Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems

In the present work, strength of momentum least mean square (MLMS) algorithm is exploited for nonlinear system identification problems represented with Hammerstein model. The MLMS algorithm uses the previous gradient information to estimate the current weights instead of using only current value of...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 30; no. 4; pp. 1133 - 1143
Main Authors Chaudhary, Naveed Ishtiaq, Zubair, Syed, Raja, Muhammad Asif Zahoor
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-016-2762-1

Cover

Abstract In the present work, strength of momentum least mean square (MLMS) algorithm is exploited for nonlinear system identification problems represented with Hammerstein model. The MLMS algorithm uses the previous gradient information to estimate the current weights instead of using only current value of gradient; thus, it is faster in the convergence and less probable to trap in local minima. The perfection of the design scheme is certified through effective parameter estimation of nonlinear Hammerstein control autoregressive models. The robustness of the scheme is established by examining the performance for different levels of noise variance. The performance comparison through mean square error and Nash–Sutcliffe efficiency parameters, calculated for sufficiently large number of multiple runs, proves the intrinsic worth of MLMS algorithm in system identification.
AbstractList In the present work, strength of momentum least mean square (MLMS) algorithm is exploited for nonlinear system identification problems represented with Hammerstein model. The MLMS algorithm uses the previous gradient information to estimate the current weights instead of using only current value of gradient; thus, it is faster in the convergence and less probable to trap in local minima. The perfection of the design scheme is certified through effective parameter estimation of nonlinear Hammerstein control autoregressive models. The robustness of the scheme is established by examining the performance for different levels of noise variance. The performance comparison through mean square error and Nash–Sutcliffe efficiency parameters, calculated for sufficiently large number of multiple runs, proves the intrinsic worth of MLMS algorithm in system identification.
Author Chaudhary, Naveed Ishtiaq
Raja, Muhammad Asif Zahoor
Zubair, Syed
Author_xml – sequence: 1
  givenname: Naveed Ishtiaq
  surname: Chaudhary
  fullname: Chaudhary, Naveed Ishtiaq
  email: naveedch835@gmail.com, naveed.ishtiaq@iiu.edu.pk
  organization: Department of Electronic Engineering, International Islamic University
– sequence: 2
  givenname: Syed
  surname: Zubair
  fullname: Zubair, Syed
  organization: Department of Electronic Engineering, International Islamic University
– sequence: 3
  givenname: Muhammad Asif Zahoor
  surname: Raja
  fullname: Raja, Muhammad Asif Zahoor
  organization: Department of Electrical Engineering, COMSATS Institute of Information Technology
BookMark eNp9kE1LAzEQhoMo2FZ_gLeA59Vkk81uj1I_KlQ8qOcwbibLlu6mJlmh_960KwiCnuYw7zMfz5Qc965HQi44u-KMldeBsSLnGeMqy0uVZ_yITLgUIhOsqI7JhM1l6iopTsk0hDVjTKqqmBB_i6Fteuos7VyHfRw6unp6oWBgG9tPpCF6iNjsqHWebsFDhxE9xRDbDmLrDugSug59iNj2tHZ99G6zQUNhiM5j4zGEw6hdSnThjJxY2AQ8_64z8nZ_97pYZqvnh8fFzSqrBVcxK2RhBIq84gbA1MCNKHktBZRVDfPKglXGVgYZlIYVigtR2FzJOSgrAN9LMSOX49ytdx9DOliv3eD7tFLnrOS5lLyapxQfU7V3IXi0euvTZ36nOdN7tXpUq5NavVereWLKX0zdxoOMJKvd_EvmIxnSlr5B_3PT39AXlg2SQg
CitedBy_id crossref_primary_10_1007_s00521_018_3362_z
crossref_primary_10_1016_j_apm_2020_12_035
crossref_primary_10_1142_S0217979223502545
crossref_primary_10_1016_j_asoc_2019_03_052
crossref_primary_10_1002_acs_3471
crossref_primary_10_1115_1_4045891
crossref_primary_10_1016_j_dsp_2024_104483
crossref_primary_10_1002_dac_4915
crossref_primary_10_1140_epjp_s13360_023_04626_6
crossref_primary_10_1016_j_apm_2018_09_028
crossref_primary_10_1140_epjp_i2019_12785_8
crossref_primary_10_1038_s41598_024_83654_3
crossref_primary_10_1007_s00521_019_04328_0
crossref_primary_10_1016_j_apm_2020_03_014
crossref_primary_10_32604_cmc_2022_019120
crossref_primary_10_1016_j_jfranklin_2018_12_002
crossref_primary_10_1155_2022_4851364
Cites_doi 10.1007/s12555-012-0322-8
10.1016/j.jfranklin.2014.09.025
10.1109/TAC.2013.2273283
10.1007/s11071-015-2548-5
10.1016/j.sigpro.2014.11.016
10.1007/s11071-016-3058-9
10.1049/iet-spr.2013.0438
10.1016/j.apm.2012.04.039
10.1016/j.amc.2014.09.070
10.1007/s13369-014-1289-y
10.1007/s13369-015-1698-6
10.1002/9781118535561
10.1007/s00034-015-0190-6
10.1016/j.sigpro.2015.02.010
10.1016/j.sigpro.2014.06.015
10.1016/j.ins.2016.03.037
10.1007/s00034-014-9772-y
10.1007/s00034-014-9839-9
10.1016/j.cam.2015.03.057
10.1007/s00521-014-1716-8
10.3182/20140824-6-ZA-1003.01754
10.1007/s11071-014-1771-9
10.1155/2013/467276
10.1007/s00521-016-2677-x
10.1016/j.ifacol.2015.12.159
10.1016/j.sigpro.2015.10.009
10.1109/TSP.2013.2286103
10.1049/iet-cta.2015.1195
10.1007/s00521-016-2394-5
10.1109/TSP.2007.907805
10.1016/j.jsv.2010.09.012
10.1007/s11071-014-1791-5
10.1007/s11071-013-1168-1
10.1109/TCST.2014.2387216
10.1016/j.ins.2012.07.064
10.1016/j.ymssp.2011.06.010
10.1016/j.ces.2015.02.021
10.1049/iet-cta.2012.0313
10.1007/s00521-010-0461-x
10.1007/s11071-014-1804-4
10.1007/s00521-016-2548-5
10.1007/s11071-014-1748-8
10.1007/978-0-85729-522-4
10.1016/j.automatica.2016.05.024
10.1016/j.aml.2012.03.038
10.1007/s11071-015-2279-7
10.1016/j.amc.2014.02.087
10.1016/j.neucom.2015.04.022
10.1016/j.sigpro.2015.04.015
10.1007/978-1-84996-513-2_4
10.1007/s00034-016-0378-4
10.1016/j.aml.2015.12.018
10.1016/j.aml.2016.03.016
10.1007/s11071-014-1801-7
10.1016/j.measurement.2013.11.010
10.1186/s13634-015-0219-9
10.1016/j.dsp.2015.07.002
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2016
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Natural Computing Applications Forum 2016
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00521-016-2762-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1143
ExternalDocumentID 10_1007_s00521_016_2762_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c316t-545d3e3281daadca1d371c43a78ca98faf6df8de0a7d0561335f2649a6f3aeb73
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 04:49:46 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed Oct 01 02:25:47 EDT 2025
Fri Feb 21 02:35:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Signal processing
Momentum LMS
System identification
Hammerstein models
Adaptive algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-545d3e3281daadca1d371c43a78ca98faf6df8de0a7d0561335f2649a6f3aeb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2071244189
PQPubID 2043988
PageCount 11
ParticipantIDs proquest_journals_2071244189
crossref_primary_10_1007_s00521_016_2762_1
crossref_citationtrail_10_1007_s00521_016_2762_1
springer_journals_10_1007_s00521_016_2762_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BillingsSANonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains2013ChichesterWiley10.1002/97811185355611287.93101
ChaudharyNIRajaMAZKhanAURDesign of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systemsNonlinear Dyn20158241811183010.1007/s11071-015-2279-7
KeesmanKJSystem identification: an introduction2011BerlinSpringer10.1007/978-0-85729-522-41230.93001
MoinuddinMAl-SaggafUMAhmedAFamily of state space least mean power of two-based algorithmsEURASIP J Adv Signal Process201520151110.1186/s13634-015-0219-9
VörösJIterative identification of nonlinear dynamic systems with output backlash using three-block cascade modelsNonlinear Dyn201579321872195330542410.1007/s11071-014-1804-4
XuLChenLXiongWParameter estimation and controller design for dynamic systems from the step responses based on the Newton iterationNonlinear Dyn201579321552163330542110.1007/s11071-014-1801-7
ChenHDingFXiaoYDecomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation techniqueNonlinear Dyn20157932027203510.1007/s11071-014-1791-51331.93083
HuHDingRLeast squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary modelNonlinear Dyn2014761777784318920910.1007/s11071-013-1168-11319.93081
AlexanderTSAdaptive signal processing: theory and applications2012BerlinSpringer
ElleuchKKharratMChaariAChaabaneMModeling and identification of block-oriented heat transfer processInt J Inf Syst Sci20095141561158.93408
BoZSunCXuYJiangSA variable momentum factor filtered-x weighted accumulated LMS algorithm for narrowband active noise control systemsMeasurement20144828229110.1016/j.measurement.2013.11.010
WangDHierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed modelsAppl Math Lett2016571319346410110.1016/j.aml.2015.12.0181336.93155
CorbierCEl BadaouiMUgaldeHMRHuberian approach for reduced order ARMA modeling of neurodegenerative disorder signalSignal Process201511327328410.1016/j.sigpro.2015.02.010
ChaudharyNIRajaMAZAslamMSAhmedNNovel generalization of Volterra LMS algorithm to fractional order with application to system identificationNeural Comput Appl2016
DingFDengKLiuXDecomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noiseCircuits Syst Signal Process201433928812893324590910.1007/s00034-014-9772-y
ZhaoWZhengWXBaiEWA recursive local linear estimator for identification of nonlinear ARX systems: asymptotical convergence and applicationsIEEE Trans Automat Control2013581230543069315226810.1109/TAC.2013.22732831369.93611
YuCZhangCXieLA new deterministic identification approach to Hammerstein systemsIEEE Trans Signal Process2014621131140314959910.1109/TSP.2013.2286103
WangDDingFParameter estimation algorithms for multivariable Hammerstein CARMA systemsInf Sci2016355237248351529310.1016/j.ins.2016.03.037
RajaMAZChaudharyNITwo-stage fractional least mean square identification algorithm for parameter estimation of CARMA systemsSignal Process201510732733910.1016/j.sigpro.2014.06.015
XuLThe damping iterative parameter identification method for dynamical systems based on the sine signal measurementSignal Process201612066066710.1016/j.sigpro.2015.10.009
TaoualiOElaissiIMessaoudHOnline identification of nonlinear system using reduced kernel principal component analysisNeural Comput Appl201221116116910.1007/s00521-010-0461-x
Vörös J (2010) Compound operator decomposition and its application to Hammerstein and Wiener systems. In: Giri F, Bai E-W (eds) Block-oriented nonlinear system identification. Springer, London, pp 35–51. doi:10.1007/978-1-84996-513-2_4
Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J, Article ID 467276. doi:10.1155/2013/467276
MaoYDingFMulti-innovation stochastic gradient identification for Hammerstein controlled autoregressive systems based on the filtering techniqueNonlinear Dyn20157931745175510.1007/s11071-014-1771-91331.93211
TogunNBaysecSKaraTNonlinear modeling and identification of a spark ignition engine torqueMech Syst Signal Process20122629430410.1016/j.ymssp.2011.06.010
NatkeHGApplication of system identification in engineering2014BerlinSpringer0651.93001
XuLDingFRecursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modelingCircuits Syst Signal Process20171370.94286
ZhangYLiNChambersJASayedAHSteady-state performance analysis of a variable tap-length LMS algorithmIEEE Trans Signal Process2008562839845251244710.1109/TSP.2007.90780506896420
UgaldeHMRCarmonaJCReyes-ReyesJAlvaradoVMMantillaJComputational cost improvement of neural network models in black box nonlinear system identificationNeurocomputing20151669610810.1016/j.neucom.2015.04.022
XuLApplication of the Newton iteration algorithm to the parameter estimation for dynamical systemsJ Comput Appl Math20152883343334960210.1016/j.cam.2015.03.0571314.93062
RajaMAZShahAAMehmoodAChaudharyNIAslamMSBio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive systemNeural Comput Appl2016
Al-SaggafUMMoinuddinMArifMZerguineAThe q-least mean squares algorithmSignal Process2015111506010.1016/j.sigpro.2014.11.016
law PawlakMLvJNonparametric specification testing for Hammerstein systemsIFAC Pap Online2015482839239710.1016/j.ifacol.2015.12.159
DingFWangXChenQXiaoYRecursive least squares parameter estimation for a class of output nonlinear systems based on the model decompositionCircuits Syst Signal Process201635933233338352975810.1007/s00034-015-0190-61345.93169
WangDQLiuHBDingFHighly efficient identification methods for dual-rate Hammerstein systemsIEEE Trans Control Syst Technol20152351952196010.1109/TCST.2014.2387216
XiaoYSongGLiaoYDingRMulti-innovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive modelsInt J Control Automat Syst201210363964310.1007/s12555-012-0322-8
WangYDingFRecursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filteringNonlinear Dyn201684210451053347494610.1007/s11071-015-2548-51354.93158
UgaldeHMRCarmonaJCReyes-ReyesJAlvaradoVMCorbierCBalanced simplicity–accuracy neural network model families for system identificationNeural Comput Appl201526117118610.1007/s00521-014-1716-8
LiJParameter estimation for Hammerstein CARARMA systems based on the Newton iterationAppl Math Lett20132619196297140610.1016/j.aml.2012.03.0381255.65119
DingFLiuXGChuJGradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principleIET Control Theory Appl201372176184308745510.1049/iet-cta.2012.0313
XuLA proportional differential control method for a time-delay system using the Taylor expansion approximationAppl Math Comput201423639139931977361334.93125
ChenHXiaoYDingFHierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principleAppl Math Comput20142471202121032709181343.62055
KhaniFHaeriMRobust model predictive control of nonlinear processes represented by Wiener or Hammerstein modelsChem Eng Sci201512922323110.1016/j.ces.2015.02.021
RajaMAZChaudharyNIAdaptive strategies for parameter estimation of Box–Jenkins systemsIET Signal Process20148996898010.1049/iet-spr.2013.0438
WangDDingFChuYData filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principleInf Sci2013222203212299850910.1016/j.ins.2012.07.0641293.93758
WangYDingFFiltering-based iterative identification for multivariable systemsIET Control Theory Appl2016108894902352537210.1049/iet-cta.2015.1195
ChaudharyNIRajaMAZDesign of fractional adaptive strategy for input nonlinear Box–Jenkins systemsSignal Process201511614115110.1016/j.sigpro.2015.04.015
ChenHDingFHierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systemsCircuits Syst Signal Process20153416175329915910.1007/s00034-014-9839-91341.93089
DingFHierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modelingAppl Math Model201337416941704300227210.1016/j.apm.2012.04.0391349.93391
AslamMSChaudharyNIRajaMAZA sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systemsNonlinear Dyn20161371.93205
MaoYDingFA novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systemsDigit Signal Proc201546215225341171410.1016/j.dsp.2015.07.002
VörösJIdentification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade modelsJ Franklin Inst20143511254555466327665010.1016/j.jfranklin.2014.09.025
Tang Y, Han Z, Wang Y, Zhang L, Lian Q (2016) A changing forgetting factor RLS for online identification of nonlinear systems based on ELM–Hammerstein model. Neural Comput Appl 1–15. doi:10.1007/s00521-016-2394-5
WangYDingFNovel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary modelAutomatica201671308313352198210.1016/j.automatica.2016.05.0241343.93087
MoinuddinMZerguineAA unified performance analysis of the family of normalized least mean algorithmsArab J Sci Eng2014391071457157325519910.1007/s13369-014-1289-y06882893
RébillatMHennequinRCorteelEKatzBFIdentification of cascade of Hammerstein models for the description of nonlinearities in vibrating devicesJ Sound Vib201133051018103810.1016/j.jsv.2010.09.012
ChaudharyNIRajaMAZIdentification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithmsNonlinear Dyn201579213851397330277510.1007/s11071-014-1748-81345.93045
HolcombCMde CallafonRABitmeadRRClosed-loop identification of Hammerstein systems with application to gas turbinesIFAC Proc201447349349810.3182/
F Ding (2762_CR34) 2013; 7
UM Al-Saggaf (2762_CR58) 2015; 111
MAZ Raja (2762_CR6) 2015; 107
M Rébillat (2762_CR26) 2011; 330
NI Chaudhary (2762_CR53) 2015; 82
L Xu (2762_CR11) 2015; 79
DQ Wang (2762_CR36) 2015; 23
M Moinuddin (2762_CR56) 2015; 2015
H Chen (2762_CR50) 2015; 79
CM Holcomb (2762_CR23) 2014; 47
L Xu (2762_CR8) 2014; 236
F Ding (2762_CR9) 2016; 35
NI Chaudhary (2762_CR44) 2015; 79
C Yu (2762_CR31) 2014; 62
Y Xiao (2762_CR47) 2012; 10
W Zhao (2762_CR28) 2013; 58
L Xu (2762_CR10) 2015; 288
F Ding (2762_CR41) 2014; 33
Y Wang (2762_CR15) 2016; 71
Y Mao (2762_CR40) 2015; 46
J Li (2762_CR32) 2013; 26
Y Zhang (2762_CR55) 2008; 56
SA Billings (2762_CR27) 2013
H Chen (2762_CR38) 2014; 247
N Togun (2762_CR24) 2012; 26
L Xu (2762_CR12) 2016; 120
K Elleuch (2762_CR25) 2009; 5
C Corbier (2762_CR2) 2015; 113
D Wang (2762_CR37) 2013; 222
D Wang (2762_CR33) 2016; 57
2762_CR30
M Moinuddin (2762_CR57) 2014; 39
J Vörös (2762_CR20) 2014; 351
O Taouali (2762_CR5) 2012; 21
HMR Ugalde (2762_CR7) 2015; 26
MAZ Raja (2762_CR3) 2014; 8
F Ding (2762_CR35) 2013; 37
M law Pawlak (2762_CR29) 2015; 48
MS Aslam (2762_CR46) 2016
MAZ Raja (2762_CR51) 2016
Y Mao (2762_CR43) 2016; 60
(2762_CR1) 2014
2762_CR21
TS Alexander (2762_CR54) 2012
A Ahmed (2762_CR59) 2016; 41
NI Chaudhary (2762_CR45) 2015; 116
NI Chaudhary (2762_CR18) 2016
Y Wang (2762_CR14) 2016; 84
F Khani (2762_CR22) 2015; 129
H Chen (2762_CR49) 2015; 34
H Hu (2762_CR48) 2014; 76
J Vörös (2762_CR19) 2015; 79
KJ Keesman (2762_CR17) 2011
Z Bo (2762_CR60) 2014; 48
2762_CR52
HMR Ugalde (2762_CR4) 2015; 166
Y Wang (2762_CR16) 2016; 10
L Xu (2762_CR13) 2017
D Wang (2762_CR42) 2016; 355
Y Mao (2762_CR39) 2015; 79
References_xml – reference: Tang Y, Han Z, Wang Y, Zhang L, Lian Q (2016) A changing forgetting factor RLS for online identification of nonlinear systems based on ELM–Hammerstein model. Neural Comput Appl 1–15. doi:10.1007/s00521-016-2394-5
– reference: ChaudharyNIRajaMAZDesign of fractional adaptive strategy for input nonlinear Box–Jenkins systemsSignal Process201511614115110.1016/j.sigpro.2015.04.015
– reference: ChenHDingFHierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systemsCircuits Syst Signal Process20153416175329915910.1007/s00034-014-9839-91341.93089
– reference: AlexanderTSAdaptive signal processing: theory and applications2012BerlinSpringer
– reference: XuLThe damping iterative parameter identification method for dynamical systems based on the sine signal measurementSignal Process201612066066710.1016/j.sigpro.2015.10.009
– reference: ZhangYLiNChambersJASayedAHSteady-state performance analysis of a variable tap-length LMS algorithmIEEE Trans Signal Process2008562839845251244710.1109/TSP.2007.90780506896420
– reference: AslamMSChaudharyNIRajaMAZA sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systemsNonlinear Dyn20161371.93205
– reference: DingFLiuXGChuJGradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principleIET Control Theory Appl201372176184308745510.1049/iet-cta.2012.0313
– reference: WangDQLiuHBDingFHighly efficient identification methods for dual-rate Hammerstein systemsIEEE Trans Control Syst Technol20152351952196010.1109/TCST.2014.2387216
– reference: AhmedAMoinuddinMAl-SaggafUMState Space least mean fourth algorithm for dynamic state estimation in power systemsArab J Sci Eng201641252754310.1007/s13369-015-1698-6
– reference: ChaudharyNIRajaMAZKhanAURDesign of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systemsNonlinear Dyn20158241811183010.1007/s11071-015-2279-7
– reference: RébillatMHennequinRCorteelEKatzBFIdentification of cascade of Hammerstein models for the description of nonlinearities in vibrating devicesJ Sound Vib201133051018103810.1016/j.jsv.2010.09.012
– reference: XuLDingFRecursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modelingCircuits Syst Signal Process20171370.94286
– reference: WangYDingFNovel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary modelAutomatica201671308313352198210.1016/j.automatica.2016.05.0241343.93087
– reference: WangDHierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed modelsAppl Math Lett2016571319346410110.1016/j.aml.2015.12.0181336.93155
– reference: Vörös J (2010) Compound operator decomposition and its application to Hammerstein and Wiener systems. In: Giri F, Bai E-W (eds) Block-oriented nonlinear system identification. Springer, London, pp 35–51. doi:10.1007/978-1-84996-513-2_4
– reference: NatkeHGApplication of system identification in engineering2014BerlinSpringer0651.93001
– reference: HuHDingRLeast squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary modelNonlinear Dyn2014761777784318920910.1007/s11071-013-1168-11319.93081
– reference: RajaMAZShahAAMehmoodAChaudharyNIAslamMSBio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive systemNeural Comput Appl2016
– reference: HolcombCMde CallafonRABitmeadRRClosed-loop identification of Hammerstein systems with application to gas turbinesIFAC Proc201447349349810.3182/20140824-6-ZA-1003.01754
– reference: UgaldeHMRCarmonaJCReyes-ReyesJAlvaradoVMCorbierCBalanced simplicity–accuracy neural network model families for system identificationNeural Comput Appl201526117118610.1007/s00521-014-1716-8
– reference: WangDDingFParameter estimation algorithms for multivariable Hammerstein CARMA systemsInf Sci2016355237248351529310.1016/j.ins.2016.03.037
– reference: MoinuddinMZerguineAA unified performance analysis of the family of normalized least mean algorithmsArab J Sci Eng2014391071457157325519910.1007/s13369-014-1289-y06882893
– reference: DingFDengKLiuXDecomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noiseCircuits Syst Signal Process201433928812893324590910.1007/s00034-014-9772-y
– reference: WangYDingFFiltering-based iterative identification for multivariable systemsIET Control Theory Appl2016108894902352537210.1049/iet-cta.2015.1195
– reference: DingFWangXChenQXiaoYRecursive least squares parameter estimation for a class of output nonlinear systems based on the model decompositionCircuits Syst Signal Process201635933233338352975810.1007/s00034-015-0190-61345.93169
– reference: KeesmanKJSystem identification: an introduction2011BerlinSpringer10.1007/978-0-85729-522-41230.93001
– reference: Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J, Article ID 467276. doi:10.1155/2013/467276
– reference: KhaniFHaeriMRobust model predictive control of nonlinear processes represented by Wiener or Hammerstein modelsChem Eng Sci201512922323110.1016/j.ces.2015.02.021
– reference: WangDDingFChuYData filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principleInf Sci2013222203212299850910.1016/j.ins.2012.07.0641293.93758
– reference: CorbierCEl BadaouiMUgaldeHMRHuberian approach for reduced order ARMA modeling of neurodegenerative disorder signalSignal Process201511327328410.1016/j.sigpro.2015.02.010
– reference: ChaudharyNIRajaMAZAslamMSAhmedNNovel generalization of Volterra LMS algorithm to fractional order with application to system identificationNeural Comput Appl2016
– reference: XuLA proportional differential control method for a time-delay system using the Taylor expansion approximationAppl Math Comput201423639139931977361334.93125
– reference: TogunNBaysecSKaraTNonlinear modeling and identification of a spark ignition engine torqueMech Syst Signal Process20122629430410.1016/j.ymssp.2011.06.010
– reference: RajaMAZChaudharyNITwo-stage fractional least mean square identification algorithm for parameter estimation of CARMA systemsSignal Process201510732733910.1016/j.sigpro.2014.06.015
– reference: MaoYDingFA novel parameter separation based identification algorithm for Hammerstein systemsAppl Math Lett2016602127350584810.1016/j.aml.2016.03.0161339.93109
– reference: BoZSunCXuYJiangSA variable momentum factor filtered-x weighted accumulated LMS algorithm for narrowband active noise control systemsMeasurement20144828229110.1016/j.measurement.2013.11.010
– reference: TaoualiOElaissiIMessaoudHOnline identification of nonlinear system using reduced kernel principal component analysisNeural Comput Appl201221116116910.1007/s00521-010-0461-x
– reference: ChaudharyNIRajaMAZIdentification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithmsNonlinear Dyn201579213851397330277510.1007/s11071-014-1748-81345.93045
– reference: VörösJIterative identification of nonlinear dynamic systems with output backlash using three-block cascade modelsNonlinear Dyn201579321872195330542410.1007/s11071-014-1804-4
– reference: YuCZhangCXieLA new deterministic identification approach to Hammerstein systemsIEEE Trans Signal Process2014621131140314959910.1109/TSP.2013.2286103
– reference: law PawlakMLvJNonparametric specification testing for Hammerstein systemsIFAC Pap Online2015482839239710.1016/j.ifacol.2015.12.159
– reference: ZhaoWZhengWXBaiEWA recursive local linear estimator for identification of nonlinear ARX systems: asymptotical convergence and applicationsIEEE Trans Automat Control2013581230543069315226810.1109/TAC.2013.22732831369.93611
– reference: DingFHierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modelingAppl Math Model201337416941704300227210.1016/j.apm.2012.04.0391349.93391
– reference: XiaoYSongGLiaoYDingRMulti-innovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive modelsInt J Control Automat Syst201210363964310.1007/s12555-012-0322-8
– reference: MaoYDingFMulti-innovation stochastic gradient identification for Hammerstein controlled autoregressive systems based on the filtering techniqueNonlinear Dyn20157931745175510.1007/s11071-014-1771-91331.93211
– reference: BillingsSANonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains2013ChichesterWiley10.1002/97811185355611287.93101
– reference: LiJParameter estimation for Hammerstein CARARMA systems based on the Newton iterationAppl Math Lett20132619196297140610.1016/j.aml.2012.03.0381255.65119
– reference: VörösJIdentification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade modelsJ Franklin Inst20143511254555466327665010.1016/j.jfranklin.2014.09.025
– reference: ChenHDingFXiaoYDecomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation techniqueNonlinear Dyn20157932027203510.1007/s11071-014-1791-51331.93083
– reference: UgaldeHMRCarmonaJCReyes-ReyesJAlvaradoVMMantillaJComputational cost improvement of neural network models in black box nonlinear system identificationNeurocomputing20151669610810.1016/j.neucom.2015.04.022
– reference: ChenHXiaoYDingFHierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principleAppl Math Comput20142471202121032709181343.62055
– reference: XuLApplication of the Newton iteration algorithm to the parameter estimation for dynamical systemsJ Comput Appl Math20152883343334960210.1016/j.cam.2015.03.0571314.93062
– reference: Al-SaggafUMMoinuddinMArifMZerguineAThe q-least mean squares algorithmSignal Process2015111506010.1016/j.sigpro.2014.11.016
– reference: XuLChenLXiongWParameter estimation and controller design for dynamic systems from the step responses based on the Newton iterationNonlinear Dyn201579321552163330542110.1007/s11071-014-1801-7
– reference: ElleuchKKharratMChaariAChaabaneMModeling and identification of block-oriented heat transfer processInt J Inf Syst Sci20095141561158.93408
– reference: RajaMAZChaudharyNIAdaptive strategies for parameter estimation of Box–Jenkins systemsIET Signal Process20148996898010.1049/iet-spr.2013.0438
– reference: WangYDingFRecursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filteringNonlinear Dyn201684210451053347494610.1007/s11071-015-2548-51354.93158
– reference: MaoYDingFA novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systemsDigit Signal Proc201546215225341171410.1016/j.dsp.2015.07.002
– reference: MoinuddinMAl-SaggafUMAhmedAFamily of state space least mean power of two-based algorithmsEURASIP J Adv Signal Process201520151110.1186/s13634-015-0219-9
– volume-title: Application of system identification in engineering
  year: 2014
  ident: 2762_CR1
– volume: 10
  start-page: 639
  issue: 3
  year: 2012
  ident: 2762_CR47
  publication-title: Int J Control Automat Syst
  doi: 10.1007/s12555-012-0322-8
– volume: 351
  start-page: 5455
  issue: 12
  year: 2014
  ident: 2762_CR20
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2014.09.025
– volume: 58
  start-page: 3054
  issue: 12
  year: 2013
  ident: 2762_CR28
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2013.2273283
– volume: 84
  start-page: 1045
  issue: 2
  year: 2016
  ident: 2762_CR14
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2548-5
– volume: 111
  start-page: 50
  year: 2015
  ident: 2762_CR58
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2014.11.016
– year: 2016
  ident: 2762_CR46
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-016-3058-9
– volume: 8
  start-page: 968
  issue: 9
  year: 2014
  ident: 2762_CR3
  publication-title: IET Signal Process
  doi: 10.1049/iet-spr.2013.0438
– volume: 37
  start-page: 1694
  issue: 4
  year: 2013
  ident: 2762_CR35
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2012.04.039
– volume: 247
  start-page: 1202
  year: 2014
  ident: 2762_CR38
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.09.070
– volume: 39
  start-page: 7145
  issue: 10
  year: 2014
  ident: 2762_CR57
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-014-1289-y
– volume: 41
  start-page: 527
  issue: 2
  year: 2016
  ident: 2762_CR59
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-015-1698-6
– volume-title: Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains
  year: 2013
  ident: 2762_CR27
  doi: 10.1002/9781118535561
– volume: 35
  start-page: 3323
  issue: 9
  year: 2016
  ident: 2762_CR9
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-015-0190-6
– volume: 113
  start-page: 273
  year: 2015
  ident: 2762_CR2
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.02.010
– volume: 107
  start-page: 327
  year: 2015
  ident: 2762_CR6
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2014.06.015
– volume: 355
  start-page: 237
  year: 2016
  ident: 2762_CR42
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.03.037
– volume: 33
  start-page: 2881
  issue: 9
  year: 2014
  ident: 2762_CR41
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-014-9772-y
– volume: 34
  start-page: 61
  issue: 1
  year: 2015
  ident: 2762_CR49
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-014-9839-9
– volume: 288
  start-page: 33
  year: 2015
  ident: 2762_CR10
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2015.03.057
– volume: 26
  start-page: 171
  issue: 1
  year: 2015
  ident: 2762_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1716-8
– volume: 47
  start-page: 493
  issue: 3
  year: 2014
  ident: 2762_CR23
  publication-title: IFAC Proc
  doi: 10.3182/20140824-6-ZA-1003.01754
– volume: 79
  start-page: 1745
  issue: 3
  year: 2015
  ident: 2762_CR39
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1771-9
– ident: 2762_CR52
  doi: 10.1155/2013/467276
– year: 2016
  ident: 2762_CR51
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2677-x
– volume: 48
  start-page: 392
  issue: 28
  year: 2015
  ident: 2762_CR29
  publication-title: IFAC Pap Online
  doi: 10.1016/j.ifacol.2015.12.159
– volume: 120
  start-page: 660
  year: 2016
  ident: 2762_CR12
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.10.009
– volume: 62
  start-page: 131
  issue: 1
  year: 2014
  ident: 2762_CR31
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2286103
– volume-title: Adaptive signal processing: theory and applications
  year: 2012
  ident: 2762_CR54
– volume: 10
  start-page: 894
  issue: 8
  year: 2016
  ident: 2762_CR16
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2015.1195
– ident: 2762_CR30
  doi: 10.1007/s00521-016-2394-5
– volume: 5
  start-page: 41
  issue: 1
  year: 2009
  ident: 2762_CR25
  publication-title: Int J Inf Syst Sci
– volume: 56
  start-page: 839
  issue: 2
  year: 2008
  ident: 2762_CR55
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2007.907805
– volume: 330
  start-page: 1018
  issue: 5
  year: 2011
  ident: 2762_CR26
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2010.09.012
– volume: 79
  start-page: 2027
  issue: 3
  year: 2015
  ident: 2762_CR50
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1791-5
– volume: 76
  start-page: 777
  issue: 1
  year: 2014
  ident: 2762_CR48
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-1168-1
– volume: 23
  start-page: 1952
  issue: 5
  year: 2015
  ident: 2762_CR36
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2387216
– volume: 222
  start-page: 203
  year: 2013
  ident: 2762_CR37
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.07.064
– volume: 26
  start-page: 294
  year: 2012
  ident: 2762_CR24
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.06.010
– volume: 129
  start-page: 223
  year: 2015
  ident: 2762_CR22
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2015.02.021
– volume: 7
  start-page: 176
  issue: 2
  year: 2013
  ident: 2762_CR34
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2012.0313
– volume: 21
  start-page: 161
  issue: 1
  year: 2012
  ident: 2762_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-010-0461-x
– volume: 79
  start-page: 2187
  issue: 3
  year: 2015
  ident: 2762_CR19
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1804-4
– year: 2016
  ident: 2762_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2548-5
– volume: 79
  start-page: 1385
  issue: 2
  year: 2015
  ident: 2762_CR44
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1748-8
– volume-title: System identification: an introduction
  year: 2011
  ident: 2762_CR17
  doi: 10.1007/978-0-85729-522-4
– volume: 71
  start-page: 308
  year: 2016
  ident: 2762_CR15
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.05.024
– volume: 26
  start-page: 91
  issue: 1
  year: 2013
  ident: 2762_CR32
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2012.03.038
– volume: 82
  start-page: 1811
  issue: 4
  year: 2015
  ident: 2762_CR53
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2279-7
– volume: 236
  start-page: 391
  year: 2014
  ident: 2762_CR8
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.02.087
– volume: 166
  start-page: 96
  year: 2015
  ident: 2762_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.022
– volume: 116
  start-page: 141
  year: 2015
  ident: 2762_CR45
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.04.015
– ident: 2762_CR21
  doi: 10.1007/978-1-84996-513-2_4
– year: 2017
  ident: 2762_CR13
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-016-0378-4
– volume: 57
  start-page: 13
  year: 2016
  ident: 2762_CR33
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2015.12.018
– volume: 60
  start-page: 21
  year: 2016
  ident: 2762_CR43
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2016.03.016
– volume: 79
  start-page: 2155
  issue: 3
  year: 2015
  ident: 2762_CR11
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1801-7
– volume: 48
  start-page: 282
  year: 2014
  ident: 2762_CR60
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.11.010
– volume: 2015
  start-page: 1
  issue: 1
  year: 2015
  ident: 2762_CR56
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/s13634-015-0219-9
– volume: 46
  start-page: 215
  year: 2015
  ident: 2762_CR40
  publication-title: Digit Signal Proc
  doi: 10.1016/j.dsp.2015.07.002
SSID ssj0004685
Score 2.270327
Snippet In the present work, strength of momentum least mean square (MLMS) algorithm is exploited for nonlinear system identification problems represented with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1133
SubjectTerms Adaptive systems
Algorithms
Artificial Intelligence
Autoregressive models
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computing time
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Nonlinear control
Nonlinear systems
Original Article
Parameter estimation
Probability and Statistics in Computer Science
System identification
Title Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems
URI https://link.springer.com/article/10.1007/s00521-016-2762-1
https://www.proquest.com/docview/2071244189
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAEstTEqZ2MBfoQ0AoBlcoUObYz9aU-Bv49d07SAgIkpgx-DPls33f23XeEXIpAaS5TzRJVNyzgyrIkiQzzE7AOmlvLG5g73OuL7iC4HzaGeR73ooh2L54k3Um9TnbDG0x0fQXzYQczcHnKDVTzgkU88JufkiFdHU5wWzCkJ-DFU-ZPU3w1RhuG-e1R1Nma9j7ZzUkibWaoHpAtOzkke0UBBprvxyMyv3PxF3Sa0jEqKSxXY_rYe6HKqBkeY3SRac--U6CmFFW-xxj9QlFZI0tZxKH55TWWvaR55PrIGqpQ3cA6d9xNlUmbH5NBu_V622V5EQWmuSeWDBiS4Zb7wEuVMlp5hktPAygy1CoKU5UKk4bG1pU0zpvgjRRIUqRECsAlkp-Q0mQ6saeEBqFXN1YqIa0IpNAqBa6lwZyhCJ-UtkLqxd-Mda4wjoUuRvFaG9kBEGNUGQIQexVytR4yy-Q1_upcLSCK8522iH3gSEBRvDCqkOsCtk3zr5Od_av3OdkBphRmkX9VUlrOV_YC2MgyqZHtsN2pkXKz8_bQgu9Nq__0XHNr8gNLFtyl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hdoCF8ikKBTwwgYySOLXTseKrQNuFIsEUObaz0BbUpgP8es6J00IFSMyxrSRn-97Z794BnPBQKiZSRRPpaRoyaWiStDQNEvQOihnDmjZ3uNfnncfw7qn55PK4pyXbvbySzHfqebKbPcG0oS-nAa5giiFPNcT4JKhAtX3zfH_1JR0yr8SJgYsl9YSsvMz8aZDv7miBMZeuRXNvc12DQfmeBcnk5XyWJefqY0nC8Z8fsgHrDn2SdjFdNmHFjLegVlZ2IG6hb8PkMid2kNeUjKxEQzYbkW7vgUgt3-z-SKaFqO07QcxLrHz4yNJqiJXsKHIhbVd3Km7raRJHiR8aTaSVTTB5nJ8PVWim78Dj9dXgokNddQaqmM8zitBLM8MCBLxSaiV9zYSv0NoiUrIVpTLlOo208aTQeZjCmimir5bkKc6IRLBdqIxfx2YPSBj5njZCcmF4KLiSKYI4hX7SqvsJYerglUaKlZMutxU0hvFcdDn_p7Glq9l_Gvt1OJ13eSt0O_5q3CgtH7slPI0DBF-IffyoVYez0pCLx78Otv-v1sew2hn0unH3tn9_AGsIx6KCXtiASjaZmUOEPFly5Kb4J4cZ-DU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQkRAXdkShgA-cQFabOLWTY0WpCrQVElTqLXK8nLqpTQ_8PTNZWkCAxDmOD3l25o395g0hNyJQmkunWaIahgVcWZYkkWF-AtFBc2t5E2uH-wPRHQZPo-ao6HO6LNXu5ZVkXtOALk3TtD43rr4ufMPTTEyDBfNhNzNIf7YD9EmABT30W58KI7OenJDCoLwn4OW15k9TfA1MG7b57YI0izudA7JXEEbayhE-JFt2ekT2y2YMtNibx2TRzrQYdOboBF0V0tWE9vqvVBk1x18aXeY-tO8UaCpFx-8JKmEoumzk5Yv4anGQjS0waaFiH1tDFTod2Cw1z6bKbc5PyLDz8HbfZUVDBaa5J1IGbMlwy33gqEoZrTzDpacBIBlqFYVOOWFcaGxDSZNlFrzpgDBFSjgAMZH8lFSms6k9IzQIvYaxUglpRSCFVg54l4bQhoZ8UtoqaZRfM9aF2zg2vRjHa5_kDIAYFWYIQOxVye36lXlutfHX4FoJUVzsumXsA18CuuKFUZXclbBtHv862fm_Rl-TnZd2J-49Dp4vyC4QqDAXBNZIJV2s7CWQlDS5yhbiB4Bs37k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+momentum+LMS+adaptive+strategy+for+parameter+estimation+of+Hammerstein+controlled+autoregressive+systems&rft.jtitle=Neural+computing+%26+applications&rft.au=Chaudhary%2C+Naveed+Ishtiaq&rft.au=Zubair%2C+Syed&rft.au=Raja%2C+Muhammad+Asif+Zahoor&rft.date=2018-08-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=30&rft.issue=4&rft.spage=1133&rft.epage=1143&rft_id=info:doi/10.1007%2Fs00521-016-2762-1&rft.externalDocID=10_1007_s00521_016_2762_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon