Bio-inspired metaheuristics: evolving and prioritizing software test data
Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and prioritization of test data. Principally these two parts are performed manually. Hence introducing an automation approach will significantly re...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 48; no. 3; pp. 687 - 702 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-669X 1573-7497 |
DOI | 10.1007/s10489-017-1003-3 |
Cover
Abstract | Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and prioritization of test data. Principally these two parts are performed manually. Hence introducing an automation approach will significantly reduce the total cost incurred in the software development lifecycle. A number of automatic test case generation (ATCG) and prioritization approaches have been explored. In this paper, we propose two approaches: (1) a pathspecific approach for ATCG using the following metaheuristic techniques: the genetic algorithm (GA), particle swarm optimization (PSO) and artificial bee colony optimization (ABC); and (2) a test case prioritization (TCP) approach using PSO. Based on our experimental findings, we conclude that ABC outperforms the GA and PSO-based approaches for ATC.G Moreover, the results for PSO on TCP arguments demonstrate biased applicability for both small and large test suites against random, reverse and unordered prioritization schemes. Therefore, we focus on conducting a comprehensive and exhaustive study of the application of metaheuristic algorithms in solving ATCG and TCP problems in software engineering. |
---|---|
AbstractList | Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and prioritization of test data. Principally these two parts are performed manually. Hence introducing an automation approach will significantly reduce the total cost incurred in the software development lifecycle. A number of automatic test case generation (ATCG) and prioritization approaches have been explored. In this paper, we propose two approaches: (1) a pathspecific approach for ATCG using the following metaheuristic techniques: the genetic algorithm (GA), particle swarm optimization (PSO) and artificial bee colony optimization (ABC); and (2) a test case prioritization (TCP) approach using PSO. Based on our experimental findings, we conclude that ABC outperforms the GA and PSO-based approaches for ATC.G Moreover, the results for PSO on TCP arguments demonstrate biased applicability for both small and large test suites against random, reverse and unordered prioritization schemes. Therefore, we focus on conducting a comprehensive and exhaustive study of the application of metaheuristic algorithms in solving ATCG and TCP problems in software engineering. |
Author | Mann, Mukesh Sangwan, Om Prakash Tomar, Pradeep |
Author_xml | – sequence: 1 givenname: Mukesh orcidid: 0000-0003-4757-9710 surname: Mann fullname: Mann, Mukesh email: mukesh.gbu@gmail.com organization: Department of Computer Science and Engineering, School of Information & Communication Technology, Gautam Buddha University – sequence: 2 givenname: Pradeep surname: Tomar fullname: Tomar, Pradeep organization: Department of Computer Science and Engineering, School of Information & Communication Technology, Gautam Buddha University – sequence: 3 givenname: Om Prakash surname: Sangwan fullname: Sangwan, Om Prakash organization: Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology |
BookMark | eNp9kEtLAzEUhYMo2FZ_gLsB19HcSaZp3GnxUSi4UXAXMpOkprRJTdKK_npTxoUIurqcy_nu4wzRoQ_eIHQG5AII4ZcJCJsITIDjoimmB2gADaeYM8EP0YCImuHxWLwco2FKS1I8lMAAzW5cwM6njYtGV2uT1avZRpey69JVZXZhtXN-USmvq010IbrsPveNFGx-V9FU2aRcaZXVCTqyapXM6Xcdoee726fpA54_3s-m13PcURhnTC23mrJGa8IZKG3rriUgGNN0ohmrOYyb1paXGBVAWiNUTeqWN1wL09kW6Aid93M3Mbxty3a5DNvoy0oJQogGiOBNcfHe1cWQUjRWdi6r7ILPUbmVBCL3uck-N1ly22sqaSHhF1keX6v48S9T90wqXr8w8cdNf0JfqkKB2w |
CitedBy_id | crossref_primary_10_3390_electronics13245007 crossref_primary_10_1007_s41870_024_01968_x crossref_primary_10_1007_s11334_021_00384_9 crossref_primary_10_1016_j_asoc_2021_107584 crossref_primary_10_1007_s10515_024_00433_0 crossref_primary_10_1155_2023_4577581 crossref_primary_10_1007_s00500_022_07121_9 crossref_primary_10_1007_s13369_019_03817_7 crossref_primary_10_1186_s13673_020_00229_7 |
Cites_doi | 10.1109/ICCTA.2012.6523563 10.1109/ICCCAS.2006.285109 10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y 10.1613/jair.530 10.1109/TSE.2006.92 10.1007/BF00444293 10.1109/TSE.2011.85 10.1109/32.988709 10.1109/ICSM.1999.792604 10.1145/2685612 10.1109/MS.1987.231413 10.1109/TSE.1977.231144 10.3844/jcssp.2013.972.980 10.1109/TEVC.2002.802452 10.1109/32.988497 10.1109/TSE.1976.233817 10.1147/sj.223.0229 10.1109/52.73748 10.1109/TSE.2007.38 10.1016/j.cor.2007.01.012 10.1145/1276958.1277172 10.1504/IJBIC.2013.053045 10.1109/ICNC.2008.388 10.1002/stvr.1486 10.1002/stvr.294 10.1109/ICST.2008.57 10.1109/3477.484436 10.1109/ICSM.1990.131379 10.1109/HICSS.2003.1174917 10.1109/TSE.1976.233835 10.1109/ICHIS.2005.86 10.1109/32.962562 10.1109/ISSRE.2003.1251065 10.1109/32.536955 10.1145/226155.226158 10.1002/stv.430 10.1109/CAIDCD.2006.329439 10.1109/ISDA.2006.253915 10.1007/s11219-012-9181-z 10.3745/JIPS.2011.7.2.363 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2017 Applied Intelligence is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: Applied Intelligence is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-017-1003-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI-INFORM Complete ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
EndPage | 702 |
ExternalDocumentID | 10_1007_s10489_017_1003_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-3f7fd345dd0741adf2cb01944d38d4427165bf00743910be9a202b757d9ecfb13 |
IEDL.DBID | U2A |
ISSN | 0924-669X |
IngestDate | Fri Jul 25 11:10:32 EDT 2025 Tue Jul 01 03:31:37 EDT 2025 Thu Apr 24 23:05:09 EDT 2025 Fri Feb 21 02:26:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Automatic test case generation Artificial bee colony Test case prioritization Genetic algorithm Particle swarm optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-3f7fd345dd0741adf2cb01944d38d4427165bf00743910be9a202b757d9ecfb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4757-9710 |
PQID | 1999510975 |
PQPubID | 326365 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1999510975 crossref_citationtrail_10_1007_s10489_017_1003_3 crossref_primary_10_1007_s10489_017_1003_3 springer_journals_10_1007_s10489_017_1003_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180300 2018-3-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180300 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Korel B (1996) Automated test data generation for programs with procedures ACM SIGSOFT software engineering notes. ACM, pp 209–215 Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and Technology, RTI Project 7007 KrishnamoorthiRMarySASARegression test suite prioritization using genetic algorithmsInternational Journal of Hybrid Information Technology200923552 Atif M (2016) Software Benchmark repository for TeraPresent3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPresent3-fault_matrix.txt. Accessed 20 June 2016 SinghYKaurASuriBTest case prioritization using ant colony optimizationACM SIGSOFT Software Engineering Notes20103517 Howden WE (1977) Symbolic testing and the DISSECT symbolic evaluation system. IEEE Trans Softw Eng :266–278 Di Caro G, Dorigo M (1998) Antnet: Distributed stigmergetic control for communications networks. J Artif Intell Res :317– 365 MillsHDDyerMLingerRCCleanroom software engineeringIEEE Softw198741910.1109/MS.1987.231413 BirdDLMunozCUAutomatic generation of random self-checking test casesIBM Syst J19832222924510.1147/sj.223.0229 FergusonRKorelBThe chaining approach for software test data generationACM Trans Softw Eng Methodol (TOSEM)19965638610.1145/226155.226158 YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftware Testing, Verification and Reliability2012226712010.1002/stv.430 MukeshMOPSGenerating and prioritizing optimal paths using ant colony optimizationComputational Ecology and Software201551 RothermelGHarroldMJAnalyzing regression test selection techniquesIEEE Trans Softw Eng19962252955110.1109/32.536955 Kim J-M, Porter A (2002) A history-based test prioritization technique for regression testing in resource constrained environments Proceedings of the 24rd international conference on software engineering, ICSE. IEEE, pp 119–129 ZhaoFZhangQYangYAn improved particle swarm optimization-based approach for production scheduling problemsIEEE international conference on mechatronics and automation20062279–2283IEEE ChangK-HCrossIIJHCarlisleWHBrownDBA framework for intelligent test data generationJ Intell Robot Syst1992514716510.1007/BF00444293 Chen Y, Zhong Y (2008) Automatic path-oriented test data generation using a multi-population genetic algorithm. In: Fourth international conference on natural computation, ICNC’08. IEEE, pp 566–570 ArcuriABriandLA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftware Testing, Verification and Reliability20142421925010.1002/stvr.1486 Atif M (2016) Software Benchmark repository for TerpSpreadSheet3, available. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpSpreadSheet3-fault_matrix.txt Berndt D, Fisher J, Johnson L et al (2003) Breeding software test cases with genetic algorithms. In: Proceedings of the 36th annual hawaii international conference on system sciences LiHLamCPSoftware Test Data Generation using Ant Colony OptimizationInternational conference on computational intelligence200414 Ramamoorthy CV, Ho S-B, Chen WT (1976) On the automated generation of program test data. IEEE Trans Softw Eng :293–300 SrivastavaPRTest case prioritizationJournal of Theoretical and Applied Information Technology20084178181 FraserGArcuriAA large-scale evaluation of automated unit test generation using EvoSuiteACM Trans Softw Eng Methodol (TOSEM)201424810.1145/2685612 Hou Y, Zhao C, Liao Y (2006) A new method of test generation for sequential circuits. In: International conference on communications, circuits and systems proceedings. IEEE, pp 2181–2185 Ahmed AA, Shaheen M, Kosba E (2012) Software testing suite prioritization using multi-criteria fitness function. In: 222nd International conference on computer theory and applications (ICCTA). IEEE, pp 160–166 LiZHarmanMHieronsRMSearch algorithms for regression test case prioritizationIEEE Trans Softw Eng20073322523710.1109/TSE.2007.38 KaurABhattDHybrid particle swarm optimization for regression testingInt J Comput Sci Eng2011318151824 MalhotraRKhariMHeuristic search-based approach for automated test data generation: a surveyInternational Journal of Bio-Inspired Computation2013511810.1504/IJBIC.2013.053045 KaurDAGoyalSA bee colony optimization algorithm for code coverage test suite prioritizationInt J Eng Sci Technol2011127862795 Mohapatra D (2011) GA Based Test Case Generation Approach for Formation of Efficient Set of Dynamic Slices. International Journal on Computer Science and Engineering (IJCSE) 3 AhmedMAHermadiIGA-Based multiple paths test data generatorComput Oper Res2008353107312410.1016/j.cor.2007.01.012 DoHRothermelGOn the use of mutation faults in empirical assessments of test case prioritization techniquesIEEE Trans Softw Eng20063273375210.1109/TSE.2006.92 ElbaumSMalishevskyAGRothermelGTest case prioritization: A family of empirical studiesIEEE Trans Softw Eng20022815918210.1109/32.988497 ArcuriABriandLFormal analysis of the probability of interaction fault detection using random testingIEEE Trans Softw Eng2012381088109910.1109/TSE.2011.85 RothermelGUntchRHChuCHarroldMJPrioritizing test cases for regression testingIEEE Trans Softw Eng20012792994810.1109/32.962562 Do H, Rothermel G, Kinneer A (2004) Empirical studies of test case prioritization in a JUnit testing environment. In: 5th International symposium on software reliability engineering ISSRE. IEEE, pp 113–124 MichaelCCMcGrawGSchatzMAGenerating software test data by evolutionIEEE Trans Softw Eng2001271085111010.1109/32.988709 Beizerm B (1990) Software Testing Techniques, Van Nostrand Reinhold. New York Mirarab S, Tahvildari L (2008) An empirical study on bayesian network-based approach for test case prioritization. In: 1st International conference on software testing, verification, and validation. IEEE, pp 278–287 Rothermel G, Untch RH, Chu C, Harrold MJ (1999) Test case prioritization: An empirical study. In: Proceedings IEEE international conference on software maintenance, (ICSM’99). IEEE, pp 179–188 Clarke LA (1976) A system to generate test data and symbolically execute programs. IEEE Trans Softw Eng :215–222 Leon D, Podgurski A (2003) A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In: 14th international symposium on software reliability engineering, ISSRE. IEEE, pp 442–453 ShanJ-HWangJQiZ-CSurvey on path-wise automatic generation of test dataActa Electron Sin200432109113 MalhotraRGargMAn adequacy based test data generation technique using genetic algorithmsJ Inf Process Syst2011736338410.3745/JIPS.2011.7.2.363 Ayari K, Bouktif S, Antoniol G (2007) Automatic mutation test input data generation via ant colony. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 1074–1081 DorigoMManiezzoVColorniAAnt system: optimization by a colony of cooperating agentsIEEE Transactions on Systems, Man, and Cybernetics199626294110.1109/3477.484436 Zhao P, Zhao P, Zhang X (2006) A new ant colony optimization for the knapsack problem. In: CAIDCD’06 7th international conference on computer-aided industrial design and conceptual design. IEEE, pp 1–3 VoasJMorellLMillerKPredicting where faults can hide from testingIEEE Softw19918414810.1109/52.73748 Flipcart Shop Flipcart, availabte: www.flipcart.com, accessed june 2016 McMinnPSearch-based software test data generation: a surveySoftware Testing Verification and Reliability20041410515610.1002/stvr.294 WatkinsALThe automatic generation of test data using genetic algorithmsProceedings of the 4th software quality conference1995300309 Tracey N, Clark J, Mander K (1998) Automated program flaw finding using simulated annealing ACM SIGSOFT software engineering notes. ACM, pp 73–81 KaurABhattDParticle swarm optimization with cross-over operator for prioritization in regression testingInt J Comput Appl2011272734 PargasRPHarroldMJPeckRRTest-data generation using genetic algorithmsSoftware Testing Verification and Reliability1999926328210.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y ParpinelliRSLopesHSFreitasAAData mining with an ant colony optimization algorithmIEEE Trans Evol Comput2002632133210.1109/TEVC.2002.8024521031.68564 Korel B (1990) A dynamic approach of test data generation. In: Proceedings, conference on software maintenance. IEEE, pp 311–317 LiuHSunSAbrahamAParticle swarm approach to scheduling work-flow applications in distributed data-intensive computing environmentsSixth international conference on intelligent systems design and applications,ISDA’06200666166610.1109/ISDA.2006.253915 CatalCMishraDTest case prioritization: a systematic mapping studySoftw Qual J20132144547810.1007/s11219-012-9181-z JacobTPRaviTOptimization of test cases by prioritizationJ Comput Sci2013997210.3844/jcssp.2013.972.980 Liang Y, Liu L, Wang D, Wu R (2010) Optimizing particle swarm optimization to solve knapsack problem Information computing and applications. Springer, pp 437–443 Lope HS, Coelho LS (2005) Particle swarn optimization with fast local search for the blind traveling salesman problem. In: Fifth international conference on hybrid intelligent systems, HIS’05. IEEE, pp 245–250 Atif M (2016) Software Benchmark repository for TeraPaint3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPaint3-fault_matrix.txt. Accessed 1 June 2016 G Rothermel (1003_CR31) 2001; 27 H Li (1003_CR53) 2004 J-H Shan (1003_CR23) 2004; 32 1003_CR33 C Catal (1003_CR37) 2013; 21 RP Pargas (1003_CR43) 1999; 9 1003_CR32 A Kaur (1003_CR63) 2011; 27 1003_CR30 S Yoo (1003_CR34) 2012; 22 HD Mills (1003_CR12) 1987; 4 H Liu (1003_CR6) 2006 G Fraser (1003_CR26) 2014; 24 1003_CR48 A Arcuri (1003_CR49) 2014; 24 Y Singh (1003_CR39) 2010; 35 1003_CR44 1003_CR42 1003_CR40 1003_CR41 P McMinn (1003_CR19) 2004; 14 R Ferguson (1003_CR15) 1996; 5 AL Watkins (1003_CR47) 1995 R Krishnamoorthi (1003_CR60) 2009; 2 A Arcuri (1003_CR11) 2012; 38 RS Parpinelli (1003_CR55) 2002; 6 CC Michael (1003_CR25) 2001; 27 MA Ahmed (1003_CR45) 2008; 35 R Malhotra (1003_CR24) 2011; 7 1003_CR17 1003_CR18 1003_CR59 1003_CR57 1003_CR58 1003_CR56 1003_CR54 1003_CR51 A Kaur (1003_CR62) 2011; 3 MOPS Mukesh (1003_CR46) 2015; 5 DA Kaur (1003_CR36) 2011; 1 PR Srivastava (1003_CR61) 2008; 4 H Do (1003_CR9) 2006; 32 TP Jacob (1003_CR38) 2013; 9 F Zhao (1003_CR8) 2006 1003_CR4 1003_CR5 G Rothermel (1003_CR50) 1996; 22 1003_CR7 K-H Chang (1003_CR16) 1992; 5 R Malhotra (1003_CR28) 2013; 5 S Elbaum (1003_CR10) 2002; 28 1003_CR1 1003_CR29 1003_CR2 1003_CR3 1003_CR27 J Voas (1003_CR13) 1991; 8 1003_CR22 Z Li (1003_CR35) 2007; 33 1003_CR20 DL Bird (1003_CR14) 1983; 22 1003_CR21 M Dorigo (1003_CR52) 1996; 26 |
References_xml | – reference: MukeshMOPSGenerating and prioritizing optimal paths using ant colony optimizationComputational Ecology and Software201551 – reference: SrivastavaPRTest case prioritizationJournal of Theoretical and Applied Information Technology20084178181 – reference: RothermelGHarroldMJAnalyzing regression test selection techniquesIEEE Trans Softw Eng19962252955110.1109/32.536955 – reference: McMinnPSearch-based software test data generation: a surveySoftware Testing Verification and Reliability20041410515610.1002/stvr.294 – reference: Tracey N, Clark J, Mander K (1998) Automated program flaw finding using simulated annealing ACM SIGSOFT software engineering notes. ACM, pp 73–81 – reference: MichaelCCMcGrawGSchatzMAGenerating software test data by evolutionIEEE Trans Softw Eng2001271085111010.1109/32.988709 – reference: ParpinelliRSLopesHSFreitasAAData mining with an ant colony optimization algorithmIEEE Trans Evol Comput2002632133210.1109/TEVC.2002.8024521031.68564 – reference: Ahmed AA, Shaheen M, Kosba E (2012) Software testing suite prioritization using multi-criteria fitness function. In: 222nd International conference on computer theory and applications (ICCTA). IEEE, pp 160–166 – reference: DorigoMManiezzoVColorniAAnt system: optimization by a colony of cooperating agentsIEEE Transactions on Systems, Man, and Cybernetics199626294110.1109/3477.484436 – reference: KrishnamoorthiRMarySASARegression test suite prioritization using genetic algorithmsInternational Journal of Hybrid Information Technology200923552 – reference: DoHRothermelGOn the use of mutation faults in empirical assessments of test case prioritization techniquesIEEE Trans Softw Eng20063273375210.1109/TSE.2006.92 – reference: RothermelGUntchRHChuCHarroldMJPrioritizing test cases for regression testingIEEE Trans Softw Eng20012792994810.1109/32.962562 – reference: ArcuriABriandLA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftware Testing, Verification and Reliability20142421925010.1002/stvr.1486 – reference: Di Caro G, Dorigo M (1998) Antnet: Distributed stigmergetic control for communications networks. J Artif Intell Res :317– 365 – reference: BirdDLMunozCUAutomatic generation of random self-checking test casesIBM Syst J19832222924510.1147/sj.223.0229 – reference: ArcuriABriandLFormal analysis of the probability of interaction fault detection using random testingIEEE Trans Softw Eng2012381088109910.1109/TSE.2011.85 – reference: Korel B (1990) A dynamic approach of test data generation. In: Proceedings, conference on software maintenance. IEEE, pp 311–317 – reference: KaurABhattDHybrid particle swarm optimization for regression testingInt J Comput Sci Eng2011318151824 – reference: Korel B (1996) Automated test data generation for programs with procedures ACM SIGSOFT software engineering notes. ACM, pp 209–215 – reference: Chen Y, Zhong Y (2008) Automatic path-oriented test data generation using a multi-population genetic algorithm. In: Fourth international conference on natural computation, ICNC’08. IEEE, pp 566–570 – reference: ZhaoFZhangQYangYAn improved particle swarm optimization-based approach for production scheduling problemsIEEE international conference on mechatronics and automation20062279–2283IEEE – reference: ChangK-HCrossIIJHCarlisleWHBrownDBA framework for intelligent test data generationJ Intell Robot Syst1992514716510.1007/BF00444293 – reference: LiuHSunSAbrahamAParticle swarm approach to scheduling work-flow applications in distributed data-intensive computing environmentsSixth international conference on intelligent systems design and applications,ISDA’06200666166610.1109/ISDA.2006.253915 – reference: Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and Technology, RTI Project 7007 – reference: FraserGArcuriAA large-scale evaluation of automated unit test generation using EvoSuiteACM Trans Softw Eng Methodol (TOSEM)201424810.1145/2685612 – reference: FergusonRKorelBThe chaining approach for software test data generationACM Trans Softw Eng Methodol (TOSEM)19965638610.1145/226155.226158 – reference: Mirarab S, Tahvildari L (2008) An empirical study on bayesian network-based approach for test case prioritization. In: 1st International conference on software testing, verification, and validation. IEEE, pp 278–287 – reference: LiZHarmanMHieronsRMSearch algorithms for regression test case prioritizationIEEE Trans Softw Eng20073322523710.1109/TSE.2007.38 – reference: Ayari K, Bouktif S, Antoniol G (2007) Automatic mutation test input data generation via ant colony. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 1074–1081 – reference: Zhao P, Zhao P, Zhang X (2006) A new ant colony optimization for the knapsack problem. In: CAIDCD’06 7th international conference on computer-aided industrial design and conceptual design. IEEE, pp 1–3 – reference: CatalCMishraDTest case prioritization: a systematic mapping studySoftw Qual J20132144547810.1007/s11219-012-9181-z – reference: JacobTPRaviTOptimization of test cases by prioritizationJ Comput Sci2013997210.3844/jcssp.2013.972.980 – reference: WatkinsALThe automatic generation of test data using genetic algorithmsProceedings of the 4th software quality conference1995300309 – reference: Beizerm B (1990) Software Testing Techniques, Van Nostrand Reinhold. New York – reference: Flipcart Shop Flipcart, availabte: www.flipcart.com, accessed june 2016 – reference: Mohapatra D (2011) GA Based Test Case Generation Approach for Formation of Efficient Set of Dynamic Slices. International Journal on Computer Science and Engineering (IJCSE) 3: – reference: MillsHDDyerMLingerRCCleanroom software engineeringIEEE Softw198741910.1109/MS.1987.231413 – reference: Kim J-M, Porter A (2002) A history-based test prioritization technique for regression testing in resource constrained environments Proceedings of the 24rd international conference on software engineering, ICSE. IEEE, pp 119–129 – reference: AhmedMAHermadiIGA-Based multiple paths test data generatorComput Oper Res2008353107312410.1016/j.cor.2007.01.012 – reference: Atif M (2016) Software Benchmark repository for TerpSpreadSheet3, available. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpSpreadSheet3-fault_matrix.txt – reference: Liang Y, Liu L, Wang D, Wu R (2010) Optimizing particle swarm optimization to solve knapsack problem Information computing and applications. Springer, pp 437–443 – reference: Lope HS, Coelho LS (2005) Particle swarn optimization with fast local search for the blind traveling salesman problem. In: Fifth international conference on hybrid intelligent systems, HIS’05. IEEE, pp 245–250 – reference: ElbaumSMalishevskyAGRothermelGTest case prioritization: A family of empirical studiesIEEE Trans Softw Eng20022815918210.1109/32.988497 – reference: MalhotraRKhariMHeuristic search-based approach for automated test data generation: a surveyInternational Journal of Bio-Inspired Computation2013511810.1504/IJBIC.2013.053045 – reference: KaurABhattDParticle swarm optimization with cross-over operator for prioritization in regression testingInt J Comput Appl2011272734 – reference: Ramamoorthy CV, Ho S-B, Chen WT (1976) On the automated generation of program test data. IEEE Trans Softw Eng :293–300 – reference: Atif M (2016) Software Benchmark repository for TeraPaint3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPaint3-fault_matrix.txt. Accessed 1 June 2016 – reference: ShanJ-HWangJQiZ-CSurvey on path-wise automatic generation of test dataActa Electron Sin200432109113 – reference: Howden WE (1977) Symbolic testing and the DISSECT symbolic evaluation system. IEEE Trans Softw Eng :266–278 – reference: Clarke LA (1976) A system to generate test data and symbolically execute programs. IEEE Trans Softw Eng :215–222 – reference: MalhotraRGargMAn adequacy based test data generation technique using genetic algorithmsJ Inf Process Syst2011736338410.3745/JIPS.2011.7.2.363 – reference: PargasRPHarroldMJPeckRRTest-data generation using genetic algorithmsSoftware Testing Verification and Reliability1999926328210.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y – reference: Berndt D, Fisher J, Johnson L et al (2003) Breeding software test cases with genetic algorithms. In: Proceedings of the 36th annual hawaii international conference on system sciences – reference: Atif M (2016) Software Benchmark repository for TeraPresent3. http://www.cs.umd.edu/~atif/Benchmarks/common/TerpPresent3-fault_matrix.txt. Accessed 20 June 2016 – reference: Leon D, Podgurski A (2003) A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In: 14th international symposium on software reliability engineering, ISSRE. IEEE, pp 442–453 – reference: Rothermel G, Untch RH, Chu C, Harrold MJ (1999) Test case prioritization: An empirical study. In: Proceedings IEEE international conference on software maintenance, (ICSM’99). IEEE, pp 179–188 – reference: YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftware Testing, Verification and Reliability2012226712010.1002/stv.430 – reference: Do H, Rothermel G, Kinneer A (2004) Empirical studies of test case prioritization in a JUnit testing environment. In: 5th International symposium on software reliability engineering ISSRE. IEEE, pp 113–124 – reference: LiHLamCPSoftware Test Data Generation using Ant Colony OptimizationInternational conference on computational intelligence200414 – reference: SinghYKaurASuriBTest case prioritization using ant colony optimizationACM SIGSOFT Software Engineering Notes20103517 – reference: Hou Y, Zhao C, Liao Y (2006) A new method of test generation for sequential circuits. In: International conference on communications, circuits and systems proceedings. IEEE, pp 2181–2185 – reference: KaurDAGoyalSA bee colony optimization algorithm for code coverage test suite prioritizationInt J Eng Sci Technol2011127862795 – reference: VoasJMorellLMillerKPredicting where faults can hide from testingIEEE Softw19918414810.1109/52.73748 – ident: 1003_CR40 doi: 10.1109/ICCTA.2012.6523563 – ident: 1003_CR4 doi: 10.1109/ICCCAS.2006.285109 – volume: 9 start-page: 263 year: 1999 ident: 1003_CR43 publication-title: Software Testing Verification and Reliability doi: 10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y – volume-title: IEEE international conference on mechatronics and automation year: 2006 ident: 1003_CR8 – ident: 1003_CR48 – ident: 1003_CR29 – ident: 1003_CR51 doi: 10.1613/jair.530 – volume: 32 start-page: 733 year: 2006 ident: 1003_CR9 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2006.92 – volume: 5 start-page: 147 year: 1992 ident: 1003_CR16 publication-title: J Intell Robot Syst doi: 10.1007/BF00444293 – volume: 38 start-page: 1088 year: 2012 ident: 1003_CR11 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2011.85 – volume: 27 start-page: 1085 year: 2001 ident: 1003_CR25 publication-title: IEEE Trans Softw Eng doi: 10.1109/32.988709 – ident: 1003_CR58 – ident: 1003_CR3 doi: 10.1109/ICSM.1999.792604 – start-page: 300 volume-title: Proceedings of the 4th software quality conference year: 1995 ident: 1003_CR47 – volume: 24 start-page: 8 year: 2014 ident: 1003_CR26 publication-title: ACM Trans Softw Eng Methodol (TOSEM) doi: 10.1145/2685612 – volume: 35 start-page: 1 year: 2010 ident: 1003_CR39 publication-title: ACM SIGSOFT Software Engineering Notes – volume: 4 start-page: 19 year: 1987 ident: 1003_CR12 publication-title: IEEE Softw doi: 10.1109/MS.1987.231413 – ident: 1003_CR5 – ident: 1003_CR21 doi: 10.1109/TSE.1977.231144 – volume: 9 start-page: 972 year: 2013 ident: 1003_CR38 publication-title: J Comput Sci doi: 10.3844/jcssp.2013.972.980 – volume: 6 start-page: 321 year: 2002 ident: 1003_CR55 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.802452 – volume: 2 start-page: 35 year: 2009 ident: 1003_CR60 publication-title: International Journal of Hybrid Information Technology – volume: 28 start-page: 159 year: 2002 ident: 1003_CR10 publication-title: IEEE Trans Softw Eng doi: 10.1109/32.988497 – ident: 1003_CR20 doi: 10.1109/TSE.1976.233817 – volume: 22 start-page: 229 year: 1983 ident: 1003_CR14 publication-title: IBM Syst J doi: 10.1147/sj.223.0229 – volume: 8 start-page: 41 year: 1991 ident: 1003_CR13 publication-title: IEEE Softw doi: 10.1109/52.73748 – volume: 33 start-page: 225 year: 2007 ident: 1003_CR35 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2007.38 – ident: 1003_CR1 – volume: 1 start-page: 2786 year: 2011 ident: 1003_CR36 publication-title: Int J Eng Sci Technol – volume: 35 start-page: 3107 year: 2008 ident: 1003_CR45 publication-title: Comput Oper Res doi: 10.1016/j.cor.2007.01.012 – ident: 1003_CR57 – ident: 1003_CR54 doi: 10.1145/1276958.1277172 – volume: 5 start-page: 1 year: 2013 ident: 1003_CR28 publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2013.053045 – ident: 1003_CR41 doi: 10.1109/ICNC.2008.388 – volume: 24 start-page: 219 year: 2014 ident: 1003_CR49 publication-title: Software Testing, Verification and Reliability doi: 10.1002/stvr.1486 – volume: 14 start-page: 105 year: 2004 ident: 1003_CR19 publication-title: Software Testing Verification and Reliability doi: 10.1002/stvr.294 – ident: 1003_CR33 doi: 10.1109/ICST.2008.57 – ident: 1003_CR2 – volume: 5 start-page: 1 year: 2015 ident: 1003_CR46 publication-title: Computational Ecology and Software – ident: 1003_CR27 – volume: 26 start-page: 29 year: 1996 ident: 1003_CR52 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/3477.484436 – ident: 1003_CR18 doi: 10.1109/ICSM.1990.131379 – volume: 27 start-page: 27 year: 2011 ident: 1003_CR63 publication-title: Int J Comput Appl – ident: 1003_CR42 – ident: 1003_CR44 doi: 10.1109/HICSS.2003.1174917 – ident: 1003_CR22 doi: 10.1109/TSE.1976.233835 – volume: 3 start-page: 1815 year: 2011 ident: 1003_CR62 publication-title: Int J Comput Sci Eng – start-page: 1 volume-title: International conference on computational intelligence year: 2004 ident: 1003_CR53 – ident: 1003_CR7 doi: 10.1109/ICHIS.2005.86 – volume: 27 start-page: 929 year: 2001 ident: 1003_CR31 publication-title: IEEE Trans Softw Eng doi: 10.1109/32.962562 – ident: 1003_CR32 doi: 10.1109/ISSRE.2003.1251065 – volume: 22 start-page: 529 year: 1996 ident: 1003_CR50 publication-title: IEEE Trans Softw Eng doi: 10.1109/32.536955 – volume: 5 start-page: 63 year: 1996 ident: 1003_CR15 publication-title: ACM Trans Softw Eng Methodol (TOSEM) doi: 10.1145/226155.226158 – volume: 22 start-page: 67 year: 2012 ident: 1003_CR34 publication-title: Software Testing, Verification and Reliability doi: 10.1002/stv.430 – ident: 1003_CR56 doi: 10.1109/CAIDCD.2006.329439 – start-page: 661 volume-title: Sixth international conference on intelligent systems design and applications,ISDA’06 year: 2006 ident: 1003_CR6 doi: 10.1109/ISDA.2006.253915 – volume: 21 start-page: 445 year: 2013 ident: 1003_CR37 publication-title: Softw Qual J doi: 10.1007/s11219-012-9181-z – volume: 32 start-page: 109 year: 2004 ident: 1003_CR23 publication-title: Acta Electron Sin – ident: 1003_CR59 – ident: 1003_CR17 – ident: 1003_CR30 – volume: 4 start-page: 178 year: 2008 ident: 1003_CR61 publication-title: Journal of Theoretical and Applied Information Technology – volume: 7 start-page: 363 year: 2011 ident: 1003_CR24 publication-title: J Inf Process Syst doi: 10.3745/JIPS.2011.7.2.363 |
SSID | ssj0003301 |
Score | 2.2311008 |
Snippet | Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 687 |
SubjectTerms | Artificial Intelligence Automation Computer Science Genetic algorithms Heuristic methods Life cycle analysis Machines Manufacturing Mechanical Engineering Particle swarm optimization Processes Software Software development Software engineering Software testing |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5ze_HFuzidkgeflGDbpJcIIk4cU3CIONhbya040HZuHYK_3pxeNhXcY9skhZPknC85lw-h05AFJgmlIixUHgGLRaKIC6KELxwn8RytId_5cRD0h-xh5I8aaFDnwkBYZa0TC0WtMwV35BeQLu-Du9S_nnwQYI0C72pNoSEqagV9VZQYW0MtD1iVm6jVvRs8PS90sz29Fxx69tRBgoCPaj9nmUzHIHzIam0XArbob0u1hJ9_PKaFIeptoY0KQeKbcsq3UcOkO2izZmfA1WbdRffdcUbGKXjSjcbvJhevZl7VZb7ExqoluEvAItXY_imD4kZf8GJmFfOnmBpsQWiOIYJ0Dw17dy-3fVIRJxBF3SAnNAkTTZmvNQAGoRNPSQvlGNM00ox59ozky6RADxYtSMOF53gy9EPNjUqkS_dRM81Sc4CwpBISebSjuWSB4sJEgruRcELJEyVpGzm1kGJVVRUHcou3eFkPGeQaW7nCM41tl7NFl0lZUmNV404t-bjaXbN4uRba6LyejR-f_xvscPVgR2jdwqGojDDroGY-nZtjCzlyeVKto2-gddJ0 priority: 102 providerName: ProQuest |
Title | Bio-inspired metaheuristics: evolving and prioritizing software test data |
URI | https://link.springer.com/article/10.1007/s10489-017-1003-3 https://www.proquest.com/docview/1999510975 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uu3jxW5zOkYMnJdA26Ze3VdZNxSHiYJ5KvooD7WTrEPzrzevabYoKnkLbJIWXl5ffy_tC6Mxnnk59IQnzpUPgxCJBEHIiucstK3UspSDe-W7g9YfsZuSOyjjuWeXtXpkkC0m9FuzGwL3HSFUbHKpoDTVc4B_DxEOnsxS_RkEvyuQZxYJ4XjiqTJk_TfH1MFohzG9G0eKsiXfQVgkScWexqrtoQ2d7aLsqwIDL_biPrqPxhIwzMJZrhV91zp_1vEy9fIm1kTxwXYB5prD50wTyF33Ai5mRve98qrHBmTkGJ9EDNIy7j1d9UtZGIJLaXk5o6qeKMlcpwARcpY4UBq0xpmigGHOMGuSKtAAIBhAIHXLHcoTv-irUMhU2PUT1bJLpI4QFFRCroywVCubJkOuAh3bALV-EqRS0iayKSIksE4dD_YqXZJXyGOiaGLrCM03MkPPlkLdF1oy_OrcqyiflBpolkB3BBeu420QX1Wqsff5tsuN_9T5BmwYABQufshaq59O5PjUgIxdtVAviXhs1OnEUDaDtPd12TRt1B_cP7YLlPgEIWs3W |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSxxBFH4YPSQXt0TcrUO8KEV6uqq3gIgrMy5DEIW5tbU1CkmPOi0Sf5y_zfd6qh0jxJvH3qrh1av3fVVvA_ieyNgViTZcJibkhFg8TTPFjYpUEBRhYC3lO5924_aFPOpFvTF4anJhKKyysYm1obZ9Q2fkPyhdPiJ3abR9c8upaxR5V5sWGsq3VrBbdYkxn9hx7P4-4BZusNXZx_leD8PDg_O9NvddBrgRrbjiokgKK2RkLaGrskVoNPIeKa1IrZQhbigiXdRQi9CqXabCINRJlNjMmUK3BI77CSaQdghcVRO7B91fZy9YIETdgDnAXQ6P46zX-FWHyXuSwpUQJVoUICb-RcYR3X3joa2B73AaJj1jZTtDFZuBMVfOwlTTDYJ54_AVOrvXfX5dkufeWfbHVerK3fs60D-ZQzNIZxdMlZbhn_pUTOmRbgwQCB7UnWNIeitGEavf4OJDRDgH42W_dPPAtNCUOGQDm2kZm0y5VGWtVAWJzgqjxQIEjZBy46uYUzON3_mo_jLJNUe50rXI8ZONl09uhiU83nt5uZF87lfzIB_p3gJsNrPx6vH_Blt8f7A1-Nw-Pz3JTzrd4yX4glQsHUa3LcN4dXfvVpDuVHrV6xSDy49W42dg4w6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSx1BEC5cQLwkcSNGo33Qi9I4b7pnCwRxe_rcyEHh3cZeiZDMU9-IJD8tv86qWXwa0JvH2Xqgurq-6q7lA1hLZOx8og2XiQk5IRZP00xxoyIVBD4MrKV657Pz-OhSHvej_hj8a2thKK2ytYmVobYDQ2fkW1QuH1G4NNryTVrEj_3u9s0tJwYpirS2dBq1ipy4Pw-4fRt-7-3jXK-HYffgYu-INwwD3IhOXHLhE2-FjKwlZFXWh0ajzyOlFamVMsTNRKR9BbMIq9plKgxCnUSJzZzxuiNw3HGYJKoXWlFp9_AJBYSoqJcD3N_wOM76bUS1LtuTlKiE-NCh1DDxEhNHju5_sdkK8rqf4EPjq7KdWrlmYMwVs_Cx5YFgjVmYg97u9YBfFxSzd5b9dqX66e6bDtDfmEMDSKcWTBWW4Z8G1EbpL90YIgQ8qDvH0N0tGeWqzsPluwhwASaKQeE-A9NCU8mQDWymZWwy5VKVdVIVJDrzRotFCFoh5abpX040Gr_yUedlkmuOcqVrkeMnG0-f3NTNO956ebmVfN6s42E-0rpF2Gxn49nj1wb78vZgqzCFypuf9s5PlmAafbC0Tmtbhony7t59RT-n1CuVQjG4em8NfgTv4wxM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+metaheuristics%3A+evolving+and+prioritizing+software+test+data&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Mann%2C+Mukesh&rft.au=Tomar%2C+Pradeep&rft.au=Sangwan%2C+Om+Prakash&rft.date=2018-03-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=48&rft.issue=3&rft.spage=687&rft.epage=702&rft_id=info:doi/10.1007%2Fs10489-017-1003-3&rft.externalDocID=10_1007_s10489_017_1003_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |