 2007; 27
A Lundén (1058_CR33) 1991; 90
S Hori (1058_CR46) 2014; 176
Y Mo (1058_CR41) 2011; 24
S Adams (1058_CR11) 2006; 159
AR Rodger (1058_CR16) 1985; 15
R Xiao (1058_CR14) 2015; 5
M Dissanayake (1058_CR34) 1986; 21
IH Chu (1058_CR6) 2016; 8
RD Shannon (1058_CR23) 1976; 32
M Touboul (1058_CR35) 1990; 38
EI Burmakin (1058_CR38) 2001; 37
EA Secco (1058_CR32) 1988; 28–30
M Dissanayake (1058_CR30) 1991; 48
E Rangasamy (1058_CR10) 2015; 137
References_xml – volume: 2
  start-page: 16103
  issue: 4
  year: 2017
  ident: CR7
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.103
– volume: 223
  start-page: 1341
  issue: 10–11
  year: 2009
  ident: CR29
  article-title: Crystalline cation conductors with rotational anion disorder: results of quasielastic neutron scattering experiments on orthophosphates
  publication-title: Z Phys Chem
  doi: 10.1524/zpch.2009.6083
– volume: 116
  start-page: 140
  issue: 1
  year: 2016
  ident: CR15
  article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00563
– volume: 6
  start-page: 148
  issue: 1
  year: 2013
  ident: CR43
  article-title: Phase stability, electrochemical stability and ionic conductivity of the Li MP X (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors
  publication-title: Energy Environ Sci
  doi: 10.1039/C2EE23355J
– volume: 15
  start-page: 1339
  issue: 5
  year: 2013
  ident: CR25
  article-title: Recent progress in the development and use of organic ionic plastic crystal electrolytes
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C2CP43267F
– volume: 11
  start-page: 87
  issue: 1
  year: 2018
  ident: CR8
  article-title: Na Sn PS : a new solid state sodium superionic conductor
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03083E
– volume: 13
  start-page: 6441
  issue: 35
  year: 1980
  ident: CR24
  article-title: The structure of the high-temperature solid electrolyte lithium sulphate at 908 K
  publication-title: J Phys C Solid State Phys
  doi: 10.1088/0022-3719/13/35/004
– volume: 25
  start-page: 018211
  issue: 1
  year: 2015
  ident: CR12
  article-title: Lithium-ion transport in inorganic solid state electrolyte
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/25/1/018211
– volume: 57
  start-page: 203
  issue: 3–4
  year: 1992
  ident: CR31
  article-title: Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90149-J
– volume: 102
  start-page: 372
  issue: 2
  year: 1998
  ident: CR20
  article-title: Relationship between activation energy and bottleneck size for Li ion conduction in NASICON materials of composition LiMM’(PO ) ; M, M’ = Ge, Ti, Sn, Hf
  publication-title: J Phys Chem B
  doi: 10.1021/jp973296c
– volume: 3
  start-page: 980
  issue: 8
  year: 2013
  ident: CR13
  article-title: Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201300060
– volume: 28
  start-page: 266
  issue: 1
  year: 2015
  ident: CR5
  article-title: Interface stability in solid-state batteries
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04082
– volume: 137
  start-page: 1384
  issue: 4
  year: 2015
  ident: CR10
  article-title: An iodide-based Li P S I superionic conductor
  publication-title: J Am Chem Soc
  doi: 10.1021/ja508723m
– volume: 30
  start-page: 1547
  issue: 12
  year: 1991
  ident: CR27
  article-title: Volume effect or paddle-wheel mechanism-fast alkali-metal ionic conduction in solids with rotationally disordered complex anions
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.199115471
– volume: 135
  start-page: 15694
  issue: 42
  year: 2013
  ident: CR42
  article-title: Li SnP S : an affordable lithium superionic conductor
  publication-title: J Am Chem Soc
  doi: 10.1021/ja407393y
– volume: 48
  start-page: 277
  issue: 3–4
  year: 1991
  ident: CR30
  article-title: Ionic conductivity of solid solutions of α-Li SO with Li WO : strong evidence for the paddle wheel mechanism of ion transport
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(91)90043-B
– volume: 265
  start-page: 46
  issue: 11
  year: 2014
  ident: CR39
  article-title: On ion transport mechanism in K -conducting solid electrolytes based on K PO
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2014.07.011
– volume: 90
  start-page: 179
  issue: 2
  year: 1991
  ident: CR33
  article-title: On the ionic conductivity and phase transitions in the Li SO –Li WO system and their relation to ion transport mechanism
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(91)90133-3
– volume: 176
  start-page: 83
  year: 2014
  ident: CR46
  article-title: Synthesis, structure, and ionic conductivity of solid solution, Li M P S (M = Si, Sn)
  publication-title: Faraday Discuss
  doi: 10.1039/C4FD00143E
– volume: 159
  start-page: 200
  issue: 1
  year: 2006
  ident: CR11
  article-title: Bond valence analysis of structure–property relationships in solid electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.04.085
– volume: 53
  start-page: 369
  issue: 3
  year: 1984
  ident: CR19
  article-title: Li ion conductivity in the system Li SiO -Li VO
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(84)90114-2
– volume: 40
  start-page: 2525
  issue: 5
  year: 2011
  ident: CR1
  article-title: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
  publication-title: Chem Soc Rev
  doi: 10.1039/c0cs00081g
– volume: 5
  start-page: 6310
  issue: 13
  year: 2017
  ident: CR4
  article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li P Mn S I superionic conductor
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA01147D
– volume: 21
  start-page: 279
  issue: 4
  year: 1986
  ident: CR34
  article-title: Phase diagram and electrical conductivity of the Li SO -Li CO system
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(86)90190-6
– volume: 10
  start-page: 682
  issue: 9
  year: 2011
  ident: CR40
  article-title: A lithium superionic conductor
  publication-title: Nat Mater
  doi: 10.1038/nmat3066
– volume: 38
  start-page: 225
  issue: 3–4
  year: 1990
  ident: CR35
  article-title: Electrical conductivity and phase diagram of the system Li SO –Li PO
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90425-Q
– volume: 98
  start-page: 3352
  issue: 10
  year: 2015
  ident: CR45
  article-title: Phase diagram of the Li GeS –Li PS quasi-binary system containing the superionic conductor Li GeP S
  publication-title: J Am Ceram Soc
  doi: 10.1111/jace.13694
– volume: 8
  start-page: 7843
  issue: 12
  year: 2016
  ident: CR6
  article-title: Insights into the performance limits of the Li P S superionic conductor: a combined first-principles and experimental study
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b00833
– volume: 15
  start-page: 185
  issue: 3
  year: 1985
  ident: CR16
  article-title: Li ion conducting γ solid solutions in the systems Li XO -Li YO : X = Si, Ge, Ti; Y = P, As, V; Li XO -LiZO : Z = Al, Ga, Cr and Li GeO -Li CaGeO
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(85)90002-5
– volume: 27
  start-page: 4215
  issue: 13–15
  year: 2007
  ident: CR21
  article-title: Lithium mobility in titanium based Nasicon Li Ti Al (PO ) and LiTi Zr (PO ) materials followed by NMR and impedance spectroscopy
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.02.118
– volume: 32
  start-page: 751
  issue: 5
  year: 1976
  ident: CR23
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739476001551
– volume: 135
  start-page: 1167
  issue: 4
  year: 2013
  ident: CR3
  article-title: The Li-ion rechargeable battery: a perspective
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3091438
– volume: 22
  start-page: 1047
  issue: 8
  year: 1987
  ident: CR37
  article-title: Solid electrolytes based on Na PO doped with S, Se, Mo, W
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(87)90233-9
– volume: 22
  start-page: 7687
  issue: 16
  year: 2012
  ident: CR44
  article-title: Structural requirements for fast lithium ion migration in Li GeP S
  publication-title: J Mater Chem
  doi: 10.1039/c2jm16688g
– volume: 70
  start-page: 203
  year: 1994
  ident: CR22
  article-title: High lithium ion conductivity in the perovskite-type compounds Ln L TiO (Ln = La, Pr, Nd, Sm)
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(94)90310-7
– volume: 1
  start-page: 16030
  issue: 4
  year: 2016
  ident: CR2
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.30
– volume: 82
  start-page: 61
  issue: 1–2
  year: 1995
  ident: CR36
  article-title: Phase diagram and ionic conductivity of Li SO -Li VO system
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(95)00193-A
– volume: 124
  start-page: 1240
  issue: 8
  year: 1977
  ident: CR17
  article-title: Ionic conductivity of lithium orthosilicate-lithium phosphate solid solutions
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2133537
– volume: 5
  start-page: 14227
  year: 2015
  ident: CR14
  article-title: High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory
  publication-title: Sci Rep
  doi: 10.1038/srep14227
– volume: 28–30
  start-page: 168
  issue: 3
  year: 1988
  ident: CR32
  article-title: Fast cation conductivity by percolation in alkali sulfate compositions
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(88)80027-4
– volume: 37
  start-page: 1392
  issue: 11
  year: 2001
  ident: CR38
  article-title: Potassium cationic conduction in K P E O (E = S, Cr, Mo, W)
  publication-title: Russ J Electrochem
  doi: 10.1023/A:1012775801761
– volume: 114
  start-page: 11046
  issue: 42
  year: 2017
  ident: CR26
  article-title: Li-rich antiperovskite superionic conductors based on cluster ions
  publication-title: PNAS
  doi: 10.1073/pnas.1704086114
– volume: 213
  start-page: 169
  year: 2016
  ident: CR9
  article-title: Recent progress in sulfide-based solid electrolytes for Li-ion batteries
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2016.03.005
– volume: 266
  start-page: 60
  issue: 1
  year: 1999
  ident: CR28
  article-title: Anion reorientation in an ion conducting plastic crystal–coherent quasielastic neutron scattering from sodium ortho-phosphate
  publication-title: Physica B
  doi: 10.1016/S0921-4526(98)01494-X
– volume: 7
  start-page: 1
  issue: 1
  year: 1982
  ident: CR18
  article-title: New Li ion conductors in the system Li SiO -Li AsO
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(82)90060-1
– volume: 24
  start-page: 15
  issue: 1
  year: 2011
  ident: CR41
  article-title: First principles study of the Li GeP S lithium super ionic conductor material
  publication-title: Chem Mater
  doi: 10.1021/cm203303y
– volume: 3
  start-page: 980
  issue: 8
  year: 2013
  ident: 1058_CR13
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201300060
– volume: 15
  start-page: 185
  issue: 3
  year: 1985
  ident: 1058_CR16
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(85)90002-5
– volume: 53
  start-page: 369
  issue: 3
  year: 1984
  ident: 1058_CR19
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(84)90114-2
– volume: 102
  start-page: 372
  issue: 2
  year: 1998
  ident: 1058_CR20
  publication-title: J Phys Chem B
  doi: 10.1021/jp973296c
– volume: 40
  start-page: 2525
  issue: 5
  year: 2011
  ident: 1058_CR1
  publication-title: Chem Soc Rev
  doi: 10.1039/c0cs00081g
– volume: 30
  start-page: 1547
  issue: 12
  year: 1991
  ident: 1058_CR27
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.199115471
– volume: 21
  start-page: 279
  issue: 4
  year: 1986
  ident: 1058_CR34
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(86)90190-6
– volume: 137
  start-page: 1384
  issue: 4
  year: 2015
  ident: 1058_CR10
  publication-title: J Am Chem Soc
  doi: 10.1021/ja508723m
– volume: 38
  start-page: 225
  issue: 3–4
  year: 1990
  ident: 1058_CR35
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90425-Q
– volume: 135
  start-page: 15694
  issue: 42
  year: 2013
  ident: 1058_CR42
  publication-title: J Am Chem Soc
  doi: 10.1021/ja407393y
– volume: 223
  start-page: 1341
  issue: 10–11
  year: 2009
  ident: 1058_CR29
  publication-title: Z Phys Chem
  doi: 10.1524/zpch.2009.6083
– volume: 28
  start-page: 266
  issue: 1
  year: 2015
  ident: 1058_CR5
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04082
– volume: 8
  start-page: 7843
  issue: 12
  year: 2016
  ident: 1058_CR6
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b00833
– volume: 116
  start-page: 140
  issue: 1
  year: 2016
  ident: 1058_CR15
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00563
– volume: 124
  start-page: 1240
  issue: 8
  year: 1977
  ident: 1058_CR17
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2133537
– volume: 213
  start-page: 169
  year: 2016
  ident: 1058_CR9
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2016.03.005
– volume: 57
  start-page: 203
  issue: 3–4
  year: 1992
  ident: 1058_CR31
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90149-J
– volume: 176
  start-page: 83
  year: 2014
  ident: 1058_CR46
  publication-title: Faraday Discuss
  doi: 10.1039/C4FD00143E
– volume: 15
  start-page: 1339
  issue: 5
  year: 2013
  ident: 1058_CR25
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C2CP43267F
– volume: 22
  start-page: 1047
  issue: 8
  year: 1987
  ident: 1058_CR37
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(87)90233-9
– volume: 28–30
  start-page: 168
  issue: 3
  year: 1988
  ident: 1058_CR32
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(88)80027-4
– volume: 114
  start-page: 11046
  issue: 42
  year: 2017
  ident: 1058_CR26
  publication-title: PNAS
  doi: 10.1073/pnas.1704086114
– volume: 22
  start-page: 7687
  issue: 16
  year: 2012
  ident: 1058_CR44
  publication-title: J Mater Chem
  doi: 10.1039/c2jm16688g
– volume: 1
  start-page: 16030
  issue: 4
  year: 2016
  ident: 1058_CR2
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.30
– volume: 5
  start-page: 14227
  year: 2015
  ident: 1058_CR14
  publication-title: Sci Rep
  doi: 10.1038/srep14227
– volume: 6
  start-page: 148
  issue: 1
  year: 2013
  ident: 1058_CR43
  publication-title: Energy Environ Sci
  doi: 10.1039/C2EE23355J
– volume: 265
  start-page: 46
  issue: 11
  year: 2014
  ident: 1058_CR39
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2014.07.011
– volume: 90
  start-page: 179
  issue: 2
  year: 1991
  ident: 1058_CR33
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(91)90133-3
– volume: 70
  start-page: 203
  year: 1994
  ident: 1058_CR22
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(94)90310-7
– volume: 13
  start-page: 6441
  issue: 35
  year: 1980
  ident: 1058_CR24
  publication-title: J Phys C Solid State Phys
  doi: 10.1088/0022-3719/13/35/004
– volume: 7
  start-page: 1
  issue: 1
  year: 1982
  ident: 1058_CR18
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(82)90060-1
– volume: 82
  start-page: 61
  issue: 1–2
  year: 1995
  ident: 1058_CR36
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(95)00193-A
– volume: 266
  start-page: 60
  issue: 1
  year: 1999
  ident: 1058_CR28
  publication-title: Physica B
  doi: 10.1016/S0921-4526(98)01494-X
– volume: 24
  start-page: 15
  issue: 1
  year: 2011
  ident: 1058_CR41
  publication-title: Chem Mater
  doi: 10.1021/cm203303y
– volume: 5
  start-page: 6310
  issue: 13
  year: 2017
  ident: 1058_CR4
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA01147D
– volume: 10
  start-page: 682
  issue: 9
  year: 2011
  ident: 1058_CR40
  publication-title: Nat Mater
  doi: 10.1038/nmat3066
– volume: 98
  start-page: 3352
  issue: 10
  year: 2015
  ident: 1058_CR45
  publication-title: J Am Ceram Soc
  doi: 10.1111/jace.13694
– volume: 2
  start-page: 16103
  issue: 4
  year: 2017
  ident: 1058_CR7
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.103
– volume: 25
  start-page: 018211
  issue: 1
  year: 2015
  ident: 1058_CR12
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/25/1/018211
– volume: 27
  start-page: 4215
  issue: 13–15
  year: 2007
  ident: 1058_CR21
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.02.118
– volume: 37
  start-page: 1392
  issue: 11
  year: 2001
  ident: 1058_CR38
  publication-title: Russ J Electrochem
  doi: 10.1023/A:1012775801761
– volume: 135
  start-page: 1167
  issue: 4
  year: 2013
  ident: 1058_CR3
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3091438
– volume: 11
  start-page: 87
  issue: 1
  year: 2018
  ident: 1058_CR8
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03083E
– volume: 159
  start-page: 200
  issue: 1
  year: 2006
  ident: 1058_CR11
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.04.085
– volume: 32
  start-page: 751
  issue: 5
  year: 1976
  ident: 1058_CR23
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739476001551
– volume: 48
  start-page: 277
  issue: 3–4
  year: 1991
  ident: 1058_CR30
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(91)90043-B
SSID ssj0044660
Score 2.321377
Snippet Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 497
SubjectTerms Biomaterials
Chemistry and Materials Science
Electrolytes
Energy
Germanium
Ion currents
Ions
Materials Engineering
Materials Science
Metallic Materials
Molten salt electrolytes
Nanoscale Science and Technology
Physical Chemistry
Silicon
Sodium phosphate
Solid electrolytes
Solid solutions
Substitutes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8RADA66XvQgPnF1lTl4Ugp9TKftQURll0VwEVHwVuZVEJZ2devBf2_STq0KeizbnUOSJvmSzBeAU87DUItMeaGIEwQoSnvSSu4FPLZSCFtYSxec72Zi-sRvn-PnFZh1d2ForLLziY2jNpWmGjmC9CjlqR9F2eXi1aOtUdRd7VZoSLdawVw0FGOrsIYuOfYHsHY9nt0_dL6ZmpctPwGBaIxcXZ-zuUyHSIAGu4juNEbz-Rmp-vTzV8e0CUSTLdh0GSS7alW-DSu23IGNb7yCu1A_VLUr8rF2TQ-rCrao5h-ypAcaxXhfstYzsXakg0mnKGsYFWcZFWo1Q7hMjLDNigk6BAMpVbEYmuyLYW6JzvwDE9Y9eJqMH2-mnluv4OkoELUXpyY1hW94VliulUx1YjIEfDK1MimErwOVIZzCBFH4kUQIHQRJmnH0niKNhTXRPgzKqrQHwDTPFJqCCQvjc2UDZTBtsMoYiVmxtMkQ_E6UuXbc47QCY573rMkk_Ryln5P083AIZ19_WbTEG_-9POr0k7tvcJn3FjOE805n_c9_Hnb4_2FHsB6SkTSVmBEM6rd3e4yJSa1OnLV9AgE_4j4
  priority: 102
  providerName: ProQuest
Title Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes
URI https://link.springer.com/article/10.1007/s12598-018-1058-2
https://www.proquest.com/docview/2038480339
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sXvQgPrFayx48KYE8NpvNsUofKIoUC_UU9hUQSis2Hvz3zuRhVVTwFEKSPexMZr557DcAZ5yHoRGp9kIRJxigaOMpp7gX8NgpIVzuHB1wvr0Towm_nsbT-hz3sul2b0qSpaVeHXZDpE6NV0RHGqN4W7ARE50UKvEk7DXml-qTFQUBxcnonJpS5k9LfHVGK4T5rSha-prBDmzXIJH1Kqnuwpqb78HWJ-rAfSjGi6LO47FqEg9b5Ox5MXtTc7qhbovXJauMD6u6NpiqZeEso_wro1ysYRgRE-lrOUWCFkFfSYkqhlr5ZFk9J2f2hpj0ACaD_sPVyKsnKHgmCkThxdJKm_uWp7njRitpEptiTKekU0kufBPoFCMmxIDCjxRGyUGQyJSjgRQyFs5Gh7A-X8zdETDDU43StmFufa5doC0iA6etVQh8lUva4DdbmZmaXpymXMyyFTEy7X6Gu5_R7mdhG84_PnmuuDX-ernTyCerf7NlFvqR5NKPorQNF43MVo9_Xez4X2-fwGZIOlPmXjqwXry8ulOEIoXuQksOhl3Y6A0fb_p4vezf3Y-7pUK-A5Hk3GU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC50PKgH0XWXHZ992L24BPLodJKDiE_G1yCi4C3br8DCMBmdiMyf87dZlXR2VNCbx5CkDtXVVfXVE-AX52GoRaa8UMQJAhSlPWkl9wIeWymELaylBufLvujd8rO7-G4GntteGCqrbHVirahNqSlGjiA9SnnqR1G2N7r3aGsUZVfbFRrSrVYwu_WIMdfYcW4nTwjhxrunR3jev8Pw5PjmsOe5LQOejgJReXFqUlP4hmeF5VrJVCcmQ9wjUyuTQvg6UIjLA_SThB9JRJJBkKQZRyUi0lhYEyHdWZjjFEDpwNzBcf_qurUFlCxt5iEQaEdL2eZV6-Y9RB5USEbjVWMU17eWceruvsvQ1obvZBmWnMfK9hsRW4EZO_wGi6_mGK5CdV1WLqjImrVArCzYqBxM5JAeqPTjccwaTciaEhImnWBYwygYzCgwrBnCc5pAW6-0ICJouClqxvCK_DPMLe0ZTNBB_g63X8LoH9AZlkP7E5jmmULRM2FhfK5soAy6KVYZI9ELlzbpgt-yMtdu1jmt3Bjk0ynNxP0cuZ8T9_OwCzv_fxk1gz4--3ijPZ_c3flxPpXQLvxpz2z6-kNia58T24b53s3lRX5x2j9fh4WQBKaOAm1Ap3p4tJvoFFVqy0keg79fLewvk6gd1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BKyF42NhgotCBH3jalC4fjpM8VqOlrFAhtErdU-avSIgqrWj60P313DUOhWogIR6jOJbjO_t-dz7_DuAt52GoRaa8UMQJOihKe9JK7gU8tlIIW1hLF5w_TcRoyq9m8czVOV012e7NkWR9p4FYmsrqYmmKi93FN0TtlIRF1KQxivohtDmVkGhBu__-ZjxoNmM6rawJCchrRlPVHGze18nvpmmHN_eOSLeWZ3gIt82Y64STb711pXr6bo_O8T9-6ikcOFTK-rUaHcEDWx7Dk1-4Cp9B9WVRucAhq0v_sEXBlov5Rpb0QOkd6xWrdztWp4kw6YRvDaOAL6Pgr2Y4LGKZ3ZatoE7QOFNkjOEy-GqYK8wz3yAIfg7T4eD6cuS5kg2ejgJReXFqUlP4hmeF5VrJVCcmQydSplYmhfB1oDJ00RB0Cj-S6JYHQZJmHHdkkcbCmugEWuWitC-AaZ4pVC8TFsbnygbKIBSxyhiJSFvapAN-I61cOz5zKqsxz3dMzDShOU5oThOahx04-_nJsibz-FvjbqMCuVvXqzz0o5SnfhRlHThvJLp7_cfOXv5T6zfw6PO7Yf7xw2T8Ch6HpBHbuE8XWtX3tT1FGFSp107VfwDPewDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotational+motion+of+polyanion+versus+volume+effect+associated+with+ionic+conductivity+of+several+solid+electrolytes&rft.jtitle=Rare+metals&rft.au=Zhao%2C+Qian&rft.au=Pan%2C+Li&rft.au=Li%2C+Yuan-Ji&rft.au=Chen%2C+Li-Quan&rft.date=2018-06-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=37&rft.issue=6&rft.spage=497&rft.epage=503&rft_id=info:doi/10.1007%2Fs12598-018-1058-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_018_1058_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon