A novel bi-subgroup adaptive evolutionary algorithm for optimizing degree of hybridization of HEV bus

A six-gear bus with traditional internal combustion engine is modified to a hybrid electric vehicle (HEV) which uses both engine and motor as power sources. Vehicle simulation model is set up in AVL-Cruise software simulation platform for researching and optimizing relevant technical parameters. Log...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 20; no. 1; pp. 497 - 505
Main Authors Yan, Wei, Sun, Jing, Liu, Zhenggang, Hu, Yuping
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
DOI10.1007/s10586-017-0753-3

Cover

Abstract A six-gear bus with traditional internal combustion engine is modified to a hybrid electric vehicle (HEV) which uses both engine and motor as power sources. Vehicle simulation model is set up in AVL-Cruise software simulation platform for researching and optimizing relevant technical parameters. Logic threshold control strategy based on ruling required torque is written to control vehicle driving mode and torque portion. After that, effects of different degree of hybrid (DOH) on vehicle performance are studied with the selected engine by matching different motors. Based on the results of simulation models by the standard condition of road spectrum, vehicle performance and cost under different DOH is analyzed to build the multi-objective function and constraint condition. This paper also develops a new method which has a better performance of global search, and the local search algorithm can improve the quality of the solutions with bi-subgroup self-adaptive evolutionary programming. In this novel algorithm, evolution of Cauchy operator and Gauss operator are parallel performed with different mutation strategies, and the Gauss operator owns the ability of self-adaptation according to the variation of adaptability function. Then this algorithm is used to seek the Pareto optimal solution of the multi-objective function of the HEV, and the best DOH for this model is obtained. The validity of this method is verified in later experiment.
AbstractList A six-gear bus with traditional internal combustion engine is modified to a hybrid electric vehicle (HEV) which uses both engine and motor as power sources. Vehicle simulation model is set up in AVL-Cruise software simulation platform for researching and optimizing relevant technical parameters. Logic threshold control strategy based on ruling required torque is written to control vehicle driving mode and torque portion. After that, effects of different degree of hybrid (DOH) on vehicle performance are studied with the selected engine by matching different motors. Based on the results of simulation models by the standard condition of road spectrum, vehicle performance and cost under different DOH is analyzed to build the multi-objective function and constraint condition. This paper also develops a new method which has a better performance of global search, and the local search algorithm can improve the quality of the solutions with bi-subgroup self-adaptive evolutionary programming. In this novel algorithm, evolution of Cauchy operator and Gauss operator are parallel performed with different mutation strategies, and the Gauss operator owns the ability of self-adaptation according to the variation of adaptability function. Then this algorithm is used to seek the Pareto optimal solution of the multi-objective function of the HEV, and the best DOH for this model is obtained. The validity of this method is verified in later experiment.
Author Hu, Yuping
Sun, Jing
Liu, Zhenggang
Yan, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Yan
  fullname: Yan, Wei
  organization: School of Energy & Power Engineering, Shan Dong University
– sequence: 2
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
  organization: School of information and electronics Engineering, Shandong Technology and Business University
– sequence: 3
  givenname: Zhenggang
  surname: Liu
  fullname: Liu, Zhenggang
  organization: School of Energy & Power Engineering, Shan Dong University
– sequence: 4
  givenname: Yuping
  surname: Hu
  fullname: Hu, Yuping
  email: Huyp0213@163.com
  organization: School of Energy & Power Engineering, Shan Dong University
BookMark eNp9kFFLwzAUhYNMcJv-AN8CPleTplnaxzGmEwa-qK8haW-7jK6pSTvYfr2pFQRBn3LJPd-995wZmjS2AYRuKbmnhIgHTwlPFxGhIiKCs4hdoCnlgkWCJ2wSaha6IuXiCs283xNCMhFnUwRL3Ngj1FibyPe6crZvsSpU25kjYDjauu-MbZQ7YVVX1plud8ClddgGxcGcTVPhAioHgG2JdyftTGHOamCGj836HeveX6PLUtUebr7fOXp7XL-uNtH25el5tdxGOaOLLuJJxlUOAERlBacQ6zTVSV5CHpcl50wvtC4zFWzwJOVA8yxlBaOhoQUpCGdzdDfObZ396MF3cm9714SVMs5oGnORxCSo6KjKnfXeQSlbZw7BoqREDmnKMU0Z0pRDmpIFRvxictN92eycMvW_ZDySPmxpKnA_N_0NfQJLW4ys
CitedBy_id crossref_primary_10_1007_s12239_019_0063_2
crossref_primary_10_1016_j_energy_2025_135489
crossref_primary_10_1016_j_epsr_2019_04_012
Cites_doi 10.1016/j.jfranklin.2006.02.015
10.1016/j.enconman.2015.02.030
10.1016/j.simpat.2012.02.010
10.1016/j.conengprac.2014.04.008
10.1016/S0378-7796(01)00086-4
10.1016/j.conengprac.2014.12.001
10.1016/j.jpowsour.2009.11.036
10.1016/j.energy.2014.11.037
10.1016/j.cie.2015.04.027
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Springer Science+Business Media New York 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Springer Science+Business Media New York 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10586-017-0753-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 505
ExternalDocumentID 10_1007_s10586_017_0753_3
GrantInformation_xml – fundername: Key research and development project of Shandong Province
  grantid: 2015GGX106004
– fundername: Youth Foundation of the National Natural Science Foundation of China
  grantid: 61403236
– fundername: China Torch Program
  grantid: 2015GH720903
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-5495aceee0a9d51e2b88b4cfec2ff553b6bbf9a7855485e1c983d3153bb70d053
IEDL.DBID AGYKE
ISSN 1386-7857
IngestDate Fri Jul 25 23:47:54 EDT 2025
Wed Oct 01 04:11:58 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Fri Feb 21 02:36:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HEV
DOH
Bi-subgroup
Adaptive evolutionary algorithm
Match and optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5495aceee0a9d51e2b88b4cfec2ff553b6bbf9a7855485e1c983d3153bb70d053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918257420
PQPubID 2043865
PageCount 9
ParticipantIDs proquest_journals_2918257420
crossref_primary_10_1007_s10586_017_0753_3
crossref_citationtrail_10_1007_s10586_017_0753_3
springer_journals_10_1007_s10586_017_0753_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
2017-3-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References He, Liu, Koch (CR3) 2010; 195
CR6
Wang, Zhang, Yin (CR1) 2012; 25
Kim, Salvi, Siegel (CR4) 2014; 29
Trovão, Antunes (CR8) 2015; 95
CR12
CR11
Shahsavar, Najafi, Niaki (CR10) 2015; 87
Unger, Kozek, Jakubek (CR2) 2015; 36
Montazeri-Gh, Poursamad, Ghalichi (CR5) 2006; 343
Yin, Xing (CR9) 2008; 17
Arul, Velusamia, Ravib (CR14) 2015; 79
Xin, Jianfeng, Yi (CR7) 2009; 2
Shi, Guoyu (CR13) 2001; 57
Youngki Kim (753_CR4) 2014; 29
Y He (753_CR3) 2010; 195
Johannes Unger (753_CR2) 2015; 36
R Arul (753_CR14) 2015; 79
Hu Yin (753_CR9) 2008; 17
L Wang (753_CR1) 2012; 25
JP Trovão (753_CR8) 2015; 95
A Shahsavar (753_CR10) 2015; 87
Libao Shi (753_CR13) 2001; 57
M Montazeri-Gh (753_CR5) 2006; 343
753_CR11
753_CR12
Z Xin (753_CR7) 2009; 2
753_CR6
References_xml – volume: 343
  start-page: 420
  issue: 4
  year: 2006
  end-page: 435
  ident: CR5
  article-title: Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2006.02.015
– volume: 2
  start-page: 36
  year: 2009
  end-page: 40
  ident: CR7
  article-title: Multi-objective optimization of hybrid electric vehicle control strategy with genetic algorithm
  publication-title: Chin. J. Mech. Eng.
– volume: 95
  start-page: 281
  year: 2015
  end-page: 296
  ident: CR8
  article-title: A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.02.030
– volume: 25
  start-page: 148
  year: 2012
  end-page: 162
  ident: CR1
  article-title: Hardware-in-the-loop simulation for the design and verification of the control system of a series–parallel hybrid electric city-bus
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2012.02.010
– ident: CR12
– volume: 29
  start-page: 277
  year: 2014
  end-page: 286
  ident: CR4
  article-title: Hardware-in-the-loop validation of a power management strategy for hybrid power trains
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2014.04.008
– ident: CR11
– volume: 57
  start-page: 181
  issue: 1
  year: 2001
  end-page: 187
  ident: CR13
  article-title: Self-adaptive evolutionary programming and its application to multi-objective optimal operation of power systems
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/S0378-7796(01)00086-4
– ident: CR6
– volume: 17
  start-page: 1265
  issue: 5
  year: 2008
  end-page: 1271
  ident: CR9
  article-title: A novel multi-group evolutionary algorithm based on competition and communication among population
  publication-title: J. Syst. Simul.
– volume: 36
  start-page: 120
  year: 2015
  end-page: 132
  ident: CR2
  article-title: Nonlinear model predictive energy management controller with load and cycle prediction for non-road HEV
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2014.12.001
– volume: 195
  start-page: 2969
  year: 2010
  end-page: 2974
  ident: CR3
  article-title: Battery algorithm verification and development using hardware-in-the-loop testing
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.11.036
– volume: 79
  start-page: 496
  issue: 1
  year: 2015
  end-page: 511
  ident: CR14
  article-title: A new algorithm for combined dynamic economic emission dispatch with security constraints
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.037
– volume: 87
  start-page: 4
  year: 2015
  end-page: 15
  ident: CR10
  article-title: Three self-adaptive multi-objective evolutionary algorithms for a triple-objetive project scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.04.027
– volume: 29
  start-page: 277
  year: 2014
  ident: 753_CR4
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2014.04.008
– volume: 195
  start-page: 2969
  year: 2010
  ident: 753_CR3
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.11.036
– volume: 343
  start-page: 420
  issue: 4
  year: 2006
  ident: 753_CR5
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2006.02.015
– volume: 87
  start-page: 4
  year: 2015
  ident: 753_CR10
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.04.027
– volume: 25
  start-page: 148
  year: 2012
  ident: 753_CR1
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2012.02.010
– volume: 57
  start-page: 181
  issue: 1
  year: 2001
  ident: 753_CR13
  publication-title: Electr. Power Syst. Res.
– volume: 17
  start-page: 1265
  issue: 5
  year: 2008
  ident: 753_CR9
  publication-title: J. Syst. Simul.
– ident: 753_CR6
– volume: 79
  start-page: 496
  issue: 1
  year: 2015
  ident: 753_CR14
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.037
– volume: 2
  start-page: 36
  year: 2009
  ident: 753_CR7
  publication-title: Chin. J. Mech. Eng.
– ident: 753_CR12
– volume: 36
  start-page: 120
  year: 2015
  ident: 753_CR2
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2014.12.001
– volume: 95
  start-page: 281
  year: 2015
  ident: 753_CR8
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.02.030
– ident: 753_CR11
SSID ssj0009729
Score 2.0880194
Snippet A six-gear bus with traditional internal combustion engine is modified to a hybrid electric vehicle (HEV) which uses both engine and motor as power sources....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 497
SubjectTerms Adaptive algorithms
Computer Communication Networks
Computer Science
Cost analysis
Electric vehicles
Energy consumption
Evolutionary algorithms
Genetic algorithms
Hybrid electric vehicles
Internal combustion engines
Multiple objective analysis
Mutation
Operating Systems
Optimization
Power sources
Processor Architectures
Search algorithms
Self adaptive control systems
Simulation models
Subgroups
Torque
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEB9868XL8-uJ6xc5eFLCa5KmTQ4iKiuL4CKPp3gr-aoK63Z1dwX96026qUVBr22S0snMZD4y8wPYD1rf5IziTHKKU54YrLVmmCpGiZ9DVB3TvRxk_ev04pbfLsCgqYUJ1yobnVgraluZECP_S6W3hLl35JLj8RMOqFEhu9pAaKgIrWCP6hZjv2CRhs5YHVg87Q2u_rVtePMat4wwkeFc8LzJc86L6bgI3nUI3XGG2eeTqjU_v2RM64PofAV-RwsSncy3fBUW3GgNlht0BhSFdR3cCRpVL26I9AOezHRdvoGUVeOg4JB7iTynnl-RGt75X53ePyJvwqLKj3h8ePMfR9Z5d9yhqkT3r6G0KxZthgf93g3Ss8kfuD7v_T_r4wiqgA0j2RR7f5ArfzK6REnLiaNaCJ2a0hlalpwznWldSpWH62uCO2KkYJZ5vah1nlgvshvQGVUjtwnISqat5FwQk6eKaMlSKRyxvPQ2Gs9EF5KGgIWJHccD8MWwaHslB5oXnuZFoHnBunDwMWU8b7fx0-CdZleKKHmTouWTLhw2O9W-_naxrZ8X24YlWrNGuH22A53p88ztenNkqvcij70DKyDboA
  priority: 102
  providerName: ProQuest
Title A novel bi-subgroup adaptive evolutionary algorithm for optimizing degree of hybridization of HEV bus
URI https://link.springer.com/article/10.1007/s10586-017-0753-3
https://www.proquest.com/docview/2918257420
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7543
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8LR1L7ywMUAUxuQHnkCeYjtO7McOtas2MSG0ovEU-RyHVXTN1KaTtl-PnToUJkDaUyTnbNl39vnO9wXwLnB9mwtOMy05TWViKSIKyo3gzPdhpn3T_XSejSfp6aW8jHHcy87bvTNJtpz6t2A3qYL2G57WpKBiG3badFs92BmcfDsbbnLt5m1xMiY8eK5k3hkz_zbIn9fRRsZ8YBZtb5vRLlx081w7mfw4WjV4ZO8fpHB85EL24GmUPslgvV2ewZab78NuV9mBxIP-HNyAzOtbNyM4pcsVtqEfxJTmJjBH4m7jfjWLO2Jm3-vFtLm6Jl78JbWHuJ7e--mQ0nlV3pG6Ild3ISwsBnyGhvHwK8HV8gVMRsOLj2MaCzJQK1jWUK9LSuNvVZcYXUrmOCqFqa2c5VUlpcAMsdImD65vSjpmtRKl8DwVMU9Kf9xfQm9ez90rIKUWWGopFbN5ahhqkWrlWCkrL9_JTPUh6ehS2JitPBTNmBWbPMsBjYVHYxHQWIg-vP_V5WadquN_wAcdsYt4apcF117bknnKkz586Gi3-f3PwV4_CvoNPOEt8YMj2wH0msXKvfWSTYOHsK1GJ4dxP_vv8fD88xffOuGDn6ln8eM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHOilD2jVbYH60F6orMZ2nNgHhKBdtBRYVRVU3FK_UpCWzZbdBS0_jt_GOOsQFancuCa2I32ezMOemQ-hj0Hr25wzkinBSCoSS4wxnDDNGYU5VNdnukf9rHeSfj8VpwvotqmFCWmVjU6sFbWrbDgj_8IUeMICArlke_SXBNaocLvaUGjoSK3gtuoWY7Gw48DPriGEG2_tf4P9_sTYXvf4a49ElgFiOc0mBAIkocFU-EQrJ6hnRkqT2tJbVpZCcJMZUyqdh3wuKTy1SnLHQVEYkycuCawRYAKWUp4qCP6Wdrv9Hz_btr95zZNGucwIrJA396rz4j0hQzQfjgoFJ_xfy9i6uw9uaGvDt_cSPY8eK96Zi9grtOCHK-hFwwaBo3JYRX4HD6srP8DmnIynpi4XwdrpUVCo2F9FGdeXM6wHfwDaydkFBpcZVzDi4vwGPo6dh_Df46rEZ7NQShaLRMODXvcXNtPxa3TyJPC-QYvDaujfIuwUN04JIanNU02NAsilp06U4BOKTHZQ0gBY2NjhPBBtDIq2N3PAvADMi4B5wTto837KaN7e47HBa82uFPFPHxetXHbQ52an2tf_Xezd44t9QMu946PD4nC_f_AePWO1mITMtzW0OLmc-nVwhSZmI8obRr-fWsTvABP7GZ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1LS8MwOPgA8eJbnM8cPCnBJmna5DjUMV_Dg5PdStKkbrC1Y-sG-utNutapqOC1-ZLC98r35XsBcOq0fhxSggLBCPKZFyOlFEVEUoLtHiyLN92HVtBs-7cd1innnI6rbPcqJDmraXBdmtL8YqiTi0-Fb4w7T9g9szGK6CJY9l2fBMvQbVKfd90NizFlmFrgkLOwCmv-dMTXi2lubX4LkBb3TmMDrJUGI6zPKLwJFky6BdarYQywlM1tYOowzaamD1UPjSeqqNaAUsuh02fQTEsWk6NXKPsv2aiXdwfQWqwwsxCD3pv9OdTGet8GZgnsvrpKrrJG031oXj9DNRnvgHbj-umyicoZCiimOMiRdf-YtBeh8aTQDBuiOFd-nJiYJAljVAVKJUKGLluNM4NjwammVg0qFXraSuguWEqz1OwBqAVVWjDGcRz6EitBfcEN1iyxJhkLeA14FQKjuGww7uZc9KN5a2SH88jiPHI4j2gNnH1sGc66a_wFfFhRJSoFbRwRYR0kZv17rwbOK0rNl389bP9f0Cdg5fGqEd3ftO4OwCopmMaloR2CpXw0MUfWLsnVccF775NB2NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+bi-subgroup+adaptive+evolutionary+algorithm+for+optimizing+degree+of+hybridization+of+HEV+bus&rft.jtitle=Cluster+computing&rft.au=Yan%2C+Wei&rft.au=Sun%2C+Jing&rft.au=Liu%2C+Zhenggang&rft.au=Hu%2C+Yuping&rft.date=2017-03-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=20&rft.issue=1&rft.spage=497&rft.epage=505&rft_id=info:doi/10.1007%2Fs10586-017-0753-3&rft.externalDocID=10_1007_s10586_017_0753_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon