Structures of Nanodiamonds with Photoactive Modifiers

Binary and ternary complexes of europium fullerenes and diphthalocyanines with detonation nanodiamonds are obtained for the first time, which can serve as platforms for the delivery of these hydrophobic molecules into aqueous biological media for magnetic resonance imaging, photodynamic therapy, and...

Full description

Saved in:
Bibliographic Details
Published inSurface investigation, x-ray, synchrotron and neutron techniques Vol. 17; no. 1; pp. 7 - 16
Main Authors Lebedev, V. T., Kulvelis, Yu. V., Soroka, M. A., Kyzyma, O. A., Vul, A. Ya
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1027-4510
1819-7094
DOI10.1134/S1027451023010159

Cover

Abstract Binary and ternary complexes of europium fullerenes and diphthalocyanines with detonation nanodiamonds are obtained for the first time, which can serve as platforms for the delivery of these hydrophobic molecules into aqueous biological media for magnetic resonance imaging, photodynamic therapy, and diagnostics using luminescent labels. Detonation nanodiamonds (~4–5 nm in size) have a positive potential (30–70 mV) in an aqueous medium due to the groups (CH, COH) grafted to the surface by heat treatment in an atmosphere of hydrogen. When positively charged diamonds interact with electronegative hydrated fullerenes in an aqueous medium, the initial aggregates of each of the components are destroyed, and the electrostatic attraction between them leads to the formation of stable compact complexes ~20 nm in size, according to dynamic light scattering and neutron scattering in colloids (20°C). Binary complexes include, on average, two fullerene molecules per 30–40 diamond particles. Introducing diphthalocyanine molecules into a binary colloid yields stable ternary structures. The resulting complexes of diamonds, fullerenes, and diphthalocyanine molecules are promising for biomedical applications due to the luminescent and magnetic properties of the components.
AbstractList Binary and ternary complexes of europium fullerenes and diphthalocyanines with detonation nanodiamonds are obtained for the first time, which can serve as platforms for the delivery of these hydrophobic molecules into aqueous biological media for magnetic resonance imaging, photodynamic therapy, and diagnostics using luminescent labels. Detonation nanodiamonds (~4–5 nm in size) have a positive potential (30–70 mV) in an aqueous medium due to the groups (CH, COH) grafted to the surface by heat treatment in an atmosphere of hydrogen. When positively charged diamonds interact with electronegative hydrated fullerenes in an aqueous medium, the initial aggregates of each of the components are destroyed, and the electrostatic attraction between them leads to the formation of stable compact complexes ~20 nm in size, according to dynamic light scattering and neutron scattering in colloids (20°C). Binary complexes include, on average, two fullerene molecules per 30–40 diamond particles. Introducing diphthalocyanine molecules into a binary colloid yields stable ternary structures. The resulting complexes of diamonds, fullerenes, and diphthalocyanine molecules are promising for biomedical applications due to the luminescent and magnetic properties of the components.
Author Vul, A. Ya
Lebedev, V. T.
Soroka, M. A.
Kulvelis, Yu. V.
Kyzyma, O. A.
Author_xml – sequence: 1
  givenname: V. T.
  surname: Lebedev
  fullname: Lebedev, V. T.
  email: lebedev_vt@pnpi.nrcki.ru
  organization: Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”
– sequence: 2
  givenname: Yu. V.
  surname: Kulvelis
  fullname: Kulvelis, Yu. V.
  organization: Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”
– sequence: 3
  givenname: M. A.
  surname: Soroka
  fullname: Soroka, M. A.
  organization: Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”
– sequence: 4
  givenname: O. A.
  surname: Kyzyma
  fullname: Kyzyma, O. A.
  organization: Joint Institute for Nuclear Research
– sequence: 5
  givenname: A. Ya
  surname: Vul
  fullname: Vul, A. Ya
  organization: Ioffe Physical–Technical Institute
BookMark eNp9kFtLAzEQhYNUsK3-AN8WfF7NJJvd5FGKN_AG7fuSTbI2pU1qklX896ZUEBR9mRk455sZzgSNnHcGoVPA5wC0upgDJk3FcqUYMDBxgMbAQZQNFtUoz1kud_oRmsS4wpg1lNVjxOYpDCoNwcTC98WjdF5bufFOx-LdpmXxvPTJS5XsmykestZbE-IxOuzlOpqTrz5Fi-urxey2vH-6uZtd3peKQp1KaoB3oFkllGDaGF0T1lNTUS4Z4T10ijdCc1ZLWjGBmeBCG04ajLuuV4RO0dl-7Tb418HE1K78EFy-2BIOBNe04jy7mr1LBR9jMH2rbJLJepeCtOsWcLuLqP0VUSbhB7kNdiPDx78M2TMxe92LCd8__Q19AhOwd5M
CitedBy_id crossref_primary_10_3390_molecules29133078
Cites_doi 10.1039/C39950001281
10.1021/jp3059036
10.1007/978-3-030-77371-7_7
10.1080/10448630500454361
10.3390/molecules25163638
10.1016/j.jphotobiol.2018.12.020
10.2298/SARH1604222B
10.1039/B103522N
10.2174/092986711795656225
10.21873/anticanres.13475
10.1016/j.apcatb.2019.118579
10.3390/condmat1010010
10.1007/978-3-030-77371-7_10
10.3390/cancers9020019
10.1016/j.cplett.2019.05.055
10.1111/php.12294
10.1021/am900008v
10.1016/j.biopha.2020.110695
10.1088/0953-8984/25/19/194101
10.1246/bcsj.81.1584
10.1039/b311429e
10.1039/C39940002437
10.1088/1742-6596/848/1/012020
10.1021/tx800056w
10.1016/j.biopha.2018.07.049
10.1134/S1027451020070289
10.1134/S0030400X19020048
10.1134/S1063783414010211
10.1088/978-1-6817-4321-9
10.1134/S1063774518010054
10.1107/S0021889806004699
10.1016/j.jcis.2018.10.087
10.1021/acsnano.0c09382
10.1016/j.jphotobiol.2008.06.004
10.7150/thno.4881
10.1166/nnl.2011.1122
10.24931/2413-9432-2016-5-1-9-14
10.1016/j.carbon.2016.12.007
10.1107/S0021889892001663
10.1002/smll.201902238
10.1039/b103679n
10.1042/BJ20150942
10.1021/acs.inorgchem.9b02097
10.24931/2413-9432-2016-5-3-4-8
10.1088/1742-6596/291/1/012013
10.1134/S1063774511070339
10.1007/s10895-012-1146-x
10.1016/j.apsb.2017.09.003
10.1134/S1027451015010127
10.1021/la404976k
10.1088/1361-6463/ab41e8
10.1016/j.ccr.2021.214082
10.1134/S1027451016050517
10.1039/c8cs00921j
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 1027-4510, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2023, Vol. 17, No. 1, pp. 7–16. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Poverkhnost’, 2023, No. 1, pp. 9–19.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 1027-4510, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2023, Vol. 17, No. 1, pp. 7–16. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Poverkhnost’, 2023, No. 1, pp. 9–19.
DBID AAYXX
CITATION
DOI 10.1134/S1027451023010159
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1819-7094
EndPage 16
ExternalDocumentID 10_1134_S1027451023010159
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
4.4
408
40D
40E
5VS
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATLR
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PF0
PT4
QOR
QOS
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
Z7X
Z7Y
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-3e18b1d549c95deed625f3e438a528f1bc879d856a345905989de82700bbfc23
IEDL.DBID AGYKE
ISSN 1027-4510
IngestDate Wed Sep 17 23:58:20 EDT 2025
Tue Jul 01 03:21:18 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 21 02:44:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords diamond
scattering
neutron
complex
nanoparticle
biomedicine
diphthalocyanine
structure
fullerene
aggregate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-3e18b1d549c95deed625f3e438a528f1bc879d856a345905989de82700bbfc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2812063488
PQPubID 2044239
PageCount 10
ParticipantIDs proquest_journals_2812063488
crossref_citationtrail_10_1134_S1027451023010159
crossref_primary_10_1134_S1027451023010159
springer_journals_10_1134_S1027451023010159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Surface investigation, x-ray, synchrotron and neutron techniques
PublicationTitleAbbrev J. Surf. Investig
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References MoskalevP. N.Koord. Khim.1990161471:CAS:528:DyaK3cXktFKku70%3D
LebedevV. T.TorokGy.Green Photocatalytic Semiconductors2022LondonSpringer10.1007/978-3-030-77371-7_7
Gel’fondM. L.BalduevaI. A.BarchukA. S.GaftonG. I.AnisimovV. V.SemiletovaYu. V.NovikA. V.MyasnyankinM. Yu.NekhaevaT. L.DanilovaA. B.VorobeichikovE. V.Vaal’A. I.GaftonI. G.Biomed. Photonics20165410.24931/2413-9432-2016-5-3-4-8
LebedevV. T.GrushkoYu. S.SedovV. P.ShikinV. A.KozlovV. S.OrlovS. P.SushkovP. A.KolesnikS. G.SzhoginaA. A.ShabalinV. V.Phys. Solid State2014561781:CAS:528:DC%2BC2cXislykuw%3D%3D10.1134/S1063783414010211
ShilovI. P.IvanovA. V.RumyantsevaV. D.MironovA. F.Fundamental Sciences—Medicine: Biophysical Medical Technologies2015MoscowMAKS
PanY.LiuX.ZhangW.LiuZ.ZengG.ShaoB.LiangQ.HeQ.YuanX.HuangD.ChenM.Appl. Catal. B20202651185791:CAS:528:DC%2BB3cXps1Ggsg%3D%3D10.1016/j.apcatb.2019.118579
KonarevP. V.PetoukhovM. V.VolkovV. V.SvergunD. I.J. Appl. Crystallogr.2006392771:CAS:528:DC%2BD28XislCntLc%3D10.1107/S0021889806004699
FilonenkoE. V.SerovaL. G.Biomed. Photonics201652610.24931/2413-9432-2016-5-1-9-14
KuklinA. I.IslamovA. Kh.GordeliyV. I.Neutron News2005161610.1080/10448630500454361
WangS.GaoR.ZhouF.SelkeM.J. Mater. Chem.2004144871:CAS:528:DC%2BD2cXhtlWms7c%3D10.1039/b311429e
SreenivasanV. K. A.ZvyaginA. V.GoldysE. M.J. Phys.: Condens. Matter2013251941011:CAS:528:DC%2BC3sXnsVGqtb4%3D10.1088/0953-8984/25/19/194101
van StratenD.MashayekhiV.de BruijnH.OliveiraS.RobinsonD.Cancers201791910.3390/cancers9020019
KyzymaE. A.KuzmenkoM. O.BulavinL. A.PetrenkoV. I.MikheevI. V.ZabolotnyiM. A.KubovcikovaM.KopcanskyP.KorobovM. V.AvdeevM. V.AksenovV. L.J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech.20161011251:CAS:528:DC%2BC28XitVSmtrnK10.1134/S1027451016050517
KuklinA. I.SoloviovD. V.RogachevA. V.UtrobinP. K.KovalevYu. S.BalasoiuM.IvankovO. I.SirotinA. P.MurugovaT. N.PetukhovaT. B.GorshkovaYu. E.ErhanR. V.KutuzovS. A.SolovievA. G.GordeliyV. I.J. Phys.: Conf. Ser.20112910120131:CAS:528:DC%2BC3MXmsFCitLc%3D10.1088/1742-6596/291/1/012013
McCluskeyD. M.SmithT. N.MadasuP. K.CoumbeC. E.MackeyM. A.FulmerP. A.WynneJ. H.StevensonS.PhillipsJ. P.ACS Appl. Mater. Interfaces200918821:CAS:528:DC%2BD1MXjsFensrY%3D10.1021/am900008v
LebedevV. T.KulvelisYu. V.KuklinA. I.VulA. Ya.Condens. Matter201611010.3390/condmat1010010
BagrovI. V.DadekoA. V.KiselevV. M.Murav’evaT. D.StarodubtsevA. M.Opt. Spectrosc.20181259031:CAS:528:DC%2BC1MXnslCgu7c%3D10.1134/S0030400X19020048
SongJ.ChenX.-An.YangH.Chem. Soc. Rev.20194830731:CAS:528:DC%2BC1MXpvVGkt7Y%3D10.1039/c8cs00921j
BogdanovicG.DjordjevicA.Srp. Arh. Celok. Lek.201614422210.2298/SARH1604222B
TagmatarchisN.OkadaK.TomiyamaT.YoshidaT.KobayashiY.ShinoharaH.Chem. Commun.200115136610.1039/b103679n
SvergunD. I.J. Appl. Crystallogr.1992254951:CAS:528:DC%2BC2sXhslaks7vF10.1107/S0021889892001663
AbrahamseH.HamblinM. R.Photomedicine and Stem Cells: The Janus Face of Photodynamic Therapy (PDT) to Kill Cancer Stem Cells, and Photobiomodulation (PBM) to Stimulate Normal Stem Cells2017BristolIOP10.1088/978-1-6817-4321-9
DubovskiiI. M.LebedevV. T.ShilinV. A.SzhoginaA. A.SuyasovaM. V.SedovV. P.Crystallogr. Rep.20188313210.1134/S1063774518010054
KulvelisYu.LebedevV.YudinaE.ShvidchenkoA.AleksenskiiA.VulA.KuklinA.J. Surf. Invest.: X-ray, Synchrotron Neutron Tech.20201413210.1134/S1027451020070289
DallasP.VelascoP. Q.LebedevaM.PorfyrakisK.Chem. Phys. Lett.20197301301:CAS:528:DC%2BC1MXhtFejsLbN10.1016/j.cplett.2019.05.055
JuhaL.HamplovaV.KodymovaJ.SpalekO.J. Chem. Soc., Chem. Commun.199421243710.1039/C39940002437
PaulS.HengP. W. S.ChanL. W.J. Fluoresc.20122328310.1007/s10895-012-1146-x
ShilyaginaN. Yu.PlekhanovV. I.ShkunovI. V.ShilyaginP. A.DubasovaL. V.BrilkinaA. A.SokolovaE. A.TurchinI. V.BalalaevaI. V.Sovrem. Tekhnol. Med.2014615
GaoG.GuoQ.ZhiJ.Small20191519022381:CAS:528:DC%2BC1MXhtlyisbjI10.1002/smll.201902238
Vasil’evN. E.OgirenkoA. P.Lazer. Med.2002632
RakJ.PouckovaP.BenesJ.VetvickaD.Anticancer Res.20193933231:CAS:528:DC%2BB3cXhsF2mtrzN10.21873/anticanres.13475
BrilkinaA.DubasovaL.SergeevaE.PospelovA.ShilyaginaN.ShakhovaN.BalalaevaI.J. Photochem. Photobiol., B201819112810.1016/j.jphotobiol.2018.12.020
Luk’yanetsE. A.Biomed. Photonics201323
YokoI.ToshiyaO.MinfangZ.MasakoY.SumioI.Bull. Chem. Soc. Jpn.20088115841:CAS:528:DC%2BD1MXmtFCrtg%3D%3D10.1246/bcsj.81.1584
AndrievskyG. V.KosevichM. V.VovkO. M.ShelkovskyV. S.VashchenkoL. A.J. Chem. Soc., Chem. Commun.199512128110.1039/C39950001281
BuchlerJ. W.NgD. K. P.The Porphyrin Handbook2000San DiegoAcademic
OstroverkhovP. V.SemkinaA. S.NaumenkoV. A.PlotnikovaE. A.MelnikovP. A.TabakumovaO.YakubovskayaR. I.MironovA. F.VodopyanovS. S.AbakumovA. M.MajougaA. G.GrinM. A.ChekhoninV. P.AbakumovM. A.J. Colloid Interface Sci.20195371321:CAS:528:DC%2BC1cXitFKlsL%2FP10.1016/j.jcis.2018.10.087
IsakauH. A.ParkhatsM. V.KnyukshtoV. N.DzhagarovB. M.PetrovE. P.PetrovP. T.J. Photochem. Photobiol., B2008921651:CAS:528:DC%2BD1cXhtVynsLbF10.1016/j.jphotobiol.2008.06.004
LinB.-R.ChenC.-H.ChangC.-H.KunukuS.ChenT.-Y.HsiaoT.-Y.YuH.-K.ChangY.-J.LiaoL.‑C.ChenF.-H.J. Phys. D: Appl. Phys.2019525054021:CAS:528:DC%2BC1MXitlKns7jI10.1088/1361-6463/ab41e8
AlexenskiiA. E.Technology of Preparation of Detonation Nanodiamond /Detonation Nanodiamonds: Science and Applications2014
PrylutskyyYu. I.PetrenkoV. I.IvankovO. I.KyzymaO. A.BulavinL. A.LitsisO. O.EvstigneevM. P.CherepanovV. V.NaumovetsA. G.RitterU.Langmuir20143039671:CAS:528:DC%2BC2cXkslSmsrw%3D10.1021/la404976k
KyzymaE. A.TomchukA. A.BulavinL. A.PetrenkoV. I.AlmasyL.KorobovM. V.VolkovD. S.MikheevI. V.KoshlanI. V.KoshlanN. A.BlahaP.AvdeevM. V.AksenovV. L.J. Surf. Invest.: X-ray, Synchrotron Neutron Tech.2015911:CAS:528:DC%2BC2MXitlOntbc%3D10.1134/S1027451015010127
KwiatkowskiS.KnapB.PrzystupskiD.SaczkoJ.KędzierskaE.Knap-CzopK.KotlińskaJ.MichelO.KotowskiK.KulbackaJ.Biomed. Pharmacother.2018106109810.1016/j.biopha.2018.07.049
SolovievA. G.SolovjevaT. M.IvankovO. I.SoloviovD. V.RogachevA. V.KuklinA. I.J. Phys.: Conf. Ser.20178480120201:CAS:528:DC%2BC1cXhvFGmtLnK10.1088/1742-6596/848/1/012020
SenthilkumarN.SharmaP. K.SoodN.BhallaN.Coord. Chem. Rev.20214452140821:CAS:528:DC%2BB3MXhsVGrtL%2FK10.1016/j.ccr.2021.214082
SeabergJ.MontazerianH.HossenN.BhattacharyaR.KhademhosseiniA.MukherjeeP.ACS Nano20211520991:CAS:528:DC%2BB3MXitVSqt7w%3D10.1021/acsnano.0c09382
ZhaoB.HeY. Y.BilskiP. J.ChignellC. F.Chem. Res. Toxicol.20082110561:CAS:528:DC%2BD1cXkvVKnsrc%3D10.1021/tx800056w
ZhangJ.JiangC.Longo FigueiroJ. P.AzevedoR. B.ZhangH.MuehlmannL. A.Acta Pharm. Sin. B2018813710.1016/j.apsb.2017.09.003
SoaresD. C. F.DominguesS. C.VianaD. B.TebaldiM. L.Biomed. Pharmacother.20201311106951:CAS:528:DC%2BB3cXhvVWmtbzM10.1016/j.biopha.2020.110695
AnilkumarP.LuF.CaoL.LuoP. G.LiuJ.-H.SahuS.TackettK. N.WangY.SunY.-P.Curr. Med. Chem.20111820451:CAS:528:DC%2BC3MXmvFegs74%3D10.2174/092986711795656225
GaftonG. I.SemiletovaYu. V.AnisimovV. V.Gel’fondM. L.MyasnyankinM. Yu.NovikA. V.NekhaevaT. L.BalduevaI. A.Gaftonand I. G.Sib. Onkol. Zh.2013423
KawashimaY.OhkuboK.FukuzumiS.J. Phys. Chem. A201211689421:CAS:528:DC%2BC38Xht1eksbbJ10.1021/jp3059036
Martinez-AgramuntV.PerisE.Inorg. Chem.201958118361:CAS:528:DC%2BC1MXhsFCgtL%2FF10.1021/acs.inorgchem.9b02097
AbrahamseH.HamblinM. R.Biochem. J.20164733471:CAS:528:DC%2BC28Xitleqsrc%3D10.1042/BJ20150942
AnaniT.RahmatiS.SultanaN.DavidA. E.Theranostics2021115791:CAS:528:DC%2BB3MXivV2itrg%3D10.7150/thno.4881
DyrdaG.ZakrzykM.BrodaM. A.PedzinskiT.MeleG.SlotaR.Molecules20202536381:CAS:528:DC%2BB3cXhs1yhsLnK10.3390/molecules25163638
ShilinV. A.LebedevV. T.KolesnickS. G.KozlovV. S.GrushkoYu. S.SedovV. P.KukorenkoV. V.Crystallogr. Rep.20115611921:CAS:528:DC%2BC3MXhsVyrsL3E10.1134/S1063774511070339
DeevR. V.BilyalovA. I.ZhampeisovT. M.Geny Kletki2018136
StasheuskiA. S.GalievskyV. A.StupakA. P.DzhagarovB. M.ChoiM. J.ChungB. H.JeongJ. Y.J. Photochem. Photobiol., B2014909971:CAS:528:DC%2BC2cXhsV2ns7rL10.1111/php.12294
KulvelisY. V.LebedevV. T.YevlampievaN. P.CherechukinD. S.YudinaE. B.Green Photocatalytic Semiconductors2022LondonSpringer10.1007/978-3-030-77371-7_10
AleksenskiyA. E.EydelmanE. D.VulA. Ya.Nanotechnol. Lett.20113681:CAS:528:DC%2BC3MXms1WgsL4%3D10.1166/nnl.2011.1122
VulA. Ya.EidelmanE. D.AleksenskiyA. E.ShvidchenkoA. V.DideikinA. T.YuferevV. S.LebedevV. T.KulvelisYu. V.AvdeevM. V.Carbon20171142421:CAS:528:DC%2BC2sXjs1Ghtw%3D%3D10.1016/j.carbon.2016.12.007
TagmatarchisN.KatoH.ShinoharaH.Phys. Chem. Chem. Phys.2001332001:CAS:528:DC%2BD3MXlt1ynsLg%3D10.1039/B103522N
Y. Pan (9002_CR42) 2020; 265
G. I. Gafton (9002_CR13) 2013; 4
D. C. F. Soares (9002_CR3) 2020; 131
A. E. Alexenskii (9002_CR48) 2014
A. G. Soloviev (9002_CR58) 2017; 848
M. L. Gel’fond (9002_CR14) 2016; 5
G. V. Andrievsky (9002_CR51) 1995; 12
G. Dyrda (9002_CR35) 2020; 25
N. Yu. Shilyagina (9002_CR26) 2014; 6
B. Zhao (9002_CR41) 2008; 21
V. T. Lebedev (9002_CR49) 2016; 1
V. A. Shilin (9002_CR43) 2011; 56
J. W. Buchler (9002_CR46) 2000
J. Zhang (9002_CR17) 2018; 8
S. Wang (9002_CR1) 2004; 14
B.-R. Lin (9002_CR7) 2019; 52
Y. Kawashima (9002_CR33) 2012; 116
L. Juha (9002_CR37) 1994; 21
Y. V. Kulvelis (9002_CR61) 2022
P. V. Ostroverkhov (9002_CR28) 2019; 537
S. Paul (9002_CR24) 2012; 23
I. P. Shilov (9002_CR27) 2015
N. Tagmatarchis (9002_CR32) 2001; 3
G. Bogdanovic (9002_CR10) 2016; 144
P. Dallas (9002_CR36) 2019; 730
T. Anani (9002_CR11) 2021; 11
E. A. Kyzyma (9002_CR53) 2015; 9
A. I. Kuklin (9002_CR56) 2011; 291
A. Brilkina (9002_CR25) 2018; 191
N. E. Vasil’ev (9002_CR34) 2002; 6
D. I. Svergun (9002_CR59) 1992; 25
V. Martinez-Agramunt (9002_CR38) 2019; 58
A. E. Aleksenskiy (9002_CR47) 2011; 3
R. V. Deev (9002_CR21) 2018; 13
G. Gao (9002_CR5) 2019; 15
H. Abrahamse (9002_CR16) 2016; 473
N. Senthilkumar (9002_CR29) 2021; 445
E. V. Filonenko (9002_CR12) 2016; 5
I. V. Bagrov (9002_CR22) 2018; 125
Yu. I. Prylutskyy (9002_CR52) 2014; 30
J. Seaberg (9002_CR4) 2021; 15
I. Yoko (9002_CR39) 2008; 81
P. Anilkumar (9002_CR8) 2011; 18
D. M. McCluskey (9002_CR30) 2009; 1
J. Song (9002_CR2) 2019; 48
V. T. Lebedev (9002_CR44) 2014; 56
S. Kwiatkowski (9002_CR19) 2018; 106
D. van Straten (9002_CR20) 2017; 9
P. N. Moskalev (9002_CR55) 1990; 16
Yu. Kulvelis (9002_CR63) 2020; 14
H. A. Isakau (9002_CR23) 2008; 92
J. Rak (9002_CR9) 2019; 39
V. K. A. Sreenivasan (9002_CR6) 2013; 25
A. Ya. Vul (9002_CR50) 2017; 114
E. A. Luk’yanets (9002_CR15) 2013; 2
H. Abrahamse (9002_CR18) 2017
A. S. Stasheuski (9002_CR40) 2014; 90
N. Tagmatarchis (9002_CR31) 2001; 15
V. T. Lebedev (9002_CR62) 2022
E. A. Kyzyma (9002_CR54) 2016; 10
I. M. Dubovskii (9002_CR45) 2018; 83
P. V. Konarev (9002_CR60) 2006; 39
A. I. Kuklin (9002_CR57) 2005; 16
References_xml – reference: PanY.LiuX.ZhangW.LiuZ.ZengG.ShaoB.LiangQ.HeQ.YuanX.HuangD.ChenM.Appl. Catal. B20202651185791:CAS:528:DC%2BB3cXps1Ggsg%3D%3D10.1016/j.apcatb.2019.118579
– reference: GaoG.GuoQ.ZhiJ.Small20191519022381:CAS:528:DC%2BC1MXhtlyisbjI10.1002/smll.201902238
– reference: LebedevV. T.TorokGy.Green Photocatalytic Semiconductors2022LondonSpringer10.1007/978-3-030-77371-7_7
– reference: McCluskeyD. M.SmithT. N.MadasuP. K.CoumbeC. E.MackeyM. A.FulmerP. A.WynneJ. H.StevensonS.PhillipsJ. P.ACS Appl. Mater. Interfaces200918821:CAS:528:DC%2BD1MXjsFensrY%3D10.1021/am900008v
– reference: OstroverkhovP. V.SemkinaA. S.NaumenkoV. A.PlotnikovaE. A.MelnikovP. A.TabakumovaO.YakubovskayaR. I.MironovA. F.VodopyanovS. S.AbakumovA. M.MajougaA. G.GrinM. A.ChekhoninV. P.AbakumovM. A.J. Colloid Interface Sci.20195371321:CAS:528:DC%2BC1cXitFKlsL%2FP10.1016/j.jcis.2018.10.087
– reference: AlexenskiiA. E.Technology of Preparation of Detonation Nanodiamond /Detonation Nanodiamonds: Science and Applications2014
– reference: BrilkinaA.DubasovaL.SergeevaE.PospelovA.ShilyaginaN.ShakhovaN.BalalaevaI.J. Photochem. Photobiol., B201819112810.1016/j.jphotobiol.2018.12.020
– reference: KuklinA. I.SoloviovD. V.RogachevA. V.UtrobinP. K.KovalevYu. S.BalasoiuM.IvankovO. I.SirotinA. P.MurugovaT. N.PetukhovaT. B.GorshkovaYu. E.ErhanR. V.KutuzovS. A.SolovievA. G.GordeliyV. I.J. Phys.: Conf. Ser.20112910120131:CAS:528:DC%2BC3MXmsFCitLc%3D10.1088/1742-6596/291/1/012013
– reference: PrylutskyyYu. I.PetrenkoV. I.IvankovO. I.KyzymaO. A.BulavinL. A.LitsisO. O.EvstigneevM. P.CherepanovV. V.NaumovetsA. G.RitterU.Langmuir20143039671:CAS:528:DC%2BC2cXkslSmsrw%3D10.1021/la404976k
– reference: SreenivasanV. K. A.ZvyaginA. V.GoldysE. M.J. Phys.: Condens. Matter2013251941011:CAS:528:DC%2BC3sXnsVGqtb4%3D10.1088/0953-8984/25/19/194101
– reference: KawashimaY.OhkuboK.FukuzumiS.J. Phys. Chem. A201211689421:CAS:528:DC%2BC38Xht1eksbbJ10.1021/jp3059036
– reference: ShilinV. A.LebedevV. T.KolesnickS. G.KozlovV. S.GrushkoYu. S.SedovV. P.KukorenkoV. V.Crystallogr. Rep.20115611921:CAS:528:DC%2BC3MXhsVyrsL3E10.1134/S1063774511070339
– reference: KyzymaE. A.TomchukA. A.BulavinL. A.PetrenkoV. I.AlmasyL.KorobovM. V.VolkovD. S.MikheevI. V.KoshlanI. V.KoshlanN. A.BlahaP.AvdeevM. V.AksenovV. L.J. Surf. Invest.: X-ray, Synchrotron Neutron Tech.2015911:CAS:528:DC%2BC2MXitlOntbc%3D10.1134/S1027451015010127
– reference: SeabergJ.MontazerianH.HossenN.BhattacharyaR.KhademhosseiniA.MukherjeeP.ACS Nano20211520991:CAS:528:DC%2BB3MXitVSqt7w%3D10.1021/acsnano.0c09382
– reference: ZhaoB.HeY. Y.BilskiP. J.ChignellC. F.Chem. Res. Toxicol.20082110561:CAS:528:DC%2BD1cXkvVKnsrc%3D10.1021/tx800056w
– reference: YokoI.ToshiyaO.MinfangZ.MasakoY.SumioI.Bull. Chem. Soc. Jpn.20088115841:CAS:528:DC%2BD1MXmtFCrtg%3D%3D10.1246/bcsj.81.1584
– reference: LebedevV. T.GrushkoYu. S.SedovV. P.ShikinV. A.KozlovV. S.OrlovS. P.SushkovP. A.KolesnikS. G.SzhoginaA. A.ShabalinV. V.Phys. Solid State2014561781:CAS:528:DC%2BC2cXislykuw%3D%3D10.1134/S1063783414010211
– reference: LebedevV. T.KulvelisYu. V.KuklinA. I.VulA. Ya.Condens. Matter201611010.3390/condmat1010010
– reference: Gel’fondM. L.BalduevaI. A.BarchukA. S.GaftonG. I.AnisimovV. V.SemiletovaYu. V.NovikA. V.MyasnyankinM. Yu.NekhaevaT. L.DanilovaA. B.VorobeichikovE. V.Vaal’A. I.GaftonI. G.Biomed. Photonics20165410.24931/2413-9432-2016-5-3-4-8
– reference: GaftonG. I.SemiletovaYu. V.AnisimovV. V.Gel’fondM. L.MyasnyankinM. Yu.NovikA. V.NekhaevaT. L.BalduevaI. A.Gaftonand I. G.Sib. Onkol. Zh.2013423
– reference: StasheuskiA. S.GalievskyV. A.StupakA. P.DzhagarovB. M.ChoiM. J.ChungB. H.JeongJ. Y.J. Photochem. Photobiol., B2014909971:CAS:528:DC%2BC2cXhsV2ns7rL10.1111/php.12294
– reference: SvergunD. I.J. Appl. Crystallogr.1992254951:CAS:528:DC%2BC2sXhslaks7vF10.1107/S0021889892001663
– reference: IsakauH. A.ParkhatsM. V.KnyukshtoV. N.DzhagarovB. M.PetrovE. P.PetrovP. T.J. Photochem. Photobiol., B2008921651:CAS:528:DC%2BD1cXhtVynsLbF10.1016/j.jphotobiol.2008.06.004
– reference: SolovievA. G.SolovjevaT. M.IvankovO. I.SoloviovD. V.RogachevA. V.KuklinA. I.J. Phys.: Conf. Ser.20178480120201:CAS:528:DC%2BC1cXhvFGmtLnK10.1088/1742-6596/848/1/012020
– reference: AbrahamseH.HamblinM. R.Biochem. J.20164733471:CAS:528:DC%2BC28Xitleqsrc%3D10.1042/BJ20150942
– reference: JuhaL.HamplovaV.KodymovaJ.SpalekO.J. Chem. Soc., Chem. Commun.199421243710.1039/C39940002437
– reference: PaulS.HengP. W. S.ChanL. W.J. Fluoresc.20122328310.1007/s10895-012-1146-x
– reference: van StratenD.MashayekhiV.de BruijnH.OliveiraS.RobinsonD.Cancers201791910.3390/cancers9020019
– reference: DubovskiiI. M.LebedevV. T.ShilinV. A.SzhoginaA. A.SuyasovaM. V.SedovV. P.Crystallogr. Rep.20188313210.1134/S1063774518010054
– reference: FilonenkoE. V.SerovaL. G.Biomed. Photonics201652610.24931/2413-9432-2016-5-1-9-14
– reference: KuklinA. I.IslamovA. Kh.GordeliyV. I.Neutron News2005161610.1080/10448630500454361
– reference: TagmatarchisN.OkadaK.TomiyamaT.YoshidaT.KobayashiY.ShinoharaH.Chem. Commun.200115136610.1039/b103679n
– reference: DyrdaG.ZakrzykM.BrodaM. A.PedzinskiT.MeleG.SlotaR.Molecules20202536381:CAS:528:DC%2BB3cXhs1yhsLnK10.3390/molecules25163638
– reference: LinB.-R.ChenC.-H.ChangC.-H.KunukuS.ChenT.-Y.HsiaoT.-Y.YuH.-K.ChangY.-J.LiaoL.‑C.ChenF.-H.J. Phys. D: Appl. Phys.2019525054021:CAS:528:DC%2BC1MXitlKns7jI10.1088/1361-6463/ab41e8
– reference: Luk’yanetsE. A.Biomed. Photonics201323
– reference: SenthilkumarN.SharmaP. K.SoodN.BhallaN.Coord. Chem. Rev.20214452140821:CAS:528:DC%2BB3MXhsVGrtL%2FK10.1016/j.ccr.2021.214082
– reference: RakJ.PouckovaP.BenesJ.VetvickaD.Anticancer Res.20193933231:CAS:528:DC%2BB3cXhsF2mtrzN10.21873/anticanres.13475
– reference: TagmatarchisN.KatoH.ShinoharaH.Phys. Chem. Chem. Phys.2001332001:CAS:528:DC%2BD3MXlt1ynsLg%3D10.1039/B103522N
– reference: AndrievskyG. V.KosevichM. V.VovkO. M.ShelkovskyV. S.VashchenkoL. A.J. Chem. Soc., Chem. Commun.199512128110.1039/C39950001281
– reference: KonarevP. V.PetoukhovM. V.VolkovV. V.SvergunD. I.J. Appl. Crystallogr.2006392771:CAS:528:DC%2BD28XislCntLc%3D10.1107/S0021889806004699
– reference: AnilkumarP.LuF.CaoL.LuoP. G.LiuJ.-H.SahuS.TackettK. N.WangY.SunY.-P.Curr. Med. Chem.20111820451:CAS:528:DC%2BC3MXmvFegs74%3D10.2174/092986711795656225
– reference: BagrovI. V.DadekoA. V.KiselevV. M.Murav’evaT. D.StarodubtsevA. M.Opt. Spectrosc.20181259031:CAS:528:DC%2BC1MXnslCgu7c%3D10.1134/S0030400X19020048
– reference: VulA. Ya.EidelmanE. D.AleksenskiyA. E.ShvidchenkoA. V.DideikinA. T.YuferevV. S.LebedevV. T.KulvelisYu. V.AvdeevM. V.Carbon20171142421:CAS:528:DC%2BC2sXjs1Ghtw%3D%3D10.1016/j.carbon.2016.12.007
– reference: KyzymaE. A.KuzmenkoM. O.BulavinL. A.PetrenkoV. I.MikheevI. V.ZabolotnyiM. A.KubovcikovaM.KopcanskyP.KorobovM. V.AvdeevM. V.AksenovV. L.J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech.20161011251:CAS:528:DC%2BC28XitVSmtrnK10.1134/S1027451016050517
– reference: ShilovI. P.IvanovA. V.RumyantsevaV. D.MironovA. F.Fundamental Sciences—Medicine: Biophysical Medical Technologies2015MoscowMAKS
– reference: Vasil’evN. E.OgirenkoA. P.Lazer. Med.2002632
– reference: DeevR. V.BilyalovA. I.ZhampeisovT. M.Geny Kletki2018136
– reference: ShilyaginaN. Yu.PlekhanovV. I.ShkunovI. V.ShilyaginP. A.DubasovaL. V.BrilkinaA. A.SokolovaE. A.TurchinI. V.BalalaevaI. V.Sovrem. Tekhnol. Med.2014615
– reference: KwiatkowskiS.KnapB.PrzystupskiD.SaczkoJ.KędzierskaE.Knap-CzopK.KotlińskaJ.MichelO.KotowskiK.KulbackaJ.Biomed. Pharmacother.2018106109810.1016/j.biopha.2018.07.049
– reference: Martinez-AgramuntV.PerisE.Inorg. Chem.201958118361:CAS:528:DC%2BC1MXhsFCgtL%2FF10.1021/acs.inorgchem.9b02097
– reference: ZhangJ.JiangC.Longo FigueiroJ. P.AzevedoR. B.ZhangH.MuehlmannL. A.Acta Pharm. Sin. B2018813710.1016/j.apsb.2017.09.003
– reference: SongJ.ChenX.-An.YangH.Chem. Soc. Rev.20194830731:CAS:528:DC%2BC1MXpvVGkt7Y%3D10.1039/c8cs00921j
– reference: AbrahamseH.HamblinM. R.Photomedicine and Stem Cells: The Janus Face of Photodynamic Therapy (PDT) to Kill Cancer Stem Cells, and Photobiomodulation (PBM) to Stimulate Normal Stem Cells2017BristolIOP10.1088/978-1-6817-4321-9
– reference: AleksenskiyA. E.EydelmanE. D.VulA. Ya.Nanotechnol. Lett.20113681:CAS:528:DC%2BC3MXms1WgsL4%3D10.1166/nnl.2011.1122
– reference: SoaresD. C. F.DominguesS. C.VianaD. B.TebaldiM. L.Biomed. Pharmacother.20201311106951:CAS:528:DC%2BB3cXhvVWmtbzM10.1016/j.biopha.2020.110695
– reference: MoskalevP. N.Koord. Khim.1990161471:CAS:528:DyaK3cXktFKku70%3D
– reference: DallasP.VelascoP. Q.LebedevaM.PorfyrakisK.Chem. Phys. Lett.20197301301:CAS:528:DC%2BC1MXhtFejsLbN10.1016/j.cplett.2019.05.055
– reference: BuchlerJ. W.NgD. K. P.The Porphyrin Handbook2000San DiegoAcademic
– reference: KulvelisY. V.LebedevV. T.YevlampievaN. P.CherechukinD. S.YudinaE. B.Green Photocatalytic Semiconductors2022LondonSpringer10.1007/978-3-030-77371-7_10
– reference: WangS.GaoR.ZhouF.SelkeM.J. Mater. Chem.2004144871:CAS:528:DC%2BD2cXhtlWms7c%3D10.1039/b311429e
– reference: BogdanovicG.DjordjevicA.Srp. Arh. Celok. Lek.201614422210.2298/SARH1604222B
– reference: KulvelisYu.LebedevV.YudinaE.ShvidchenkoA.AleksenskiiA.VulA.KuklinA.J. Surf. Invest.: X-ray, Synchrotron Neutron Tech.20201413210.1134/S1027451020070289
– reference: AnaniT.RahmatiS.SultanaN.DavidA. E.Theranostics2021115791:CAS:528:DC%2BB3MXivV2itrg%3D10.7150/thno.4881
– volume: 12
  start-page: 1281
  year: 1995
  ident: 9002_CR51
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/C39950001281
– volume: 116
  start-page: 8942
  year: 2012
  ident: 9002_CR33
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp3059036
– volume-title: Green Photocatalytic Semiconductors
  year: 2022
  ident: 9002_CR62
  doi: 10.1007/978-3-030-77371-7_7
– volume: 16
  start-page: 16
  year: 2005
  ident: 9002_CR57
  publication-title: Neutron News
  doi: 10.1080/10448630500454361
– volume: 25
  start-page: 3638
  year: 2020
  ident: 9002_CR35
  publication-title: Molecules
  doi: 10.3390/molecules25163638
– volume: 191
  start-page: 128
  year: 2018
  ident: 9002_CR25
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2018.12.020
– volume: 144
  start-page: 222
  year: 2016
  ident: 9002_CR10
  publication-title: Srp. Arh. Celok. Lek.
  doi: 10.2298/SARH1604222B
– volume: 3
  start-page: 3200
  year: 2001
  ident: 9002_CR32
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B103522N
– volume: 18
  start-page: 2045
  year: 2011
  ident: 9002_CR8
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986711795656225
– volume: 39
  start-page: 3323
  year: 2019
  ident: 9002_CR9
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.13475
– volume: 4
  start-page: 23
  year: 2013
  ident: 9002_CR13
  publication-title: Sib. Onkol. Zh.
– volume: 265
  start-page: 118579
  year: 2020
  ident: 9002_CR42
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118579
– volume: 1
  start-page: 10
  year: 2016
  ident: 9002_CR49
  publication-title: Condens. Matter
  doi: 10.3390/condmat1010010
– volume-title: Green Photocatalytic Semiconductors
  year: 2022
  ident: 9002_CR61
  doi: 10.1007/978-3-030-77371-7_10
– volume: 9
  start-page: 19
  year: 2017
  ident: 9002_CR20
  publication-title: Cancers
  doi: 10.3390/cancers9020019
– volume: 730
  start-page: 130
  year: 2019
  ident: 9002_CR36
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.05.055
– volume: 90
  start-page: 997
  year: 2014
  ident: 9002_CR40
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1111/php.12294
– volume: 1
  start-page: 882
  year: 2009
  ident: 9002_CR30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900008v
– volume: 131
  start-page: 110695
  year: 2020
  ident: 9002_CR3
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110695
– volume-title: Technology of Preparation of Detonation Nanodiamond /Detonation Nanodiamonds: Science and Applications
  year: 2014
  ident: 9002_CR48
– volume: 25
  start-page: 194101
  year: 2013
  ident: 9002_CR6
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/25/19/194101
– volume: 81
  start-page: 1584
  year: 2008
  ident: 9002_CR39
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.81.1584
– volume: 13
  start-page: 6
  year: 2018
  ident: 9002_CR21
  publication-title: Geny Kletki
– volume: 14
  start-page: 487
  year: 2004
  ident: 9002_CR1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b311429e
– volume: 21
  start-page: 2437
  year: 1994
  ident: 9002_CR37
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/C39940002437
– volume: 848
  start-page: 012020
  year: 2017
  ident: 9002_CR58
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/848/1/012020
– volume: 21
  start-page: 1056
  year: 2008
  ident: 9002_CR41
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx800056w
– volume: 106
  start-page: 1098
  year: 2018
  ident: 9002_CR19
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.07.049
– volume: 14
  start-page: 132
  year: 2020
  ident: 9002_CR63
  publication-title: J. Surf. Invest.: X-ray, Synchrotron Neutron Tech.
  doi: 10.1134/S1027451020070289
– volume: 125
  start-page: 903
  year: 2018
  ident: 9002_CR22
  publication-title: Opt. Spectrosc.
  doi: 10.1134/S0030400X19020048
– volume: 56
  start-page: 178
  year: 2014
  ident: 9002_CR44
  publication-title: Phys. Solid State
  doi: 10.1134/S1063783414010211
– volume-title: Fundamental Sciences—Medicine: Biophysical Medical Technologies
  year: 2015
  ident: 9002_CR27
– volume-title: Photomedicine and Stem Cells: The Janus Face of Photodynamic Therapy (PDT) to Kill Cancer Stem Cells, and Photobiomodulation (PBM) to Stimulate Normal Stem Cells
  year: 2017
  ident: 9002_CR18
  doi: 10.1088/978-1-6817-4321-9
– volume: 83
  start-page: 132
  year: 2018
  ident: 9002_CR45
  publication-title: Crystallogr. Rep.
  doi: 10.1134/S1063774518010054
– volume: 39
  start-page: 277
  year: 2006
  ident: 9002_CR60
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889806004699
– volume: 537
  start-page: 132
  year: 2019
  ident: 9002_CR28
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.10.087
– volume: 15
  start-page: 2099
  year: 2021
  ident: 9002_CR4
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09382
– volume: 92
  start-page: 165
  year: 2008
  ident: 9002_CR23
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2008.06.004
– volume: 11
  start-page: 579
  year: 2021
  ident: 9002_CR11
  publication-title: Theranostics
  doi: 10.7150/thno.4881
– volume: 3
  start-page: 68
  year: 2011
  ident: 9002_CR47
  publication-title: Nanotechnol. Lett.
  doi: 10.1166/nnl.2011.1122
– volume: 5
  start-page: 26
  year: 2016
  ident: 9002_CR12
  publication-title: Biomed. Photonics
  doi: 10.24931/2413-9432-2016-5-1-9-14
– volume: 114
  start-page: 242
  year: 2017
  ident: 9002_CR50
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.007
– volume: 25
  start-page: 495
  year: 1992
  ident: 9002_CR59
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892001663
– volume: 15
  start-page: 1902238
  year: 2019
  ident: 9002_CR5
  publication-title: Small
  doi: 10.1002/smll.201902238
– volume: 6
  start-page: 32
  year: 2002
  ident: 9002_CR34
  publication-title: Lazer. Med.
– volume: 15
  start-page: 1366
  year: 2001
  ident: 9002_CR31
  publication-title: Chem. Commun.
  doi: 10.1039/b103679n
– volume-title: The Porphyrin Handbook
  year: 2000
  ident: 9002_CR46
– volume: 473
  start-page: 347
  year: 2016
  ident: 9002_CR16
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150942
– volume: 16
  start-page: 147
  year: 1990
  ident: 9002_CR55
  publication-title: Koord. Khim.
– volume: 58
  start-page: 11836
  year: 2019
  ident: 9002_CR38
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02097
– volume: 5
  start-page: 4
  year: 2016
  ident: 9002_CR14
  publication-title: Biomed. Photonics
  doi: 10.24931/2413-9432-2016-5-3-4-8
– volume: 291
  start-page: 012013
  year: 2011
  ident: 9002_CR56
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/291/1/012013
– volume: 56
  start-page: 1192
  year: 2011
  ident: 9002_CR43
  publication-title: Crystallogr. Rep.
  doi: 10.1134/S1063774511070339
– volume: 23
  start-page: 283
  year: 2012
  ident: 9002_CR24
  publication-title: J. Fluoresc.
  doi: 10.1007/s10895-012-1146-x
– volume: 8
  start-page: 137
  year: 2018
  ident: 9002_CR17
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2017.09.003
– volume: 6
  start-page: 15
  year: 2014
  ident: 9002_CR26
  publication-title: Sovrem. Tekhnol. Med.
– volume: 9
  start-page: 1
  year: 2015
  ident: 9002_CR53
  publication-title: J. Surf. Invest.: X-ray, Synchrotron Neutron Tech.
  doi: 10.1134/S1027451015010127
– volume: 30
  start-page: 3967
  year: 2014
  ident: 9002_CR52
  publication-title: Langmuir
  doi: 10.1021/la404976k
– volume: 52
  start-page: 505402
  year: 2019
  ident: 9002_CR7
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab41e8
– volume: 445
  start-page: 214082
  year: 2021
  ident: 9002_CR29
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214082
– volume: 2
  start-page: 3
  year: 2013
  ident: 9002_CR15
  publication-title: Biomed. Photonics
– volume: 10
  start-page: 1125
  year: 2016
  ident: 9002_CR54
  publication-title: J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech.
  doi: 10.1134/S1027451016050517
– volume: 48
  start-page: 3073
  year: 2019
  ident: 9002_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00921j
SSID ssj0057356
Score 2.2516747
Snippet Binary and ternary complexes of europium fullerenes and diphthalocyanines with detonation nanodiamonds are obtained for the first time, which can serve as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7
SubjectTerms Aqueous solutions
Biomedical materials
Chemistry and Materials Science
Detonation
Diamonds
Electronegativity
Europium
Fullerenes
Heat treatment
Magnetic properties
Magnetic resonance imaging
Materials Science
Nanostructure
Neutron scattering
Photodynamic therapy
Photon correlation spectroscopy
Surfaces and Interfaces
Thin Films
Title Structures of Nanodiamonds with Photoactive Modifiers
URI https://link.springer.com/article/10.1134/S1027451023010159
https://www.proquest.com/docview/2812063488
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfDiW6xWycGTkupms-nmWKS1KBWhFeopZB9BUBoh6cVf7-xmY7E-oOd9kOxMZr4vMzsDcI5GUUgdITshARIUoYmfBiLydSCjFN1hqFJzd3j0EA2fwrspm7p73EWd7V6HJK2lrvqOhFdjYhgUM6UGTF00Fq9DkxEeo1o3e7fP9_3aALMutU1bzXzfLHDBzF83-e6OFhhzKSxqvc1gGyb1c1ZJJq-deSk68mOphOOKL7IDWw59er1KXXZhTc_2YMNmgcpiH9jYVpOdIwX38sxDy5uj-qCiqsIzP2y9x5e8zFNrIr0RjmWmkfYBTAb9yc3Qd30VfElJVPpUEy6IQmYoY6bQSSIHyqgOKU9ZwDMiJO_GirMopSGLEX_xWGluItRCZDKgh9CY5TN9BB5TBp8gJaK4m9QSLRZNM2pqwpNYkW4LruvTTaSrOW5aX7wllnvQMPlxGC24-FryXhXc-G9yuxZZ4r69IgkQsyDwQsvUgstaAovhPzc7Xmn2CWyazvNVAncbGigffYr4pBRnTh8_Ad-H1XI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfTiW6xW3YMnJdXNZtPkWMRa7QOhEeopZB9BUBoh6cVf72weFusDet4Hyc5k5vsyszMA52gUhdQushNqI0ERmlqRLVxL29KN0B06KjJ3h4cjt_fkPEz4pLzHnVbZ7lVIMrfURd8R52pMDYPiptSAqYvG_VWoOwg_UJXrnbvn_m1lgHmb5U1bzXzLLCiDmb9u8t0dzTHmQlg09zbdLQiq5yySTF5bs0y05MdCCcclX2QbNkv0STqFuuzAip7uwlqeBSrTPeDjvJrsDCk4SWKCljdB9UFFVSkxP2zJ40uSJVFuIskQx2LTSHsfgu5tcNOzyr4KlmTUzSymqSeoQmYofa7QSSIHipl2mBdx24upkF7bVx53I-ZwH_GX5yvtmQi1ELG02QHUpslUHwLhyuATpEQMd5NaosViUcxMTXjqK9puwHV1uqEsa46b1hdvYc49mBP-OIwGXHwteS8Kbvw3uVmJLCy_vTS0EbMg8ELL1IDLSgLz4T83O1pq9hms94LhIBzcj_rHsGG60BfJ3E2ooaz0CWKVTJyWuvkJ-VjYWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oROPFtxFF7cGTpsB2u6U9EgVRhJCACZ5q99GYaChJy8Vf72wfEvGRGM_7SLsznZmvM_sNwDkaRS6Ug-iEWAhQuCJmYHHHVJZwAnSHtgz03eH-wOk-2HcTNsn7nMZFtXuRkszuNGiWpmlSn8kw70Fi10dEoymmaQc0RxrzVqFsN1D1SlBu3Tz22oUxZk2aNnDV8029IE9sfrvJZ9e0iDeXUqSp5-lswVPxzFnByUttnvCaeFuic_zHS23DZh6VGq1MjXZgRU13YS2tDhXxHrBRyjI7R2huRKGBFjlCtUIFlrGhf-Qaw-coiYLUdBp9HAt1g-19GHfa46uumfdbMAUlTmJSRVxOJCJG4TGJzhOxUUiVTd2AWW5IuHCbnnSZE1CbeRiXuZ5Urs5ccx4Kix5AaRpN1SEYTOq4BaESxd2EEmjJaBBSzRVPPEmaFWgUJ-2LnItct8R49VNMQm3_y2FU4OJjySwj4vhtcrUQn59_k7FvYSyDARlarApcFtJYDP-42dGfZp_B-vC649_fDnrHsKGb02c13lUooajUCYYwCT_N1fQd8u3hNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+of+Nanodiamonds+with+Photoactive+Modifiers&rft.jtitle=Surface+investigation%2C+x-ray%2C+synchrotron+and+neutron+techniques&rft.au=Lebedev%2C+V.+T.&rft.au=Kulvelis%2C+Yu.+V.&rft.au=Soroka%2C+M.+A.&rft.au=Kyzyma%2C+O.+A.&rft.date=2023-02-01&rft.issn=1027-4510&rft.eissn=1819-7094&rft.volume=17&rft.issue=1&rft.spage=7&rft.epage=16&rft_id=info:doi/10.1134%2FS1027451023010159&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1027451023010159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-4510&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-4510&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-4510&client=summon