Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm

Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation (BP) neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm (CGA) is proposed. According to the ergodicity of chaos algorith...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automation and computing Vol. 15; no. 3; pp. 267 - 276
Main Authors Li, Dong-Jie, Li, Yang-Yang, Li, Jun-Xiang, Fu, Yu
Format Journal Article
LanguageEnglish
Published Beijing Institute of Automation, Chinese Academy of Sciences 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1476-8186
2153-182X
1751-8520
2153-1838
DOI10.1007/s11633-017-1107-6

Cover

More Information
Summary:Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation (BP) neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm (CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the realtime performance and accuracy of the gesture recognition are greatly improved with CGA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1476-8186
2153-182X
1751-8520
2153-1838
DOI:10.1007/s11633-017-1107-6