Bio-inspired metaheuristics: evolving and prioritizing software test data

Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and prioritization of test data. Principally these two parts are performed manually. Hence introducing an automation approach will significantly re...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 48; no. 3; pp. 687 - 702
Main Authors Mann, Mukesh, Tomar, Pradeep, Sangwan, Om Prakash
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-017-1003-3

Cover

Abstract Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and prioritization of test data. Principally these two parts are performed manually. Hence introducing an automation approach will significantly reduce the total cost incurred in the software development lifecycle. A number of automatic test case generation (ATCG) and prioritization approaches have been explored. In this paper, we propose two approaches: (1) a pathspecific approach for ATCG using the following metaheuristic techniques: the genetic algorithm (GA), particle swarm optimization (PSO) and artificial bee colony optimization (ABC); and (2) a test case prioritization (TCP) approach using PSO. Based on our experimental findings, we conclude that ABC outperforms the GA and PSO-based approaches for ATC.G Moreover, the results for PSO on TCP arguments demonstrate biased applicability for both small and large test suites against random, reverse and unordered prioritization schemes. Therefore, we focus on conducting a comprehensive and exhaustive study of the application of metaheuristic algorithms in solving ATCG and TCP problems in software engineering.
AbstractList Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and prioritization of test data. Principally these two parts are performed manually. Hence introducing an automation approach will significantly reduce the total cost incurred in the software development lifecycle. A number of automatic test case generation (ATCG) and prioritization approaches have been explored. In this paper, we propose two approaches: (1) a pathspecific approach for ATCG using the following metaheuristic techniques: the genetic algorithm (GA), particle swarm optimization (PSO) and artificial bee colony optimization (ABC); and (2) a test case prioritization (TCP) approach using PSO. Based on our experimental findings, we conclude that ABC outperforms the GA and PSO-based approaches for ATC.G Moreover, the results for PSO on TCP arguments demonstrate biased applicability for both small and large test suites against random, reverse and unordered prioritization schemes. Therefore, we focus on conducting a comprehensive and exhaustive study of the application of metaheuristic algorithms in solving ATCG and TCP problems in software engineering.
Author Mann, Mukesh
Sangwan, Om Prakash
Tomar, Pradeep
Author_xml – sequence: 1
  givenname: Mukesh
  orcidid: 0000-0003-4757-9710
  surname: Mann
  fullname: Mann, Mukesh
  email: mukesh.gbu@gmail.com
  organization: Department of Computer Science and Engineering, School of Information & Communication Technology, Gautam Buddha University
– sequence: 2
  givenname: Pradeep
  surname: Tomar
  fullname: Tomar, Pradeep
  organization: Department of Computer Science and Engineering, School of Information & Communication Technology, Gautam Buddha University
– sequence: 3
  givenname: Om Prakash
  surname: Sangwan
  fullname: Sangwan, Om Prakash
  organization: Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology
BookMark eNp9kEtLAzEUhYMo2FZ_gLsB19HcSaZp3GnxUSi4UXAXMpOkprRJTdKK_npTxoUIurqcy_nu4wzRoQ_eIHQG5AII4ZcJCJsITIDjoimmB2gADaeYM8EP0YCImuHxWLwco2FKS1I8lMAAzW5cwM6njYtGV2uT1avZRpey69JVZXZhtXN-USmvq010IbrsPveNFGx-V9FU2aRcaZXVCTqyapXM6Xcdoee726fpA54_3s-m13PcURhnTC23mrJGa8IZKG3rriUgGNN0ohmrOYyb1paXGBVAWiNUTeqWN1wL09kW6Aid93M3Mbxty3a5DNvoy0oJQogGiOBNcfHe1cWQUjRWdi6r7ILPUbmVBCL3uck-N1ly22sqaSHhF1keX6v48S9T90wqXr8w8cdNf0JfqkKB2w
CitedBy_id crossref_primary_10_3390_electronics13245007
crossref_primary_10_1007_s41870_024_01968_x
crossref_primary_10_1007_s11334_021_00384_9
crossref_primary_10_1016_j_asoc_2021_107584
crossref_primary_10_1007_s10515_024_00433_0
crossref_primary_10_1155_2023_4577581
crossref_primary_10_1007_s00500_022_07121_9
crossref_primary_10_1007_s13369_019_03817_7
crossref_primary_10_1186_s13673_020_00229_7
Cites_doi 10.1109/ICCTA.2012.6523563
10.1109/ICCCAS.2006.285109
10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
10.1613/jair.530
10.1109/TSE.2006.92
10.1007/BF00444293
10.1109/TSE.2011.85
10.1109/32.988709
10.1109/ICSM.1999.792604
10.1145/2685612
10.1109/MS.1987.231413
10.1109/TSE.1977.231144
10.3844/jcssp.2013.972.980
10.1109/TEVC.2002.802452
10.1109/32.988497
10.1109/TSE.1976.233817
10.1147/sj.223.0229
10.1109/52.73748
10.1109/TSE.2007.38
10.1016/j.cor.2007.01.012
10.1145/1276958.1277172
10.1504/IJBIC.2013.053045
10.1109/ICNC.2008.388
10.1002/stvr.1486
10.1002/stvr.294
10.1109/ICST.2008.57
10.1109/3477.484436
10.1109/ICSM.1990.131379
10.1109/HICSS.2003.1174917
10.1109/TSE.1976.233835
10.1109/ICHIS.2005.86
10.1109/32.962562
10.1109/ISSRE.2003.1251065
10.1109/32.536955
10.1145/226155.226158
10.1002/stv.430
10.1109/CAIDCD.2006.329439
10.1109/ISDA.2006.253915
10.1007/s11219-012-9181-z
10.3745/JIPS.2011.7.2.363
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Applied Intelligence is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Applied Intelligence is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-017-1003-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI-INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 702
ExternalDocumentID 10_1007_s10489_017_1003_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-3f7fd345dd0741adf2cb01944d38d4427165bf00743910be9a202b757d9ecfb13
IEDL.DBID U2A
ISSN 0924-669X
IngestDate Fri Jul 25 11:10:32 EDT 2025
Tue Jul 01 03:31:37 EDT 2025
Thu Apr 24 23:05:09 EDT 2025
Fri Feb 21 02:26:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Automatic test case generation
Artificial bee colony
Test case prioritization
Genetic algorithm
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-3f7fd345dd0741adf2cb01944d38d4427165bf00743910be9a202b757d9ecfb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4757-9710
PQID 1999510975
PQPubID 326365
PageCount 16
ParticipantIDs proquest_journals_1999510975
crossref_citationtrail_10_1007_s10489_017_1003_3
crossref_primary_10_1007_s10489_017_1003_3
springer_journals_10_1007_s10489_017_1003_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180300
2018-3-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Korel B (1996) Automated test data generation for programs with procedures ACM SIGSOFT software engineering notes. ACM, pp 209–215
Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and Technology, RTI Project 7007
KrishnamoorthiRMarySASARegression test suite prioritization using genetic algorithmsInternational Journal of Hybrid Information Technology200923552
Atif M (2016) Software Benchmark repository for TeraPresent3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPresent3-fault_matrix.txt. Accessed 20 June 2016
SinghYKaurASuriBTest case prioritization using ant colony optimizationACM SIGSOFT Software Engineering Notes20103517
Howden WE (1977) Symbolic testing and the DISSECT symbolic evaluation system. IEEE Trans Softw Eng :266–278
Di Caro G, Dorigo M (1998) Antnet: Distributed stigmergetic control for communications networks. J Artif Intell Res :317– 365
MillsHDDyerMLingerRCCleanroom software engineeringIEEE Softw198741910.1109/MS.1987.231413
BirdDLMunozCUAutomatic generation of random self-checking test casesIBM Syst J19832222924510.1147/sj.223.0229
FergusonRKorelBThe chaining approach for software test data generationACM Trans Softw Eng Methodol (TOSEM)19965638610.1145/226155.226158
YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftware Testing, Verification and Reliability2012226712010.1002/stv.430
MukeshMOPSGenerating and prioritizing optimal paths using ant colony optimizationComputational Ecology and Software201551
RothermelGHarroldMJAnalyzing regression test selection techniquesIEEE Trans Softw Eng19962252955110.1109/32.536955
Kim J-M, Porter A (2002) A history-based test prioritization technique for regression testing in resource constrained environments Proceedings of the 24rd international conference on software engineering, ICSE. IEEE, pp 119–129
ZhaoFZhangQYangYAn improved particle swarm optimization-based approach for production scheduling problemsIEEE international conference on mechatronics and automation20062279–2283IEEE
ChangK-HCrossIIJHCarlisleWHBrownDBA framework for intelligent test data generationJ Intell Robot Syst1992514716510.1007/BF00444293
Chen Y, Zhong Y (2008) Automatic path-oriented test data generation using a multi-population genetic algorithm. In: Fourth international conference on natural computation, ICNC’08. IEEE, pp 566–570
ArcuriABriandLA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftware Testing, Verification and Reliability20142421925010.1002/stvr.1486
Atif M (2016) Software Benchmark repository for TerpSpreadSheet3, available. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpSpreadSheet3-fault_matrix.txt
Berndt D, Fisher J, Johnson L et al (2003) Breeding software test cases with genetic algorithms. In: Proceedings of the 36th annual hawaii international conference on system sciences
LiHLamCPSoftware Test Data Generation using Ant Colony OptimizationInternational conference on computational intelligence200414
Ramamoorthy CV, Ho S-B, Chen WT (1976) On the automated generation of program test data. IEEE Trans Softw Eng :293–300
SrivastavaPRTest case prioritizationJournal of Theoretical and Applied Information Technology20084178181
FraserGArcuriAA large-scale evaluation of automated unit test generation using EvoSuiteACM Trans Softw Eng Methodol (TOSEM)201424810.1145/2685612
Hou Y, Zhao C, Liao Y (2006) A new method of test generation for sequential circuits. In: International conference on communications, circuits and systems proceedings. IEEE, pp 2181–2185
Ahmed AA, Shaheen M, Kosba E (2012) Software testing suite prioritization using multi-criteria fitness function. In: 222nd International conference on computer theory and applications (ICCTA). IEEE, pp 160–166
LiZHarmanMHieronsRMSearch algorithms for regression test case prioritizationIEEE Trans Softw Eng20073322523710.1109/TSE.2007.38
KaurABhattDHybrid particle swarm optimization for regression testingInt J Comput Sci Eng2011318151824
MalhotraRKhariMHeuristic search-based approach for automated test data generation: a surveyInternational Journal of Bio-Inspired Computation2013511810.1504/IJBIC.2013.053045
KaurDAGoyalSA bee colony optimization algorithm for code coverage test suite prioritizationInt J Eng Sci Technol2011127862795
Mohapatra D (2011) GA Based Test Case Generation Approach for Formation of Efficient Set of Dynamic Slices. International Journal on Computer Science and Engineering (IJCSE) 3
AhmedMAHermadiIGA-Based multiple paths test data generatorComput Oper Res2008353107312410.1016/j.cor.2007.01.012
DoHRothermelGOn the use of mutation faults in empirical assessments of test case prioritization techniquesIEEE Trans Softw Eng20063273375210.1109/TSE.2006.92
ElbaumSMalishevskyAGRothermelGTest case prioritization: A family of empirical studiesIEEE Trans Softw Eng20022815918210.1109/32.988497
ArcuriABriandLFormal analysis of the probability of interaction fault detection using random testingIEEE Trans Softw Eng2012381088109910.1109/TSE.2011.85
RothermelGUntchRHChuCHarroldMJPrioritizing test cases for regression testingIEEE Trans Softw Eng20012792994810.1109/32.962562
Do H, Rothermel G, Kinneer A (2004) Empirical studies of test case prioritization in a JUnit testing environment. In: 5th International symposium on software reliability engineering ISSRE. IEEE, pp 113–124
MichaelCCMcGrawGSchatzMAGenerating software test data by evolutionIEEE Trans Softw Eng2001271085111010.1109/32.988709
Beizerm B (1990) Software Testing Techniques, Van Nostrand Reinhold. New York
Mirarab S, Tahvildari L (2008) An empirical study on bayesian network-based approach for test case prioritization. In: 1st International conference on software testing, verification, and validation. IEEE, pp 278–287
Rothermel G, Untch RH, Chu C, Harrold MJ (1999) Test case prioritization: An empirical study. In: Proceedings IEEE international conference on software maintenance, (ICSM’99). IEEE, pp 179–188
Clarke LA (1976) A system to generate test data and symbolically execute programs. IEEE Trans Softw Eng :215–222
Leon D, Podgurski A (2003) A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In: 14th international symposium on software reliability engineering, ISSRE. IEEE, pp 442–453
ShanJ-HWangJQiZ-CSurvey on path-wise automatic generation of test dataActa Electron Sin200432109113
MalhotraRGargMAn adequacy based test data generation technique using genetic algorithmsJ Inf Process Syst2011736338410.3745/JIPS.2011.7.2.363
Ayari K, Bouktif S, Antoniol G (2007) Automatic mutation test input data generation via ant colony. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 1074–1081
DorigoMManiezzoVColorniAAnt system: optimization by a colony of cooperating agentsIEEE Transactions on Systems, Man, and Cybernetics199626294110.1109/3477.484436
Zhao P, Zhao P, Zhang X (2006) A new ant colony optimization for the knapsack problem. In: CAIDCD’06 7th international conference on computer-aided industrial design and conceptual design. IEEE, pp 1–3
VoasJMorellLMillerKPredicting where faults can hide from testingIEEE Softw19918414810.1109/52.73748
Flipcart Shop Flipcart, availabte: www.flipcart.com, accessed june 2016
McMinnPSearch-based software test data generation: a surveySoftware Testing Verification and Reliability20041410515610.1002/stvr.294
WatkinsALThe automatic generation of test data using genetic algorithmsProceedings of the 4th software quality conference1995300309
Tracey N, Clark J, Mander K (1998) Automated program flaw finding using simulated annealing ACM SIGSOFT software engineering notes. ACM, pp 73–81
KaurABhattDParticle swarm optimization with cross-over operator for prioritization in regression testingInt J Comput Appl2011272734
PargasRPHarroldMJPeckRRTest-data generation using genetic algorithmsSoftware Testing Verification and Reliability1999926328210.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
ParpinelliRSLopesHSFreitasAAData mining with an ant colony optimization algorithmIEEE Trans Evol Comput2002632133210.1109/TEVC.2002.8024521031.68564
Korel B (1990) A dynamic approach of test data generation. In: Proceedings, conference on software maintenance. IEEE, pp 311–317
LiuHSunSAbrahamAParticle swarm approach to scheduling work-flow applications in distributed data-intensive computing environmentsSixth international conference on intelligent systems design and applications,ISDA’06200666166610.1109/ISDA.2006.253915
CatalCMishraDTest case prioritization: a systematic mapping studySoftw Qual J20132144547810.1007/s11219-012-9181-z
JacobTPRaviTOptimization of test cases by prioritizationJ Comput Sci2013997210.3844/jcssp.2013.972.980
Liang Y, Liu L, Wang D, Wu R (2010) Optimizing particle swarm optimization to solve knapsack problem Information computing and applications. Springer, pp 437–443
Lope HS, Coelho LS (2005) Particle swarn optimization with fast local search for the blind traveling salesman problem. In: Fifth international conference on hybrid intelligent systems, HIS’05. IEEE, pp 245–250
Atif M (2016) Software Benchmark repository for TeraPaint3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPaint3-fault_matrix.txt. Accessed 1 June 2016
G Rothermel (1003_CR31) 2001; 27
H Li (1003_CR53) 2004
J-H Shan (1003_CR23) 2004; 32
1003_CR33
C Catal (1003_CR37) 2013; 21
RP Pargas (1003_CR43) 1999; 9
1003_CR32
A Kaur (1003_CR63) 2011; 27
1003_CR30
S Yoo (1003_CR34) 2012; 22
HD Mills (1003_CR12) 1987; 4
H Liu (1003_CR6) 2006
G Fraser (1003_CR26) 2014; 24
1003_CR48
A Arcuri (1003_CR49) 2014; 24
Y Singh (1003_CR39) 2010; 35
1003_CR44
1003_CR42
1003_CR40
1003_CR41
P McMinn (1003_CR19) 2004; 14
R Ferguson (1003_CR15) 1996; 5
AL Watkins (1003_CR47) 1995
R Krishnamoorthi (1003_CR60) 2009; 2
A Arcuri (1003_CR11) 2012; 38
RS Parpinelli (1003_CR55) 2002; 6
CC Michael (1003_CR25) 2001; 27
MA Ahmed (1003_CR45) 2008; 35
R Malhotra (1003_CR24) 2011; 7
1003_CR17
1003_CR18
1003_CR59
1003_CR57
1003_CR58
1003_CR56
1003_CR54
1003_CR51
A Kaur (1003_CR62) 2011; 3
MOPS Mukesh (1003_CR46) 2015; 5
DA Kaur (1003_CR36) 2011; 1
PR Srivastava (1003_CR61) 2008; 4
H Do (1003_CR9) 2006; 32
TP Jacob (1003_CR38) 2013; 9
F Zhao (1003_CR8) 2006
1003_CR4
1003_CR5
G Rothermel (1003_CR50) 1996; 22
1003_CR7
K-H Chang (1003_CR16) 1992; 5
R Malhotra (1003_CR28) 2013; 5
S Elbaum (1003_CR10) 2002; 28
1003_CR1
1003_CR29
1003_CR2
1003_CR3
1003_CR27
J Voas (1003_CR13) 1991; 8
1003_CR22
Z Li (1003_CR35) 2007; 33
1003_CR20
DL Bird (1003_CR14) 1983; 22
1003_CR21
M Dorigo (1003_CR52) 1996; 26
References_xml – reference: MukeshMOPSGenerating and prioritizing optimal paths using ant colony optimizationComputational Ecology and Software201551
– reference: SrivastavaPRTest case prioritizationJournal of Theoretical and Applied Information Technology20084178181
– reference: RothermelGHarroldMJAnalyzing regression test selection techniquesIEEE Trans Softw Eng19962252955110.1109/32.536955
– reference: McMinnPSearch-based software test data generation: a surveySoftware Testing Verification and Reliability20041410515610.1002/stvr.294
– reference: Tracey N, Clark J, Mander K (1998) Automated program flaw finding using simulated annealing ACM SIGSOFT software engineering notes. ACM, pp 73–81
– reference: MichaelCCMcGrawGSchatzMAGenerating software test data by evolutionIEEE Trans Softw Eng2001271085111010.1109/32.988709
– reference: ParpinelliRSLopesHSFreitasAAData mining with an ant colony optimization algorithmIEEE Trans Evol Comput2002632133210.1109/TEVC.2002.8024521031.68564
– reference: Ahmed AA, Shaheen M, Kosba E (2012) Software testing suite prioritization using multi-criteria fitness function. In: 222nd International conference on computer theory and applications (ICCTA). IEEE, pp 160–166
– reference: DorigoMManiezzoVColorniAAnt system: optimization by a colony of cooperating agentsIEEE Transactions on Systems, Man, and Cybernetics199626294110.1109/3477.484436
– reference: KrishnamoorthiRMarySASARegression test suite prioritization using genetic algorithmsInternational Journal of Hybrid Information Technology200923552
– reference: DoHRothermelGOn the use of mutation faults in empirical assessments of test case prioritization techniquesIEEE Trans Softw Eng20063273375210.1109/TSE.2006.92
– reference: RothermelGUntchRHChuCHarroldMJPrioritizing test cases for regression testingIEEE Trans Softw Eng20012792994810.1109/32.962562
– reference: ArcuriABriandLA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftware Testing, Verification and Reliability20142421925010.1002/stvr.1486
– reference: Di Caro G, Dorigo M (1998) Antnet: Distributed stigmergetic control for communications networks. J Artif Intell Res :317– 365
– reference: BirdDLMunozCUAutomatic generation of random self-checking test casesIBM Syst J19832222924510.1147/sj.223.0229
– reference: ArcuriABriandLFormal analysis of the probability of interaction fault detection using random testingIEEE Trans Softw Eng2012381088109910.1109/TSE.2011.85
– reference: Korel B (1990) A dynamic approach of test data generation. In: Proceedings, conference on software maintenance. IEEE, pp 311–317
– reference: KaurABhattDHybrid particle swarm optimization for regression testingInt J Comput Sci Eng2011318151824
– reference: Korel B (1996) Automated test data generation for programs with procedures ACM SIGSOFT software engineering notes. ACM, pp 209–215
– reference: Chen Y, Zhong Y (2008) Automatic path-oriented test data generation using a multi-population genetic algorithm. In: Fourth international conference on natural computation, ICNC’08. IEEE, pp 566–570
– reference: ZhaoFZhangQYangYAn improved particle swarm optimization-based approach for production scheduling problemsIEEE international conference on mechatronics and automation20062279–2283IEEE
– reference: ChangK-HCrossIIJHCarlisleWHBrownDBA framework for intelligent test data generationJ Intell Robot Syst1992514716510.1007/BF00444293
– reference: LiuHSunSAbrahamAParticle swarm approach to scheduling work-flow applications in distributed data-intensive computing environmentsSixth international conference on intelligent systems design and applications,ISDA’06200666166610.1109/ISDA.2006.253915
– reference: Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and Technology, RTI Project 7007
– reference: FraserGArcuriAA large-scale evaluation of automated unit test generation using EvoSuiteACM Trans Softw Eng Methodol (TOSEM)201424810.1145/2685612
– reference: FergusonRKorelBThe chaining approach for software test data generationACM Trans Softw Eng Methodol (TOSEM)19965638610.1145/226155.226158
– reference: Mirarab S, Tahvildari L (2008) An empirical study on bayesian network-based approach for test case prioritization. In: 1st International conference on software testing, verification, and validation. IEEE, pp 278–287
– reference: LiZHarmanMHieronsRMSearch algorithms for regression test case prioritizationIEEE Trans Softw Eng20073322523710.1109/TSE.2007.38
– reference: Ayari K, Bouktif S, Antoniol G (2007) Automatic mutation test input data generation via ant colony. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 1074–1081
– reference: Zhao P, Zhao P, Zhang X (2006) A new ant colony optimization for the knapsack problem. In: CAIDCD’06 7th international conference on computer-aided industrial design and conceptual design. IEEE, pp 1–3
– reference: CatalCMishraDTest case prioritization: a systematic mapping studySoftw Qual J20132144547810.1007/s11219-012-9181-z
– reference: JacobTPRaviTOptimization of test cases by prioritizationJ Comput Sci2013997210.3844/jcssp.2013.972.980
– reference: WatkinsALThe automatic generation of test data using genetic algorithmsProceedings of the 4th software quality conference1995300309
– reference: Beizerm B (1990) Software Testing Techniques, Van Nostrand Reinhold. New York
– reference: Flipcart Shop Flipcart, availabte: www.flipcart.com, accessed june 2016
– reference: Mohapatra D (2011) GA Based Test Case Generation Approach for Formation of Efficient Set of Dynamic Slices. International Journal on Computer Science and Engineering (IJCSE) 3:
– reference: MillsHDDyerMLingerRCCleanroom software engineeringIEEE Softw198741910.1109/MS.1987.231413
– reference: Kim J-M, Porter A (2002) A history-based test prioritization technique for regression testing in resource constrained environments Proceedings of the 24rd international conference on software engineering, ICSE. IEEE, pp 119–129
– reference: AhmedMAHermadiIGA-Based multiple paths test data generatorComput Oper Res2008353107312410.1016/j.cor.2007.01.012
– reference: Atif M (2016) Software Benchmark repository for TerpSpreadSheet3, available. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpSpreadSheet3-fault_matrix.txt
– reference: Liang Y, Liu L, Wang D, Wu R (2010) Optimizing particle swarm optimization to solve knapsack problem Information computing and applications. Springer, pp 437–443
– reference: Lope HS, Coelho LS (2005) Particle swarn optimization with fast local search for the blind traveling salesman problem. In: Fifth international conference on hybrid intelligent systems, HIS’05. IEEE, pp 245–250
– reference: ElbaumSMalishevskyAGRothermelGTest case prioritization: A family of empirical studiesIEEE Trans Softw Eng20022815918210.1109/32.988497
– reference: MalhotraRKhariMHeuristic search-based approach for automated test data generation: a surveyInternational Journal of Bio-Inspired Computation2013511810.1504/IJBIC.2013.053045
– reference: KaurABhattDParticle swarm optimization with cross-over operator for prioritization in regression testingInt J Comput Appl2011272734
– reference: Ramamoorthy CV, Ho S-B, Chen WT (1976) On the automated generation of program test data. IEEE Trans Softw Eng :293–300
– reference: Atif M (2016) Software Benchmark repository for TeraPaint3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPaint3-fault_matrix.txt. Accessed 1 June 2016
– reference: ShanJ-HWangJQiZ-CSurvey on path-wise automatic generation of test dataActa Electron Sin200432109113
– reference: Howden WE (1977) Symbolic testing and the DISSECT symbolic evaluation system. IEEE Trans Softw Eng :266–278
– reference: Clarke LA (1976) A system to generate test data and symbolically execute programs. IEEE Trans Softw Eng :215–222
– reference: MalhotraRGargMAn adequacy based test data generation technique using genetic algorithmsJ Inf Process Syst2011736338410.3745/JIPS.2011.7.2.363
– reference: PargasRPHarroldMJPeckRRTest-data generation using genetic algorithmsSoftware Testing Verification and Reliability1999926328210.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
– reference: Berndt D, Fisher J, Johnson L et al (2003) Breeding software test cases with genetic algorithms. In: Proceedings of the 36th annual hawaii international conference on system sciences
– reference: Atif M (2016) Software Benchmark repository for TeraPresent3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPresent3-fault_matrix.txt. Accessed 20 June 2016
– reference: Leon D, Podgurski A (2003) A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In: 14th international symposium on software reliability engineering, ISSRE. IEEE, pp 442–453
– reference: Rothermel G, Untch RH, Chu C, Harrold MJ (1999) Test case prioritization: An empirical study. In: Proceedings IEEE international conference on software maintenance, (ICSM’99). IEEE, pp 179–188
– reference: YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftware Testing, Verification and Reliability2012226712010.1002/stv.430
– reference: Do H, Rothermel G, Kinneer A (2004) Empirical studies of test case prioritization in a JUnit testing environment. In: 5th International symposium on software reliability engineering ISSRE. IEEE, pp 113–124
– reference: LiHLamCPSoftware Test Data Generation using Ant Colony OptimizationInternational conference on computational intelligence200414
– reference: SinghYKaurASuriBTest case prioritization using ant colony optimizationACM SIGSOFT Software Engineering Notes20103517
– reference: Hou Y, Zhao C, Liao Y (2006) A new method of test generation for sequential circuits. In: International conference on communications, circuits and systems proceedings. IEEE, pp 2181–2185
– reference: KaurDAGoyalSA bee colony optimization algorithm for code coverage test suite prioritizationInt J Eng Sci Technol2011127862795
– reference: VoasJMorellLMillerKPredicting where faults can hide from testingIEEE Softw19918414810.1109/52.73748
– ident: 1003_CR40
  doi: 10.1109/ICCTA.2012.6523563
– ident: 1003_CR4
  doi: 10.1109/ICCCAS.2006.285109
– volume: 9
  start-page: 263
  year: 1999
  ident: 1003_CR43
  publication-title: Software Testing Verification and Reliability
  doi: 10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
– volume-title: IEEE international conference on mechatronics and automation
  year: 2006
  ident: 1003_CR8
– ident: 1003_CR48
– ident: 1003_CR29
– ident: 1003_CR51
  doi: 10.1613/jair.530
– volume: 32
  start-page: 733
  year: 2006
  ident: 1003_CR9
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2006.92
– volume: 5
  start-page: 147
  year: 1992
  ident: 1003_CR16
  publication-title: J Intell Robot Syst
  doi: 10.1007/BF00444293
– volume: 38
  start-page: 1088
  year: 2012
  ident: 1003_CR11
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2011.85
– volume: 27
  start-page: 1085
  year: 2001
  ident: 1003_CR25
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.988709
– ident: 1003_CR58
– ident: 1003_CR3
  doi: 10.1109/ICSM.1999.792604
– start-page: 300
  volume-title: Proceedings of the 4th software quality conference
  year: 1995
  ident: 1003_CR47
– volume: 24
  start-page: 8
  year: 2014
  ident: 1003_CR26
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
  doi: 10.1145/2685612
– volume: 35
  start-page: 1
  year: 2010
  ident: 1003_CR39
  publication-title: ACM SIGSOFT Software Engineering Notes
– volume: 4
  start-page: 19
  year: 1987
  ident: 1003_CR12
  publication-title: IEEE Softw
  doi: 10.1109/MS.1987.231413
– ident: 1003_CR5
– ident: 1003_CR21
  doi: 10.1109/TSE.1977.231144
– volume: 9
  start-page: 972
  year: 2013
  ident: 1003_CR38
  publication-title: J Comput Sci
  doi: 10.3844/jcssp.2013.972.980
– volume: 6
  start-page: 321
  year: 2002
  ident: 1003_CR55
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.802452
– volume: 2
  start-page: 35
  year: 2009
  ident: 1003_CR60
  publication-title: International Journal of Hybrid Information Technology
– volume: 28
  start-page: 159
  year: 2002
  ident: 1003_CR10
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.988497
– ident: 1003_CR20
  doi: 10.1109/TSE.1976.233817
– volume: 22
  start-page: 229
  year: 1983
  ident: 1003_CR14
  publication-title: IBM Syst J
  doi: 10.1147/sj.223.0229
– volume: 8
  start-page: 41
  year: 1991
  ident: 1003_CR13
  publication-title: IEEE Softw
  doi: 10.1109/52.73748
– volume: 33
  start-page: 225
  year: 2007
  ident: 1003_CR35
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2007.38
– ident: 1003_CR1
– volume: 1
  start-page: 2786
  year: 2011
  ident: 1003_CR36
  publication-title: Int J Eng Sci Technol
– volume: 35
  start-page: 3107
  year: 2008
  ident: 1003_CR45
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2007.01.012
– ident: 1003_CR57
– ident: 1003_CR54
  doi: 10.1145/1276958.1277172
– volume: 5
  start-page: 1
  year: 2013
  ident: 1003_CR28
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2013.053045
– ident: 1003_CR41
  doi: 10.1109/ICNC.2008.388
– volume: 24
  start-page: 219
  year: 2014
  ident: 1003_CR49
  publication-title: Software Testing, Verification and Reliability
  doi: 10.1002/stvr.1486
– volume: 14
  start-page: 105
  year: 2004
  ident: 1003_CR19
  publication-title: Software Testing Verification and Reliability
  doi: 10.1002/stvr.294
– ident: 1003_CR33
  doi: 10.1109/ICST.2008.57
– ident: 1003_CR2
– volume: 5
  start-page: 1
  year: 2015
  ident: 1003_CR46
  publication-title: Computational Ecology and Software
– ident: 1003_CR27
– volume: 26
  start-page: 29
  year: 1996
  ident: 1003_CR52
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/3477.484436
– ident: 1003_CR18
  doi: 10.1109/ICSM.1990.131379
– volume: 27
  start-page: 27
  year: 2011
  ident: 1003_CR63
  publication-title: Int J Comput Appl
– ident: 1003_CR42
– ident: 1003_CR44
  doi: 10.1109/HICSS.2003.1174917
– ident: 1003_CR22
  doi: 10.1109/TSE.1976.233835
– volume: 3
  start-page: 1815
  year: 2011
  ident: 1003_CR62
  publication-title: Int J Comput Sci Eng
– start-page: 1
  volume-title: International conference on computational intelligence
  year: 2004
  ident: 1003_CR53
– ident: 1003_CR7
  doi: 10.1109/ICHIS.2005.86
– volume: 27
  start-page: 929
  year: 2001
  ident: 1003_CR31
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.962562
– ident: 1003_CR32
  doi: 10.1109/ISSRE.2003.1251065
– volume: 22
  start-page: 529
  year: 1996
  ident: 1003_CR50
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.536955
– volume: 5
  start-page: 63
  year: 1996
  ident: 1003_CR15
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
  doi: 10.1145/226155.226158
– volume: 22
  start-page: 67
  year: 2012
  ident: 1003_CR34
  publication-title: Software Testing, Verification and Reliability
  doi: 10.1002/stv.430
– ident: 1003_CR56
  doi: 10.1109/CAIDCD.2006.329439
– start-page: 661
  volume-title: Sixth international conference on intelligent systems design and applications,ISDA’06
  year: 2006
  ident: 1003_CR6
  doi: 10.1109/ISDA.2006.253915
– volume: 21
  start-page: 445
  year: 2013
  ident: 1003_CR37
  publication-title: Softw Qual J
  doi: 10.1007/s11219-012-9181-z
– volume: 32
  start-page: 109
  year: 2004
  ident: 1003_CR23
  publication-title: Acta Electron Sin
– ident: 1003_CR59
– ident: 1003_CR17
– ident: 1003_CR30
– volume: 4
  start-page: 178
  year: 2008
  ident: 1003_CR61
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 7
  start-page: 363
  year: 2011
  ident: 1003_CR24
  publication-title: J Inf Process Syst
  doi: 10.3745/JIPS.2011.7.2.363
SSID ssj0003301
Score 2.2311008
Snippet Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 687
SubjectTerms Artificial Intelligence
Automation
Computer Science
Genetic algorithms
Heuristic methods
Life cycle analysis
Machines
Manufacturing
Mechanical Engineering
Particle swarm optimization
Processes
Software
Software development
Software engineering
Software testing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5ze_HFuzidkgeflGDbpJcIIk4cU3CIONhbya040HZuHYK_3pxeNhXcY9skhZPknC85lw-h05AFJgmlIixUHgGLRaKIC6KELxwn8RytId_5cRD0h-xh5I8aaFDnwkBYZa0TC0WtMwV35BeQLu-Du9S_nnwQYI0C72pNoSEqagV9VZQYW0MtD1iVm6jVvRs8PS90sz29Fxx69tRBgoCPaj9nmUzHIHzIam0XArbob0u1hJ9_PKaFIeptoY0KQeKbcsq3UcOkO2izZmfA1WbdRffdcUbGKXjSjcbvJhevZl7VZb7ExqoluEvAItXY_imD4kZf8GJmFfOnmBpsQWiOIYJ0Dw17dy-3fVIRJxBF3SAnNAkTTZmvNQAGoRNPSQvlGNM00ox59ozky6RADxYtSMOF53gy9EPNjUqkS_dRM81Sc4CwpBISebSjuWSB4sJEgruRcELJEyVpGzm1kGJVVRUHcou3eFkPGeQaW7nCM41tl7NFl0lZUmNV404t-bjaXbN4uRba6LyejR-f_xvscPVgR2jdwqGojDDroGY-nZtjCzlyeVKto2-gddJ0
  priority: 102
  providerName: ProQuest
Title Bio-inspired metaheuristics: evolving and prioritizing software test data
URI https://link.springer.com/article/10.1007/s10489-017-1003-3
https://www.proquest.com/docview/1999510975
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uu3jxW5zOkYMnJdA26Ze3VdZNxSHiYJ5KvooD7WTrEPzrzevabYoKnkLbJIWXl5ffy_tC6Mxnnk59IQnzpUPgxCJBEHIiucstK3UspSDe-W7g9YfsZuSOyjjuWeXtXpkkC0m9FuzGwL3HSFUbHKpoDTVc4B_DxEOnsxS_RkEvyuQZxYJ4XjiqTJk_TfH1MFohzG9G0eKsiXfQVgkScWexqrtoQ2d7aLsqwIDL_biPrqPxhIwzMJZrhV91zp_1vEy9fIm1kTxwXYB5prD50wTyF33Ai5mRve98qrHBmTkGJ9EDNIy7j1d9UtZGIJLaXk5o6qeKMlcpwARcpY4UBq0xpmigGHOMGuSKtAAIBhAIHXLHcoTv-irUMhU2PUT1bJLpI4QFFRCroywVCubJkOuAh3bALV-EqRS0iayKSIksE4dD_YqXZJXyGOiaGLrCM03MkPPlkLdF1oy_OrcqyiflBpolkB3BBeu420QX1Wqsff5tsuN_9T5BmwYABQufshaq59O5PjUgIxdtVAviXhs1OnEUDaDtPd12TRt1B_cP7YLlPgEIWs3W
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSxxBFH4YPSQXt0TcrUO8KEV6uqq3gIgrMy5DEIW5tbU1CkmPOi0Sf5y_zfd6qh0jxJvH3qrh1av3fVVvA_ieyNgViTZcJibkhFg8TTPFjYpUEBRhYC3lO5924_aFPOpFvTF4anJhKKyysYm1obZ9Q2fkPyhdPiJ3abR9c8upaxR5V5sWGsq3VrBbdYkxn9hx7P4-4BZusNXZx_leD8PDg_O9NvddBrgRrbjiokgKK2RkLaGrskVoNPIeKa1IrZQhbigiXdRQi9CqXabCINRJlNjMmUK3BI77CSaQdghcVRO7B91fZy9YIETdgDnAXQ6P46zX-FWHyXuSwpUQJVoUICb-RcYR3X3joa2B73AaJj1jZTtDFZuBMVfOwlTTDYJ54_AVOrvXfX5dkufeWfbHVerK3fs60D-ZQzNIZxdMlZbhn_pUTOmRbgwQCB7UnWNIeitGEavf4OJDRDgH42W_dPPAtNCUOGQDm2kZm0y5VGWtVAWJzgqjxQIEjZBy46uYUzON3_mo_jLJNUe50rXI8ZONl09uhiU83nt5uZF87lfzIB_p3gJsNrPx6vH_Blt8f7A1-Nw-Pz3JTzrd4yX4glQsHUa3LcN4dXfvVpDuVHrV6xSDy49W42dg4w6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSx1BEC5cQLwkcSNGo33Qi9I4b7pnCwRxe_rcyEHh3cZeiZDMU9-IJD8tv86qWXwa0JvH2Xqgurq-6q7lA1hLZOx8og2XiQk5IRZP00xxoyIVBD4MrKV657Pz-OhSHvej_hj8a2thKK2ytYmVobYDQ2fkW1QuH1G4NNryTVrEj_3u9s0tJwYpirS2dBq1ipy4Pw-4fRt-7-3jXK-HYffgYu-INwwD3IhOXHLhE2-FjKwlZFXWh0ajzyOlFamVMsTNRKR9BbMIq9plKgxCnUSJzZzxuiNw3HGYJKoXWlFp9_AJBYSoqJcD3N_wOM76bUS1LtuTlKiE-NCh1DDxEhNHju5_sdkK8rqf4EPjq7KdWrlmYMwVs_Cx5YFgjVmYg97u9YBfFxSzd5b9dqX66e6bDtDfmEMDSKcWTBWW4Z8G1EbpL90YIgQ8qDvH0N0tGeWqzsPluwhwASaKQeE-A9NCU8mQDWymZWwy5VKVdVIVJDrzRotFCFoh5abpX040Gr_yUedlkmuOcqVrkeMnG0-f3NTNO956ebmVfN6s42E-0rpF2Gxn49nj1wb78vZgqzCFypuf9s5PlmAafbC0Tmtbhony7t59RT-n1CuVQjG4em8NfgTv4wxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+metaheuristics%3A+evolving+and+prioritizing+software+test+data&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Mann%2C+Mukesh&rft.au=Tomar%2C+Pradeep&rft.au=Sangwan%2C+Om+Prakash&rft.date=2018-03-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=48&rft.issue=3&rft.spage=687&rft.epage=702&rft_id=info:doi/10.1007%2Fs10489-017-1003-3&rft.externalDocID=10_1007_s10489_017_1003_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon