Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes
Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li 2 SO 4 and α-Na 3 PO 4 based inorganic ionic plastic crystal electro...
Saved in:
Published in | Rare metals Vol. 37; no. 6; pp. 497 - 503 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Nonferrous Metals Society of China
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1001-0521 1867-7185 |
DOI | 10.1007/s12598-018-1058-2 |
Cover
Abstract | Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li
2
SO
4
and α-Na
3
PO
4
based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li
10
MP
2
S
12
(M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion. |
---|---|
AbstractList | Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li
2
SO
4
and α-Na
3
PO
4
based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li
10
MP
2
S
12
(M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion. Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li2SO4 and α-Na3PO4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li10MP2S12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion. |
Author | Shi, Si-Qi Chen, Li-Quan Li, Yuan-Ji Pan, Li Zhao, Qian |
Author_xml | – sequence: 1 givenname: Qian surname: Zhao fullname: Zhao, Qian organization: Materials Genome Institute, Shanghai University – sequence: 2 givenname: Li surname: Pan fullname: Pan, Li organization: School of Materials Science and Engineering, Shanghai University – sequence: 3 givenname: Yuan-Ji surname: Li fullname: Li, Yuan-Ji organization: Qianweichang College, Shanghai University – sequence: 4 givenname: Li-Quan surname: Chen fullname: Chen, Li-Quan organization: Institute of Physics, Chinese Academy of Sciences – sequence: 5 givenname: Si-Qi orcidid: 0000-0001-8988-9763 surname: Shi fullname: Shi, Si-Qi email: sqshi@shu.edu.cn organization: Materials Genome Institute, Shanghai University, School of Materials Science and Engineering, Shanghai University |
BookMark | eNp9kE1LAzEQhoMo2FZ_gLeA59WZ_UiyRyl-QUEQPYc0m9WU7aYm2Ur_vVlWEAQ9ZQLv8zLzzMlx73pDyAXCFQLw64B5VYsMUGQIlcjyIzJDwXjGUVTHaQbADKocT8k8hA1AWTIGMxKfXVTRul51dOvGgbqW7lx3UP342RsfhkD3rhu2hpq2NTpSFYLTVkXT0E8b32kKWk2165tBR7u38TCWBJPgVBtcZxtqukT61BtNOCMnreqCOf9-F-T17vZl-ZCtnu4flzerTBfIYlaJRjQtNGXdmlKvldC8qVGUShjFWwYa17XgWHPOoFC8zBG5qEvOciYqZppiQS6n3p13H4MJUW7c4NOpQeZQiFJAUdQpxaeU9i4Eb1qp7eQkemU7iSBHxXJSLJNiOSqWeSLxF7nzdqv84V8mn5iQsv2b8T87_Q19AdrjklA |
CitedBy_id | crossref_primary_10_1021_acsenergylett_1c01781 crossref_primary_10_1007_s11426_022_1488_9 crossref_primary_10_1016_j_jpowsour_2021_230718 crossref_primary_10_1016_j_mtcomm_2020_101588 crossref_primary_10_1016_j_jpowsour_2025_236720 crossref_primary_10_1021_acs_jpcc_0c07880 crossref_primary_10_1063_5_0002992 crossref_primary_10_1021_acsami_3c01570 crossref_primary_10_34133_energymatadv_0015 crossref_primary_10_1002_adfm_202003087 crossref_primary_10_1016_j_physb_2021_413590 crossref_primary_10_1038_s43246_024_00550_z crossref_primary_10_7498_aps_69_20201519 crossref_primary_10_7498_aps_71_20221050 crossref_primary_10_1021_acsmaterialslett_9b00322 crossref_primary_10_1021_acsami_1c20910 crossref_primary_10_1021_acs_chemmater_1c00124 crossref_primary_10_1002_asia_202001414 crossref_primary_10_1016_j_nanoen_2020_105407 crossref_primary_10_1002_aenm_202302550 crossref_primary_10_1002_eem2_12612 crossref_primary_10_1016_j_jmat_2021_05_006 crossref_primary_10_1007_s12598_023_02295_z crossref_primary_10_1016_j_scib_2022_01_026 crossref_primary_10_1016_j_vacuum_2020_109313 crossref_primary_10_1039_D1TA01367J crossref_primary_10_1039_D0NJ04850J crossref_primary_10_1021_acs_jpcc_1c07347 crossref_primary_10_1016_j_cossms_2020_100875 crossref_primary_10_1016_j_physb_2020_412489 crossref_primary_10_1039_D4QI01141D crossref_primary_10_1021_acsaem_0c02519 crossref_primary_10_1039_D2CP01340A crossref_primary_10_1002_adsu_202401028 crossref_primary_10_1360_SSC_2023_0255 crossref_primary_10_1016_j_ensm_2021_05_033 crossref_primary_10_1016_j_jpowsour_2025_236591 crossref_primary_10_1039_D1DT02864B crossref_primary_10_1021_acs_jpcc_9b00436 crossref_primary_10_1016_j_esci_2024_100278 crossref_primary_10_1016_j_actamat_2020_116490 crossref_primary_10_1007_s41918_023_00191_9 crossref_primary_10_1039_C8TA08412B |
Cites_doi | 10.1038/natrevmats.2016.103 10.1524/zpch.2009.6083 10.1021/acs.chemrev.5b00563 10.1039/C2EE23355J 10.1039/C2CP43267F 10.1039/C7EE03083E 10.1088/0022-3719/13/35/004 10.1088/1674-1056/25/1/018211 10.1016/0167-2738(92)90149-J 10.1021/jp973296c 10.1002/aenm.201300060 10.1021/acs.chemmater.5b04082 10.1021/ja508723m 10.1002/anie.199115471 10.1021/ja407393y 10.1016/0167-2738(91)90043-B 10.1016/j.ssi.2014.07.011 10.1016/0022-4596(91)90133-3 10.1039/C4FD00143E 10.1016/j.jpowsour.2006.04.085 10.1016/0022-4596(84)90114-2 10.1039/c0cs00081g 10.1039/C7TA01147D 10.1016/0167-2738(86)90190-6 10.1038/nmat3066 10.1016/0167-2738(90)90425-Q 10.1111/jace.13694 10.1021/acsami.6b00833 10.1016/0167-2738(85)90002-5 10.1016/j.jeurceramsoc.2007.02.118 10.1107/S0567739476001551 10.1021/ja3091438 10.1016/0025-5408(87)90233-9 10.1039/c2jm16688g 10.1016/0167-2738(94)90310-7 10.1038/nenergy.2016.30 10.1016/0167-2738(95)00193-A 10.1149/1.2133537 10.1038/srep14227 10.1016/S0167-2738(88)80027-4 10.1023/A:1012775801761 10.1073/pnas.1704086114 10.1016/j.mseb.2016.03.005 10.1016/S0921-4526(98)01494-X 10.1016/0167-2738(82)90060-1 10.1021/cm203303y |
ContentType | Journal Article |
Copyright | The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Rare Metals is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Rare Metals is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s12598-018-1058-2 |
DatabaseName | CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Engineering Collection Engineering Database (subscription) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1867-7185 |
EndPage | 503 |
ExternalDocumentID | 10_1007_s12598_018_1058_2 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (CN) grantid: Nos. U1430104; 51622207; 51372228 – fundername: National Key Research and Development Program of China grantid: 2017YFB0701600 |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 92R 93N 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8BQ 8FD ABRTQ AEUYN DWQXO JG9 L6V M7S PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PUEGO |
ID | FETCH-LOGICAL-c316t-58d8df0d49fe4cba8c7d9184a8ea7f60c1b9871977603a7421178947626856ed3 |
IEDL.DBID | U2A |
ISSN | 1001-0521 |
IngestDate | Thu Sep 25 00:41:53 EDT 2025 Tue Jul 01 01:30:05 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 21 02:43:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Volume effect Inorganic plastic crystal electrolyte Rotational motion of polyanion Ionic conductivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-58d8df0d49fe4cba8c7d9184a8ea7f60c1b9871977603a7421178947626856ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8988-9763 |
PQID | 2038480339 |
PQPubID | 326325 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2038480339 crossref_citationtrail_10_1007_s12598_018_1058_2 crossref_primary_10_1007_s12598_018_1058_2 springer_journals_10_1007_s12598_018_1058_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180600 2018-6-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Rare metals |
PublicationTitleAbbrev | Rare Met |
PublicationYear | 2018 |
Publisher | Nonferrous Metals Society of China Springer Nature B.V |
Publisher_xml | – name: Nonferrous Metals Society of China – name: Springer Nature B.V |
References | Burmakin, Mosin, Shekhtman (CR38) 2001; 37 Kamaya, Homma, Yamakawa, Hirayama, Kanno, Yonemura, Kamiyama, Kato, Hama, Kawamoto, Mitsui (CR40) 2011; 10 Khorassani, West (CR18) 1982; 7 Mo, Ong, Ceder (CR41) 2011; 24 Touboul, Elfakir, Quarton (CR36) 1995; 82 Quartarone, Mustarelli (CR1) 2011; 40 Lundén, Dissanayake (CR33) 1991; 90 Wilmer, Funke, Witschas, Banhatti, Jansen, Korus, Fitter, Lechner (CR28) 1999; 266 Gao, Zhao, Shi, Li (CR12) 2015; 25 Martínez-Juárez, Pecharromán, Iglesias, Rojo (CR20) 1998; 102 Bachman, Muy, Grimaud, Chang, Pour, Lux, Paschos, Maglia, Lupart, Lamp, Giordano, Shao-Horn (CR15) 2016; 116 Rangasamy, Liu, Gobet, Pilar, Sahu, Zhou, Wu, Greenbaum, Liang (CR10) 2015; 137 Pringle (CR25) 2013; 15 Burmakin, Shekhtman (CR39) 2014; 265 Nilsson, Thomas, Tofield (CR24) 1980; 13 Zhang, Ramos, Lalère, Assoud, Kaup, Hartman, Nazar (CR8) 2018; 11 Bron, Johansson, Zick, Schmedt auf der Günne, Dehnen, Roling (CR42) 2013; 135 Hori, Suzuki, Hirayama, Kato, Saito, Yonemura, Kanno (CR46) 2014; 176 Manthiram, Yu, Wang (CR7) 2017; 2 Chu, Nguyen, Hy, Lin, Wang, Xu, Deng, Meng, Ong (CR6) 2016; 8 Xu, Xia, Li, Zhang, Wang, Tu (CR4) 2017; 5 Adams, Prasada (CR44) 2012; 22 Secco (CR32) 1988; 28–30 Xiao, Li, Chen (CR14) 2015; 5 Jansen (CR27) 1991; 30 Kato, Hori, Saito, Suzuki, Hirayama, Mitsui, Yonemura, Iba, Kanno (CR2) 2016; 1 Andersen, Bandaranayake, Careem, Dissanayake, Wijayasekera, Kaber, Lundén, Mellander, Nilsson (CR31) 1992; 57 Fujimura, Seko, Koyama, Kuwabara, Kishida, Shitara, Fisher, Moriwake, Tanaka (CR13) 2013; 3 Shannon (CR23) 1976; 32 Dissanayake, Mellander (CR34) 1986; 21 Khorassani, West (CR19) 1984; 53 Hori, Kato, Suzuki, Hirayama, Kato, Kanno, Sprenkle (CR45) 2015; 98 Adams (CR11) 2006; 159 Arbi, Rojo, Sanz (CR21) 2007; 27 Richards, Miara, Wang, Kim, Ceder (CR5) 2015; 28 Rodger, Kuwano, West (CR16) 1985; 15 Itoh, Inaguma, Jung, Chen, Nakamura (CR22) 1994; 70 Dissanayake, Careem, Bandaranayake, Wijayasekera (CR30) 1991; 48 Goodenough, Park (CR3) 2013; 135 Liu, Zhu, Feng, Guerfi, Vijh, Zaghib (CR9) 2016; 213 Touboul, Sephar, Quarton (CR35) 1990; 38 Ong, Mo, Richards, Miara, Lee, Ceder (CR43) 2013; 6 Wilmer, Meyer (CR29) 2009; 223 Irvine, West (CR37) 1987; 22 Hu, Raistrick, Huggins (CR17) 1977; 124 Fang, Jena (CR26) 2017; 114 A Khorassani (1058_CR19) 1984; 53 Y Kato (1058_CR2) 2016; 1 YW Hu (1058_CR17) 1977; 124 M Itoh (1058_CR22) 1994; 70 JM Pringle (1058_CR25) 2013; 15 L Nilsson (1058_CR24) 1980; 13 H Fang (1058_CR26) 2017; 114 D Liu (1058_CR9) 2016; 213 S Adams (1058_CR44) 2012; 22 A Martínez-Juárez (1058_CR20) 1998; 102 A Manthiram (1058_CR7) 2017; 2 JB Goodenough (1058_CR3) 2013; 135 J Gao (1058_CR12) 2015; 25 WD Richards (1058_CR5) 2015; 28 JC Bachman (1058_CR15) 2016; 116 D Wilmer (1058_CR29) 2009; 223 NH Andersen (1058_CR31) 1992; 57 JTS Irvine (1058_CR37) 1987; 22 SP Ong (1058_CR43) 2013; 6 K Fujimura (1058_CR13) 2013; 3 P Bron (1058_CR42) 2013; 135 E Quartarone (1058_CR1) 2011; 40 EI Burmakin (1058_CR39) 2014; 265 S Hori (1058_CR45) 2015; 98 R Xu (1058_CR4) 2017; 5 N Kamaya (1058_CR40) 2011; 10 M Jansen (1058_CR27) 1991; 30 A Khorassani (1058_CR18) 1982; 7 D Wilmer (1058_CR28) 1999; 266 Z Zhang (1058_CR8) 2018; 11 M Touboul (1058_CR36) 1995; 82 K Arbi (1058_CR21) 2007; 27 A Lundén (1058_CR33) 1991; 90 S Hori (1058_CR46) 2014; 176 Y Mo (1058_CR41) 2011; 24 S Adams (1058_CR11) 2006; 159 AR Rodger (1058_CR16) 1985; 15 R Xiao (1058_CR14) 2015; 5 M Dissanayake (1058_CR34) 1986; 21 IH Chu (1058_CR6) 2016; 8 RD Shannon (1058_CR23) 1976; 32 M Touboul (1058_CR35) 1990; 38 EI Burmakin (1058_CR38) 2001; 37 EA Secco (1058_CR32) 1988; 28–30 M Dissanayake (1058_CR30) 1991; 48 E Rangasamy (1058_CR10) 2015; 137 |
References_xml | – volume: 2 start-page: 16103 issue: 4 year: 2017 ident: CR7 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2016.103 – volume: 223 start-page: 1341 issue: 10–11 year: 2009 ident: CR29 article-title: Crystalline cation conductors with rotational anion disorder: results of quasielastic neutron scattering experiments on orthophosphates publication-title: Z Phys Chem doi: 10.1524/zpch.2009.6083 – volume: 116 start-page: 140 issue: 1 year: 2016 ident: CR15 article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00563 – volume: 6 start-page: 148 issue: 1 year: 2013 ident: CR43 article-title: Phase stability, electrochemical stability and ionic conductivity of the Li MP X (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors publication-title: Energy Environ Sci doi: 10.1039/C2EE23355J – volume: 15 start-page: 1339 issue: 5 year: 2013 ident: CR25 article-title: Recent progress in the development and use of organic ionic plastic crystal electrolytes publication-title: Phys Chem Chem Phys doi: 10.1039/C2CP43267F – volume: 11 start-page: 87 issue: 1 year: 2018 ident: CR8 article-title: Na Sn PS : a new solid state sodium superionic conductor publication-title: Energy Environ Sci doi: 10.1039/C7EE03083E – volume: 13 start-page: 6441 issue: 35 year: 1980 ident: CR24 article-title: The structure of the high-temperature solid electrolyte lithium sulphate at 908 K publication-title: J Phys C Solid State Phys doi: 10.1088/0022-3719/13/35/004 – volume: 25 start-page: 018211 issue: 1 year: 2015 ident: CR12 article-title: Lithium-ion transport in inorganic solid state electrolyte publication-title: Chin Phys B doi: 10.1088/1674-1056/25/1/018211 – volume: 57 start-page: 203 issue: 3–4 year: 1992 ident: CR31 article-title: Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases publication-title: Solid State Ionics doi: 10.1016/0167-2738(92)90149-J – volume: 102 start-page: 372 issue: 2 year: 1998 ident: CR20 article-title: Relationship between activation energy and bottleneck size for Li ion conduction in NASICON materials of composition LiMM’(PO ) ; M, M’ = Ge, Ti, Sn, Hf publication-title: J Phys Chem B doi: 10.1021/jp973296c – volume: 3 start-page: 980 issue: 8 year: 2013 ident: CR13 article-title: Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms publication-title: Adv Energy Mater doi: 10.1002/aenm.201300060 – volume: 28 start-page: 266 issue: 1 year: 2015 ident: CR5 article-title: Interface stability in solid-state batteries publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04082 – volume: 137 start-page: 1384 issue: 4 year: 2015 ident: CR10 article-title: An iodide-based Li P S I superionic conductor publication-title: J Am Chem Soc doi: 10.1021/ja508723m – volume: 30 start-page: 1547 issue: 12 year: 1991 ident: CR27 article-title: Volume effect or paddle-wheel mechanism-fast alkali-metal ionic conduction in solids with rotationally disordered complex anions publication-title: Angew Chem Int Ed doi: 10.1002/anie.199115471 – volume: 135 start-page: 15694 issue: 42 year: 2013 ident: CR42 article-title: Li SnP S : an affordable lithium superionic conductor publication-title: J Am Chem Soc doi: 10.1021/ja407393y – volume: 48 start-page: 277 issue: 3–4 year: 1991 ident: CR30 article-title: Ionic conductivity of solid solutions of α-Li SO with Li WO : strong evidence for the paddle wheel mechanism of ion transport publication-title: Solid State Ionics doi: 10.1016/0167-2738(91)90043-B – volume: 265 start-page: 46 issue: 11 year: 2014 ident: CR39 article-title: On ion transport mechanism in K -conducting solid electrolytes based on K PO publication-title: Solid State Ionics doi: 10.1016/j.ssi.2014.07.011 – volume: 90 start-page: 179 issue: 2 year: 1991 ident: CR33 article-title: On the ionic conductivity and phase transitions in the Li SO –Li WO system and their relation to ion transport mechanism publication-title: J Solid State Chem doi: 10.1016/0022-4596(91)90133-3 – volume: 176 start-page: 83 year: 2014 ident: CR46 article-title: Synthesis, structure, and ionic conductivity of solid solution, Li M P S (M = Si, Sn) publication-title: Faraday Discuss doi: 10.1039/C4FD00143E – volume: 159 start-page: 200 issue: 1 year: 2006 ident: CR11 article-title: Bond valence analysis of structure–property relationships in solid electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.04.085 – volume: 53 start-page: 369 issue: 3 year: 1984 ident: CR19 article-title: Li ion conductivity in the system Li SiO -Li VO publication-title: J Solid State Chem doi: 10.1016/0022-4596(84)90114-2 – volume: 40 start-page: 2525 issue: 5 year: 2011 ident: CR1 article-title: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives publication-title: Chem Soc Rev doi: 10.1039/c0cs00081g – volume: 5 start-page: 6310 issue: 13 year: 2017 ident: CR4 article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li P Mn S I superionic conductor publication-title: J Mater Chem A doi: 10.1039/C7TA01147D – volume: 21 start-page: 279 issue: 4 year: 1986 ident: CR34 article-title: Phase diagram and electrical conductivity of the Li SO -Li CO system publication-title: Solid State Ionics doi: 10.1016/0167-2738(86)90190-6 – volume: 10 start-page: 682 issue: 9 year: 2011 ident: CR40 article-title: A lithium superionic conductor publication-title: Nat Mater doi: 10.1038/nmat3066 – volume: 38 start-page: 225 issue: 3–4 year: 1990 ident: CR35 article-title: Electrical conductivity and phase diagram of the system Li SO –Li PO publication-title: Solid State Ionics doi: 10.1016/0167-2738(90)90425-Q – volume: 98 start-page: 3352 issue: 10 year: 2015 ident: CR45 article-title: Phase diagram of the Li GeS –Li PS quasi-binary system containing the superionic conductor Li GeP S publication-title: J Am Ceram Soc doi: 10.1111/jace.13694 – volume: 8 start-page: 7843 issue: 12 year: 2016 ident: CR6 article-title: Insights into the performance limits of the Li P S superionic conductor: a combined first-principles and experimental study publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b00833 – volume: 15 start-page: 185 issue: 3 year: 1985 ident: CR16 article-title: Li ion conducting γ solid solutions in the systems Li XO -Li YO : X = Si, Ge, Ti; Y = P, As, V; Li XO -LiZO : Z = Al, Ga, Cr and Li GeO -Li CaGeO publication-title: Solid State Ionics doi: 10.1016/0167-2738(85)90002-5 – volume: 27 start-page: 4215 issue: 13–15 year: 2007 ident: CR21 article-title: Lithium mobility in titanium based Nasicon Li Ti Al (PO ) and LiTi Zr (PO ) materials followed by NMR and impedance spectroscopy publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.02.118 – volume: 32 start-page: 751 issue: 5 year: 1976 ident: CR23 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Cryst. A doi: 10.1107/S0567739476001551 – volume: 135 start-page: 1167 issue: 4 year: 2013 ident: CR3 article-title: The Li-ion rechargeable battery: a perspective publication-title: J Am Chem Soc doi: 10.1021/ja3091438 – volume: 22 start-page: 1047 issue: 8 year: 1987 ident: CR37 article-title: Solid electrolytes based on Na PO doped with S, Se, Mo, W publication-title: Mater Res Bull doi: 10.1016/0025-5408(87)90233-9 – volume: 22 start-page: 7687 issue: 16 year: 2012 ident: CR44 article-title: Structural requirements for fast lithium ion migration in Li GeP S publication-title: J Mater Chem doi: 10.1039/c2jm16688g – volume: 70 start-page: 203 year: 1994 ident: CR22 article-title: High lithium ion conductivity in the perovskite-type compounds Ln L TiO (Ln = La, Pr, Nd, Sm) publication-title: Solid State Ionics doi: 10.1016/0167-2738(94)90310-7 – volume: 1 start-page: 16030 issue: 4 year: 2016 ident: CR2 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat Energy doi: 10.1038/nenergy.2016.30 – volume: 82 start-page: 61 issue: 1–2 year: 1995 ident: CR36 article-title: Phase diagram and ionic conductivity of Li SO -Li VO system publication-title: Solid State Ionics doi: 10.1016/0167-2738(95)00193-A – volume: 124 start-page: 1240 issue: 8 year: 1977 ident: CR17 article-title: Ionic conductivity of lithium orthosilicate-lithium phosphate solid solutions publication-title: J Electrochem Soc doi: 10.1149/1.2133537 – volume: 5 start-page: 14227 year: 2015 ident: CR14 article-title: High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory publication-title: Sci Rep doi: 10.1038/srep14227 – volume: 28–30 start-page: 168 issue: 3 year: 1988 ident: CR32 article-title: Fast cation conductivity by percolation in alkali sulfate compositions publication-title: Solid State Ionics doi: 10.1016/S0167-2738(88)80027-4 – volume: 37 start-page: 1392 issue: 11 year: 2001 ident: CR38 article-title: Potassium cationic conduction in K P E O (E = S, Cr, Mo, W) publication-title: Russ J Electrochem doi: 10.1023/A:1012775801761 – volume: 114 start-page: 11046 issue: 42 year: 2017 ident: CR26 article-title: Li-rich antiperovskite superionic conductors based on cluster ions publication-title: PNAS doi: 10.1073/pnas.1704086114 – volume: 213 start-page: 169 year: 2016 ident: CR9 article-title: Recent progress in sulfide-based solid electrolytes for Li-ion batteries publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2016.03.005 – volume: 266 start-page: 60 issue: 1 year: 1999 ident: CR28 article-title: Anion reorientation in an ion conducting plastic crystal–coherent quasielastic neutron scattering from sodium ortho-phosphate publication-title: Physica B doi: 10.1016/S0921-4526(98)01494-X – volume: 7 start-page: 1 issue: 1 year: 1982 ident: CR18 article-title: New Li ion conductors in the system Li SiO -Li AsO publication-title: Solid State Ionics doi: 10.1016/0167-2738(82)90060-1 – volume: 24 start-page: 15 issue: 1 year: 2011 ident: CR41 article-title: First principles study of the Li GeP S lithium super ionic conductor material publication-title: Chem Mater doi: 10.1021/cm203303y – volume: 3 start-page: 980 issue: 8 year: 2013 ident: 1058_CR13 publication-title: Adv Energy Mater doi: 10.1002/aenm.201300060 – volume: 15 start-page: 185 issue: 3 year: 1985 ident: 1058_CR16 publication-title: Solid State Ionics doi: 10.1016/0167-2738(85)90002-5 – volume: 53 start-page: 369 issue: 3 year: 1984 ident: 1058_CR19 publication-title: J Solid State Chem doi: 10.1016/0022-4596(84)90114-2 – volume: 102 start-page: 372 issue: 2 year: 1998 ident: 1058_CR20 publication-title: J Phys Chem B doi: 10.1021/jp973296c – volume: 40 start-page: 2525 issue: 5 year: 2011 ident: 1058_CR1 publication-title: Chem Soc Rev doi: 10.1039/c0cs00081g – volume: 30 start-page: 1547 issue: 12 year: 1991 ident: 1058_CR27 publication-title: Angew Chem Int Ed doi: 10.1002/anie.199115471 – volume: 21 start-page: 279 issue: 4 year: 1986 ident: 1058_CR34 publication-title: Solid State Ionics doi: 10.1016/0167-2738(86)90190-6 – volume: 137 start-page: 1384 issue: 4 year: 2015 ident: 1058_CR10 publication-title: J Am Chem Soc doi: 10.1021/ja508723m – volume: 38 start-page: 225 issue: 3–4 year: 1990 ident: 1058_CR35 publication-title: Solid State Ionics doi: 10.1016/0167-2738(90)90425-Q – volume: 135 start-page: 15694 issue: 42 year: 2013 ident: 1058_CR42 publication-title: J Am Chem Soc doi: 10.1021/ja407393y – volume: 223 start-page: 1341 issue: 10–11 year: 2009 ident: 1058_CR29 publication-title: Z Phys Chem doi: 10.1524/zpch.2009.6083 – volume: 28 start-page: 266 issue: 1 year: 2015 ident: 1058_CR5 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04082 – volume: 8 start-page: 7843 issue: 12 year: 2016 ident: 1058_CR6 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b00833 – volume: 116 start-page: 140 issue: 1 year: 2016 ident: 1058_CR15 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00563 – volume: 124 start-page: 1240 issue: 8 year: 1977 ident: 1058_CR17 publication-title: J Electrochem Soc doi: 10.1149/1.2133537 – volume: 213 start-page: 169 year: 2016 ident: 1058_CR9 publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2016.03.005 – volume: 57 start-page: 203 issue: 3–4 year: 1992 ident: 1058_CR31 publication-title: Solid State Ionics doi: 10.1016/0167-2738(92)90149-J – volume: 176 start-page: 83 year: 2014 ident: 1058_CR46 publication-title: Faraday Discuss doi: 10.1039/C4FD00143E – volume: 15 start-page: 1339 issue: 5 year: 2013 ident: 1058_CR25 publication-title: Phys Chem Chem Phys doi: 10.1039/C2CP43267F – volume: 22 start-page: 1047 issue: 8 year: 1987 ident: 1058_CR37 publication-title: Mater Res Bull doi: 10.1016/0025-5408(87)90233-9 – volume: 28–30 start-page: 168 issue: 3 year: 1988 ident: 1058_CR32 publication-title: Solid State Ionics doi: 10.1016/S0167-2738(88)80027-4 – volume: 114 start-page: 11046 issue: 42 year: 2017 ident: 1058_CR26 publication-title: PNAS doi: 10.1073/pnas.1704086114 – volume: 22 start-page: 7687 issue: 16 year: 2012 ident: 1058_CR44 publication-title: J Mater Chem doi: 10.1039/c2jm16688g – volume: 1 start-page: 16030 issue: 4 year: 2016 ident: 1058_CR2 publication-title: Nat Energy doi: 10.1038/nenergy.2016.30 – volume: 5 start-page: 14227 year: 2015 ident: 1058_CR14 publication-title: Sci Rep doi: 10.1038/srep14227 – volume: 6 start-page: 148 issue: 1 year: 2013 ident: 1058_CR43 publication-title: Energy Environ Sci doi: 10.1039/C2EE23355J – volume: 265 start-page: 46 issue: 11 year: 2014 ident: 1058_CR39 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2014.07.011 – volume: 90 start-page: 179 issue: 2 year: 1991 ident: 1058_CR33 publication-title: J Solid State Chem doi: 10.1016/0022-4596(91)90133-3 – volume: 70 start-page: 203 year: 1994 ident: 1058_CR22 publication-title: Solid State Ionics doi: 10.1016/0167-2738(94)90310-7 – volume: 13 start-page: 6441 issue: 35 year: 1980 ident: 1058_CR24 publication-title: J Phys C Solid State Phys doi: 10.1088/0022-3719/13/35/004 – volume: 7 start-page: 1 issue: 1 year: 1982 ident: 1058_CR18 publication-title: Solid State Ionics doi: 10.1016/0167-2738(82)90060-1 – volume: 82 start-page: 61 issue: 1–2 year: 1995 ident: 1058_CR36 publication-title: Solid State Ionics doi: 10.1016/0167-2738(95)00193-A – volume: 266 start-page: 60 issue: 1 year: 1999 ident: 1058_CR28 publication-title: Physica B doi: 10.1016/S0921-4526(98)01494-X – volume: 24 start-page: 15 issue: 1 year: 2011 ident: 1058_CR41 publication-title: Chem Mater doi: 10.1021/cm203303y – volume: 5 start-page: 6310 issue: 13 year: 2017 ident: 1058_CR4 publication-title: J Mater Chem A doi: 10.1039/C7TA01147D – volume: 10 start-page: 682 issue: 9 year: 2011 ident: 1058_CR40 publication-title: Nat Mater doi: 10.1038/nmat3066 – volume: 98 start-page: 3352 issue: 10 year: 2015 ident: 1058_CR45 publication-title: J Am Ceram Soc doi: 10.1111/jace.13694 – volume: 2 start-page: 16103 issue: 4 year: 2017 ident: 1058_CR7 publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2016.103 – volume: 25 start-page: 018211 issue: 1 year: 2015 ident: 1058_CR12 publication-title: Chin Phys B doi: 10.1088/1674-1056/25/1/018211 – volume: 27 start-page: 4215 issue: 13–15 year: 2007 ident: 1058_CR21 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.02.118 – volume: 37 start-page: 1392 issue: 11 year: 2001 ident: 1058_CR38 publication-title: Russ J Electrochem doi: 10.1023/A:1012775801761 – volume: 135 start-page: 1167 issue: 4 year: 2013 ident: 1058_CR3 publication-title: J Am Chem Soc doi: 10.1021/ja3091438 – volume: 11 start-page: 87 issue: 1 year: 2018 ident: 1058_CR8 publication-title: Energy Environ Sci doi: 10.1039/C7EE03083E – volume: 159 start-page: 200 issue: 1 year: 2006 ident: 1058_CR11 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.04.085 – volume: 32 start-page: 751 issue: 5 year: 1976 ident: 1058_CR23 publication-title: Acta Cryst. A doi: 10.1107/S0567739476001551 – volume: 48 start-page: 277 issue: 3–4 year: 1991 ident: 1058_CR30 publication-title: Solid State Ionics doi: 10.1016/0167-2738(91)90043-B |
SSID | ssj0044660 |
Score | 2.321377 |
Snippet | Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 497 |
SubjectTerms | Biomaterials Chemistry and Materials Science Electrolytes Energy Germanium Ion currents Ions Materials Engineering Materials Science Metallic Materials Molten salt electrolytes Nanoscale Science and Technology Physical Chemistry Silicon Sodium phosphate Solid electrolytes Solid solutions Substitutes |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8RADA66XvQgPnF1lTl4Ugp9TKftQURll0VwEVHwVuZVEJZ2devBf2_STq0KeizbnUOSJvmSzBeAU87DUItMeaGIEwQoSnvSSu4FPLZSCFtYSxec72Zi-sRvn-PnFZh1d2ForLLziY2jNpWmGjmC9CjlqR9F2eXi1aOtUdRd7VZoSLdawVw0FGOrsIYuOfYHsHY9nt0_dL6ZmpctPwGBaIxcXZ-zuUyHSIAGu4juNEbz-Rmp-vTzV8e0CUSTLdh0GSS7alW-DSu23IGNb7yCu1A_VLUr8rF2TQ-rCrao5h-ypAcaxXhfstYzsXakg0mnKGsYFWcZFWo1Q7hMjLDNigk6BAMpVbEYmuyLYW6JzvwDE9Y9eJqMH2-mnluv4OkoELUXpyY1hW94VliulUx1YjIEfDK1MimErwOVIZzCBFH4kUQIHQRJmnH0niKNhTXRPgzKqrQHwDTPFJqCCQvjc2UDZTBtsMoYiVmxtMkQ_E6UuXbc47QCY573rMkk_Ryln5P083AIZ19_WbTEG_-9POr0k7tvcJn3FjOE805n_c9_Hnb4_2FHsB6SkTSVmBEM6rd3e4yJSa1OnLV9AgE_4j4 priority: 102 providerName: ProQuest |
Title | Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes |
URI | https://link.springer.com/article/10.1007/s12598-018-1058-2 https://www.proquest.com/docview/2038480339 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sXvQgPrFayx48KYE8NpvNsUofKIoUC_UU9hUQSis2Hvz3zuRhVVTwFEKSPexMZr557DcAZ5yHoRGp9kIRJxigaOMpp7gX8NgpIVzuHB1wvr0Towm_nsbT-hz3sul2b0qSpaVeHXZDpE6NV0RHGqN4W7ARE50UKvEk7DXml-qTFQUBxcnonJpS5k9LfHVGK4T5rSha-prBDmzXIJH1Kqnuwpqb78HWJ-rAfSjGi6LO47FqEg9b5Ox5MXtTc7qhbovXJauMD6u6NpiqZeEso_wro1ysYRgRE-lrOUWCFkFfSYkqhlr5ZFk9J2f2hpj0ACaD_sPVyKsnKHgmCkThxdJKm_uWp7njRitpEptiTKekU0kufBPoFCMmxIDCjxRGyUGQyJSjgRQyFs5Gh7A-X8zdETDDU43StmFufa5doC0iA6etVQh8lUva4DdbmZmaXpymXMyyFTEy7X6Gu5_R7mdhG84_PnmuuDX-ernTyCerf7NlFvqR5NKPorQNF43MVo9_Xez4X2-fwGZIOlPmXjqwXry8ulOEIoXuQksOhl3Y6A0fb_p4vezf3Y-7pUK-A5Hk3GU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC50PKgH0XWXHZ992L24BPLodJKDiE_G1yCi4C3br8DCMBmdiMyf87dZlXR2VNCbx5CkDtXVVfXVE-AX52GoRaa8UMQJAhSlPWkl9wIeWymELaylBufLvujd8rO7-G4GntteGCqrbHVirahNqSlGjiA9SnnqR1G2N7r3aGsUZVfbFRrSrVYwu_WIMdfYcW4nTwjhxrunR3jev8Pw5PjmsOe5LQOejgJReXFqUlP4hmeF5VrJVCcmQ9wjUyuTQvg6UIjLA_SThB9JRJJBkKQZRyUi0lhYEyHdWZjjFEDpwNzBcf_qurUFlCxt5iEQaEdL2eZV6-Y9RB5USEbjVWMU17eWceruvsvQ1obvZBmWnMfK9hsRW4EZO_wGi6_mGK5CdV1WLqjImrVArCzYqBxM5JAeqPTjccwaTciaEhImnWBYwygYzCgwrBnCc5pAW6-0ICJouClqxvCK_DPMLe0ZTNBB_g63X8LoH9AZlkP7E5jmmULRM2FhfK5soAy6KVYZI9ELlzbpgt-yMtdu1jmt3Bjk0ynNxP0cuZ8T9_OwCzv_fxk1gz4--3ijPZ_c3flxPpXQLvxpz2z6-kNia58T24b53s3lRX5x2j9fh4WQBKaOAm1Ap3p4tJvoFFVqy0keg79fLewvk6gd1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BKyF42NhgotCBH3jalC4fjpM8VqOlrFAhtErdU-avSIgqrWj60P313DUOhWogIR6jOJbjO_t-dz7_DuAt52GoRaa8UMQJOihKe9JK7gU8tlIIW1hLF5w_TcRoyq9m8czVOV012e7NkWR9p4FYmsrqYmmKi93FN0TtlIRF1KQxivohtDmVkGhBu__-ZjxoNmM6rawJCchrRlPVHGze18nvpmmHN_eOSLeWZ3gIt82Y64STb711pXr6bo_O8T9-6ikcOFTK-rUaHcEDWx7Dk1-4Cp9B9WVRucAhq0v_sEXBlov5Rpb0QOkd6xWrdztWp4kw6YRvDaOAL6Pgr2Y4LGKZ3ZatoE7QOFNkjOEy-GqYK8wz3yAIfg7T4eD6cuS5kg2ejgJReXFqUlP4hmeF5VrJVCcmQydSplYmhfB1oDJ00RB0Cj-S6JYHQZJmHHdkkcbCmugEWuWitC-AaZ4pVC8TFsbnygbKIBSxyhiJSFvapAN-I61cOz5zKqsxz3dMzDShOU5oThOahx04-_nJsibz-FvjbqMCuVvXqzz0o5SnfhRlHThvJLp7_cfOXv5T6zfw6PO7Yf7xw2T8Ch6HpBHbuE8XWtX3tT1FGFSp107VfwDPewDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotational+motion+of+polyanion+versus+volume+effect+associated+with+ionic+conductivity+of+several+solid+electrolytes&rft.jtitle=Rare+metals&rft.au=Zhao%2C+Qian&rft.au=Pan%2C+Li&rft.au=Li%2C+Yuan-Ji&rft.au=Chen%2C+Li-Quan&rft.date=2018-06-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=37&rft.issue=6&rft.spage=497&rft.epage=503&rft_id=info:doi/10.1007%2Fs12598-018-1058-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_018_1058_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |