An auto-adaptive convex map generating path-finding algorithm: Genetic Convex A
Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A * is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the a...
        Saved in:
      
    
          | Published in | International journal of machine learning and cybernetics Vol. 4; no. 5; pp. 551 - 563 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.10.2013
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1868-8071 1868-808X  | 
| DOI | 10.1007/s13042-012-0120-x | 
Cover
| Abstract | Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A
*
is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the abstract and the original maps. However, most of these methods do not consider obstacle distributions, which may result in unnecessary storage and non-optimal paths in certain open areas. In this paper, a new abstract graph-based path-finding method named Genetic Convex A
*
is proposed. An important convex map concept which guides the partition of the original map is defined. It is proven that the path length between any two nodes within a convex map is equal to their Manhattan distance. Based on the convex map, a fitness function is defined to improve the extraction of key nodes; and genetic algorithm is employed to optimize the abstraction. Finally, the on-line refinement is accelerated by Convex A
*
, which is a fast alternative to A
*
on convex maps. Experimental results demonstrated that the proposed abstraction generated by Genetic Convex A
*
guarantees the optimality of the path whilst searches less nodes during the on-line processing. | 
    
|---|---|
| AbstractList | Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A
*
is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the abstract and the original maps. However, most of these methods do not consider obstacle distributions, which may result in unnecessary storage and non-optimal paths in certain open areas. In this paper, a new abstract graph-based path-finding method named Genetic Convex A
*
is proposed. An important convex map concept which guides the partition of the original map is defined. It is proven that the path length between any two nodes within a convex map is equal to their Manhattan distance. Based on the convex map, a fitness function is defined to improve the extraction of key nodes; and genetic algorithm is employed to optimize the abstraction. Finally, the on-line refinement is accelerated by Convex A
*
, which is a fast alternative to A
*
on convex maps. Experimental results demonstrated that the proposed abstraction generated by Genetic Convex A
*
guarantees the optimality of the path whilst searches less nodes during the on-line processing. Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A* is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the abstract and the original maps. However, most of these methods do not consider obstacle distributions, which may result in unnecessary storage and non-optimal paths in certain open areas. In this paper, a new abstract graph-based path-finding method named Genetic Convex A* is proposed. An important convex map concept which guides the partition of the original map is defined. It is proven that the path length between any two nodes within a convex map is equal to their Manhattan distance. Based on the convex map, a fitness function is defined to improve the extraction of key nodes; and genetic algorithm is employed to optimize the abstraction. Finally, the on-line refinement is accelerated by Convex A*, which is a fast alternative to A* on convex maps. Experimental results demonstrated that the proposed abstraction generated by Genetic Convex A*guarantees the optimality of the path whilst searches less nodes during the on-line processing.  | 
    
| Author | Shiu, Simon Chi-Keung Li, Yan Su, Pan Li, Yingjie  | 
    
| Author_xml | – sequence: 1 givenname: Pan surname: Su fullname: Su, Pan organization: Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University – sequence: 2 givenname: Yan surname: Li fullname: Li, Yan organization: Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University – sequence: 3 givenname: Yingjie surname: Li fullname: Li, Yingjie organization: Department of Computing, The Hong Kong Polytechnic University – sequence: 4 givenname: Simon Chi-Keung surname: Shiu fullname: Shiu, Simon Chi-Keung organization: Department of Computing, The Hong Kong Polytechnic University  | 
    
| BookMark | eNp9kMFKAzEQhoMoWGsfwNuC5-gk2d3seitFq1DoRcFbSLPZNqVN1iQt9e1NXVEQdGCYGfi_meG_QKfWWY3QFYEbAsBvA2GQUwzkMwEfTtCAVGWFK6heT797Ts7RKIQ1pCiBMaADNB_bTO6iw7KRXTR7nSln9_qQbWWXLbXVXkZjl1kn4wq3xjbHQW6Wzpu42t5l0ySJRmWTnhpforNWboIefdUhenm4f5484tl8-jQZz7BipIyYUU0XmtaqKUuliqJmqlQVr1SrGGtzuoAiz0mRNwUn6e-q1i2BvGYEKFdNy9kQXfd7O-_edjpEsXY7b9NJQWtSl8DLokgq0quUdyF43YrOm63074KAOFoneutEsu2YIA6J4b8YZWIywdnopdn8S9KeDOmKXWr_89Pf0AenVYO2 | 
    
| CitedBy_id | crossref_primary_10_1007_s00500_013_1052_4 crossref_primary_10_1007_s00500_015_1922_z crossref_primary_10_1007_s13042_015_0339_4 crossref_primary_10_1007_s10586_016_0650_1  | 
    
| Cites_doi | 10.1109/70.508439 10.1109/70.631228 10.1016/0146-664X(82)90098-3 10.1007/s13042-011-0014-3 10.1016/j.ins.2011.06.002 10.1016/S0004-3702(01)00094-7 10.1007/s13042-011-0030-3 10.1007/s13042-011-0053-9 10.1007/978-3-540-73580-9_27 10.1016/j.artint.2003.12.001 10.1007/s13042-010-0004-x 10.1016/0004-3702(85)90084-0 10.1609/aiide.v6i1.12393 10.1109/ROBOT.1998.677046 10.1016/0004-3702(95)00111-5 10.1016/j.neucom.2005.05.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag 2012 Springer-Verlag 2012.  | 
    
| Copyright_xml | – notice: Springer-Verlag 2012 – notice: Springer-Verlag 2012.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1007/s13042-012-0120-x | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 1868-808X | 
    
| EndPage | 563 | 
    
| ExternalDocumentID | 10_1007_s13042_012_0120_x | 
    
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c316t-32e2be29cd66cc5593c6c878cfc33f42b0544154d57107189ef104931027cdf73 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1868-8071 | 
    
| IngestDate | Fri Jul 25 10:59:03 EDT 2025 Wed Oct 01 04:29:26 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 21 02:40:51 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Convex map Path-finding G-CA Abstract graph Genetic algorithm  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-32e2be29cd66cc5593c6c878cfc33f42b0544154d57107189ef104931027cdf73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2919607655 | 
    
| PQPubID | 2043904 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_2919607655 crossref_primary_10_1007_s13042_012_0120_x crossref_citationtrail_10_1007_s13042_012_0120_x springer_journals_10_1007_s13042_012_0120_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20131000 2013-10-00 20131001  | 
    
| PublicationDateYYYYMMDD | 2013-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2013 text: 20131000  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | International journal of machine learning and cybernetics | 
    
| PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber | 
    
| PublicationYear | 2013 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Su P, Li Y, Li WL (2010) A game map complexity measure based on hamming distance. In: Proceedings of PACIIA. Wuhan, Hubei, pp 332–335 ZhuJLiXPShenWMEffective genetic algorithm for resource-constrained project scheduling with limited preemptionsInt J Mach Learn Cyber201022556510.1007/s13042-011-0014-3 KorfREDepth-first iterative-deepening: an optimal admissible tree searchArtif Intell19852719710981028010.1016/0004-3702(85)90084-00573.68030 Chen CJ (2011) Structural vibration suppression by using neural classifier with genetic algorithm. Int J Mach Learn Cyber. doi:10.1007/s13042-011-0053-9 SametHNeighbor finding techniques for image represented by quadtreesComputer Graphic Image Process1982181375710.1016/0146-664X(82)90098-30531.68041 Michalewicz Z, Janikow C (1991) Handling constraints in genetic algorithms. In: Proceedings of the 4th ICGA. San Diego, CA, pp 151–157 KavraliLESvestkaPLatombeJCOvermarsHMProbabilistic roadmaps for path planning in high dimensional configuration spacesIEEE Trans Robot Automat199612456658010.1109/70.508439 KorfREReidMEdelkampSTime complexity of Iterative-Deepening-A*Artif Intell20011291–2199218183577710.1016/S0004-3702(01)00094-70971.68147 YanHBLiuYCA new algorithm for finding shortcut in a city’s road net based on GIS technologyChinese J Comput20022000–02210215 Sturtevant N (2010) Pathfinding benchmarks. http://www.movingai.com/benchmarks/index.html. Accessed 19 April 2011 PetterssonPODohertyPProbabilistic roadmap based path planning for an autonomous unmanned helicopterJ Intell and Fuzzy Syst2006174395405 Stout B (2000). The basics of A* for path planning. In: DeLoura M (ed) Game Programming Gems. Charles River Media, Rockland, pp 254–263 Samuel E, Johan F (2008) Pathfinding with hard constraints—mobile systems and real time strategy games combined. Master Thesis of Blekinge Institute of Technology, Sweden ChenDZSzczerbaRJUhranJJA framed-quadtree approach for determining Euclidean shortest paths in a 2-D environmentIEEE Trans Robot Automat199713566868110.1109/70.631228 WangXZHeQChenDGYeungDA genetic algorithm for solving the inverse problem of support vector machinesNeurocomputing20056822523810.1016/j.neucom.2005.05.006 Sturtevant N (2007) Memory-efficient Abstraction for Pathfinding. In: Proceedings of the 3rd AIIDE. Stanford, California, pp 31–36 KoenigSLikhachevMFurcyDLifelong Planning A*Artif Intell20041551–293146205292610.1016/j.artint.2003.12.0011085.68674 Demyen D, Buro M (2006) Efficient triangulation-based pathfinding. In: Proceedings of the 21th AAAI. Boston, Massachusetts, pp 942–947 HolteRCMkadmiTZimmerRMMacDonaldAJSpeeding up problem solving by abstraction: a graph oriented approachArtif Intell1996851–232136110.1016/0004-3702(95)00111-5 Yahja A, Stentz A, Singh S, Brummit B (1998) Framed-quadtree path planning for mobile robots operating in sparse environments. In: Proceedings of IEEE Conf on Robot and Automat. Leuven, Belgium, pp 650–655 BoteaAMullerMScheafferJNear-optimal hierarchical pathfindingJ Game Dev200411728 Harabor D, Botea A (2010) Breaking path symmetries on 4-connected grid maps. In: Proceedings of the 6th AIIDE. Stanford, California, pp 33–38 Sturtevant N, Buro M (2005) Partial pathfinding using map abstraction and refinement. In: Proceedings of the 20th NCAI. Pittsburgh, Pennsylvania, pp 1392–1397 TongDLMintramRGenetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selectionInt J Mach Learn Cyber201011–4758710.1007/s13042-010-0004-x Snook G (2000) Simplified 3D movement and pathfinding using navigation meshes. In: DeLoura M (ed) Game programming gems. Charles River Media, Rockland, pp 288–304 Sturtevant N, Jansen R (2007) An analysis of map-based abstraction and refinement. In: Proceedings of the 7th SARA. Whistler, Canada, pp 344–358 WangXZHeYLDongLCZhaoHYParticle swarm optimization for determining fuzzy measures from dataInform Sci2011181194230425210.1016/j.ins.2011.06.0021242.68296 BoehmOHardoonDRManevitzLMClassifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithmsInt J Mach Learn Cyber20112312513410.1007/s13042-011-0030-3 O Boehm (120_CR20) 2011; 2 120_CR11 XZ Wang (120_CR22) 2005; 68 RE Korf (120_CR4) 1985; 27 H Samet (120_CR8) 1982; 18 120_CR27 120_CR28 A Botea (120_CR7) 2004; 1 120_CR24 LE Kavrali (120_CR9) 1996; 12 120_CR26 S Koenig (120_CR6) 2004; 155 120_CR1 DZ Chen (120_CR25) 1997; 13 120_CR16 XZ Wang (120_CR23) 2011; 181 120_CR17 120_CR18 DL Tong (120_CR21) 2010; 1 120_CR12 120_CR13 120_CR14 RC Holte (120_CR10) 1996; 85 120_CR15 PO Pettersson (120_CR2) 2006; 17 J Zhu (120_CR19) 2010; 2 HB Yan (120_CR3) 2002; 2000–02 RE Korf (120_CR5) 2001; 129  | 
    
| References_xml | – reference: Chen CJ (2011) Structural vibration suppression by using neural classifier with genetic algorithm. Int J Mach Learn Cyber. doi:10.1007/s13042-011-0053-9 – reference: BoteaAMullerMScheafferJNear-optimal hierarchical pathfindingJ Game Dev200411728 – reference: KorfREDepth-first iterative-deepening: an optimal admissible tree searchArtif Intell19852719710981028010.1016/0004-3702(85)90084-00573.68030 – reference: KorfREReidMEdelkampSTime complexity of Iterative-Deepening-A*Artif Intell20011291–2199218183577710.1016/S0004-3702(01)00094-70971.68147 – reference: BoehmOHardoonDRManevitzLMClassifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithmsInt J Mach Learn Cyber20112312513410.1007/s13042-011-0030-3 – reference: Sturtevant N (2007) Memory-efficient Abstraction for Pathfinding. In: Proceedings of the 3rd AIIDE. Stanford, California, pp 31–36 – reference: Harabor D, Botea A (2010) Breaking path symmetries on 4-connected grid maps. In: Proceedings of the 6th AIIDE. Stanford, California, pp 33–38 – reference: KavraliLESvestkaPLatombeJCOvermarsHMProbabilistic roadmaps for path planning in high dimensional configuration spacesIEEE Trans Robot Automat199612456658010.1109/70.508439 – reference: Stout B (2000). The basics of A* for path planning. In: DeLoura M (ed) Game Programming Gems. Charles River Media, Rockland, pp 254–263 – reference: Demyen D, Buro M (2006) Efficient triangulation-based pathfinding. In: Proceedings of the 21th AAAI. Boston, Massachusetts, pp 942–947 – reference: YanHBLiuYCA new algorithm for finding shortcut in a city’s road net based on GIS technologyChinese J Comput20022000–02210215 – reference: ZhuJLiXPShenWMEffective genetic algorithm for resource-constrained project scheduling with limited preemptionsInt J Mach Learn Cyber201022556510.1007/s13042-011-0014-3 – reference: KoenigSLikhachevMFurcyDLifelong Planning A*Artif Intell20041551–293146205292610.1016/j.artint.2003.12.0011085.68674 – reference: PetterssonPODohertyPProbabilistic roadmap based path planning for an autonomous unmanned helicopterJ Intell and Fuzzy Syst2006174395405 – reference: Sturtevant N, Jansen R (2007) An analysis of map-based abstraction and refinement. In: Proceedings of the 7th SARA. Whistler, Canada, pp 344–358 – reference: WangXZHeQChenDGYeungDA genetic algorithm for solving the inverse problem of support vector machinesNeurocomputing20056822523810.1016/j.neucom.2005.05.006 – reference: SametHNeighbor finding techniques for image represented by quadtreesComputer Graphic Image Process1982181375710.1016/0146-664X(82)90098-30531.68041 – reference: Michalewicz Z, Janikow C (1991) Handling constraints in genetic algorithms. In: Proceedings of the 4th ICGA. San Diego, CA, pp 151–157 – reference: Sturtevant N (2010) Pathfinding benchmarks. http://www.movingai.com/benchmarks/index.html. Accessed 19 April 2011 – reference: TongDLMintramRGenetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selectionInt J Mach Learn Cyber201011–4758710.1007/s13042-010-0004-x – reference: WangXZHeYLDongLCZhaoHYParticle swarm optimization for determining fuzzy measures from dataInform Sci2011181194230425210.1016/j.ins.2011.06.0021242.68296 – reference: Su P, Li Y, Li WL (2010) A game map complexity measure based on hamming distance. In: Proceedings of PACIIA. Wuhan, Hubei, pp 332–335 – reference: Yahja A, Stentz A, Singh S, Brummit B (1998) Framed-quadtree path planning for mobile robots operating in sparse environments. In: Proceedings of IEEE Conf on Robot and Automat. Leuven, Belgium, pp 650–655 – reference: Snook G (2000) Simplified 3D movement and pathfinding using navigation meshes. In: DeLoura M (ed) Game programming gems. Charles River Media, Rockland, pp 288–304 – reference: Samuel E, Johan F (2008) Pathfinding with hard constraints—mobile systems and real time strategy games combined. Master Thesis of Blekinge Institute of Technology, Sweden – reference: ChenDZSzczerbaRJUhranJJA framed-quadtree approach for determining Euclidean shortest paths in a 2-D environmentIEEE Trans Robot Automat199713566868110.1109/70.631228 – reference: HolteRCMkadmiTZimmerRMMacDonaldAJSpeeding up problem solving by abstraction: a graph oriented approachArtif Intell1996851–232136110.1016/0004-3702(95)00111-5 – reference: Sturtevant N, Buro M (2005) Partial pathfinding using map abstraction and refinement. In: Proceedings of the 20th NCAI. Pittsburgh, Pennsylvania, pp 1392–1397 – ident: 120_CR12 – volume: 17 start-page: 395 issue: 4 year: 2006 ident: 120_CR2 publication-title: J Intell and Fuzzy Syst – volume: 12 start-page: 566 issue: 4 year: 1996 ident: 120_CR9 publication-title: IEEE Trans Robot Automat doi: 10.1109/70.508439 – volume: 13 start-page: 668 issue: 5 year: 1997 ident: 120_CR25 publication-title: IEEE Trans Robot Automat doi: 10.1109/70.631228 – ident: 120_CR14 – ident: 120_CR16 – volume: 18 start-page: 37 issue: 1 year: 1982 ident: 120_CR8 publication-title: Computer Graphic Image Process doi: 10.1016/0146-664X(82)90098-3 – volume: 2 start-page: 55 issue: 2 year: 2010 ident: 120_CR19 publication-title: Int J Mach Learn Cyber doi: 10.1007/s13042-011-0014-3 – volume: 1 start-page: 7 issue: 1 year: 2004 ident: 120_CR7 publication-title: J Game Dev – volume: 181 start-page: 4230 issue: 19 year: 2011 ident: 120_CR23 publication-title: Inform Sci doi: 10.1016/j.ins.2011.06.002 – ident: 120_CR24 – volume: 129 start-page: 199 issue: 1–2 year: 2001 ident: 120_CR5 publication-title: Artif Intell doi: 10.1016/S0004-3702(01)00094-7 – ident: 120_CR26 – ident: 120_CR17 – volume: 2 start-page: 125 issue: 3 year: 2011 ident: 120_CR20 publication-title: Int J Mach Learn Cyber doi: 10.1007/s13042-011-0030-3 – ident: 120_CR18 doi: 10.1007/s13042-011-0053-9 – ident: 120_CR11 doi: 10.1007/978-3-540-73580-9_27 – ident: 120_CR13 – volume: 155 start-page: 93 issue: 1–2 year: 2004 ident: 120_CR6 publication-title: Artif Intell doi: 10.1016/j.artint.2003.12.001 – ident: 120_CR15 – volume: 1 start-page: 75 issue: 1–4 year: 2010 ident: 120_CR21 publication-title: Int J Mach Learn Cyber doi: 10.1007/s13042-010-0004-x – volume: 27 start-page: 97 issue: 1 year: 1985 ident: 120_CR4 publication-title: Artif Intell doi: 10.1016/0004-3702(85)90084-0 – ident: 120_CR28 doi: 10.1609/aiide.v6i1.12393 – ident: 120_CR1 doi: 10.1109/ROBOT.1998.677046 – volume: 2000–02 start-page: 210 year: 2002 ident: 120_CR3 publication-title: Chinese J Comput – volume: 85 start-page: 321 issue: 1–2 year: 1996 ident: 120_CR10 publication-title: Artif Intell doi: 10.1016/0004-3702(95)00111-5 – volume: 68 start-page: 225 year: 2005 ident: 120_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.05.006 – ident: 120_CR27  | 
    
| SSID | ssj0000603302 ssib031263576 ssib033405570  | 
    
| Score | 1.973248 | 
    
| Snippet | Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A
*
is time-consuming... Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A* is time-consuming...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 551 | 
    
| SubjectTerms | Artificial Intelligence Complex Systems Computational Intelligence Computer & video games Control Engineering Genetic algorithms Global positioning systems GPS Graphs Heuristic Mechatronics Nodes Optimization Original Article Pattern Recognition Robot control Robotics Systems Biology  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA9zu3gR5wdOp-TgwQ-CbdJPQWSOjSE4RRzsVtI0m4etq66D_fnmpc2Kgjvk0DZJ4eXlfeS9_B5Cl9x3ExbGgoiJYMRxQovEobQJU8qa-0HsW_ro4mXoDUbO89gd19DQ3IWBtEojE7WgThYCzsjvaKh4RTndrvuYfRGoGgXRVVNCg5elFZIHDTG2gxoUkLHqqPHUG769Gw5jNmCvVAqYMUdjUG1OZSxPvSsSFQMvAKRe24RC9X07cP6V962bRda_lVllof4Jqmpd1d9He6WRiTsFVzRRTaYHqFlu4yW-KrGmrw_RayfFfJUvCE94BpIP6zT0NZ7zDE91N8iLxlC4mOj4tnrgs6miTP45v8cwk_oJ7hajOkdo1O99dAekrLFABLO9nDAqaSxpKBLPE0K5F0x4IvADWDo2cWhsQZEy10lcZYooPRbKiXLgQmUUUl8kE58do3q6SOUJJEkpWeAKyX2PA649lxzeSBkHwrUkbSHLECsSJQA51MGYRRV0MtA3UrSFZkXrFrrZDMkK9I1tndtmBaJyIy6jim1a6NasSvX538lOt092hnYp1MXQWX1tVM-_V_JcWSd5fFGy3A8DEdqw priority: 102 providerName: ProQuest  | 
    
| Title | An auto-adaptive convex map generating path-finding algorithm: Genetic Convex A | 
    
| URI | https://link.springer.com/article/10.1007/s13042-012-0120-x https://www.proquest.com/docview/2919607655  | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AFBBN dateStart: 20101201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-808X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: BENPR dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSysxEA8-vfgO4tfj1Y-Sg4enEkiTTXbX21ZaRXlVxIKelmw2VUHb0q7QP9-ZdNdVUcFDCJvNB2SSzExm8htC9kyochlnltmBlSwIYs6y2LWYBGZtwigLub-6-N_Tp_3g7EbdlO-4p5W3e2WS9Cd1_dgNNW9QfX3iDATHJYVoXrCI-yKpFpFsIbxKzWOlDDzM1OvFC9dQNvdFjHSEYLytytr52Sjv-VUthH6wm3p21F0lK6UcSZM54dfIghuuk99v0AXXyVq5b6f0Xwkuvb9BLpIhNc_FiJncjPGoo97vfEafzJje-WroCE0xUjHzBm34MI93o8lDcf90RLEnGJIez1slm6Tf7Vwfn7IyqAKzsqULJoUTmROxzbW2FvQJabWNwghpJQeByDhGJVNBrkD2AMYVuwFobDFIgSK0-SCUf8jicDR0f9ErCja_ss6E2iCQvXEGS5zLIqu4Ew3Cq6lLbYk4joEvHtMaKxlnO4WZxsTTWYMcvDYZz-E2vqu8U9EjLXfeNBUxnCk81Eo1yGFFo_r3l51t_aj2NlkWGBfDe_XtkMVi8ux2QTopsib5FXVPmmQp6bbbPcxPbs87kLc7vcurpl-rLxIF2xE | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED919GF7mVYYWjcGfgAJNllL7XwiVah0VIWWbkIg8RYcx2UP0HZrEN0_t7-NO9ch2qTxxkMe4thOdHe5D_v8O4BtFQW5TDLN9VhL7vuJx7PEtLhEY62iOIs8u3RxOgr7F_7JZXBZgz_lWRhKqyx1olXU-VTTGvkXkaCsYNAdBAezn5yqRtHuallCQ7nSCnnbQoy5gx0D8_seQ7h5-_gr8ntHiN7RebfPXZUBrmUrLLgURmRGJDoPQ63RwZY61HEU08fLsS8yj8p0BX4eoDFGTZ6YMYYwCbpFItL5OJI47wuo-9JPMPirHx6Nvp-VEi1bhPVSGXwpfYt59bgK5IXYtkyMjMOYkIFb5darPd9Hiw0Y7dvL44u_jWflEf-ziWttY-8NvHZOLesspbABNTNZhYZTG3O267Ct99bgW2fC1F0x5SpXM9K0zKa9L9itmrFr243ysBkVSuZ2Px1v1M01cqL4cbvPaCZ8CesuR3XewsWzUHsdVibTiXlHSVmoewJtVBQqwtFXRlGLMVmsA8-IJnglsVLtAM-p7sZNWkE1E31TpC1dXrpowqfHIbMl2sdTnTdKDqTux5-nlZg24XPJlerxfyd7__RkW_Cyf346TIfHo8EHeCWoJofNKNyAleLXnfmInlGRbTrxY3D13BL_AEGpFgU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QSAgOiPEQ45kDBx6KSJM2bblNg2m8OTCJW5Wm6UDaumkr0n4-cdpSQIDEIYemeUiOE9ux8xmhQ-l7CQ9jRVSqOHHdkJI41A7hRlhLP4h9aq8u7u5Ft-deP3vPZZ7TaRXtXrkkizcNgNKU5WfjJD2rH76BFW7MYFsoMUrkggs4CYahe6xVMRR3AGqllrecuxZy6uMShgpTV8QlBiIAYF6n8nz-NMtX2VUrpN98qFY0dVbRSqlT4lbBBA00p7M1tPwJaXANNco9PMVHJdD08Tp6aGVYvuUjIhM5hmMP2xj0GR7KMe7bZhAUjSFrMbHObfMhB_3R5DV_GZ5jGMlMidtFr9YG6nUun9pdUiZYIIo7IiecaRZrFqpECKWMbcGVUIEfwLrx1GUxhQxlnpt4Rg8xQizUqbHeQqMRMl8lqc830Xw2yvQWREiZg8BTWvpCAqi91BJqtI4D5VHNmohWpItUiT4OSTAGUY2bDNSODKWh0GjWRCcfXcYF9MZfjXer9YjKXTiNWGjOF-oLz2ui02qN6t-_Drb9r9YHaPHxohPdXt3f7KAlBukybLDfLprPJ296zygtebxvGfMd1NfcqQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+auto-adaptive+convex+map+generating+path-finding+algorithm%3A+Genetic+Convex+A&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Su%2C+Pan&rft.au=Li%2C+Yan&rft.au=Li%2C+Yingjie&rft.au=Shiu%2C+Simon+Chi-Keung&rft.date=2013-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=4&rft.issue=5&rft.spage=551&rft.epage=563&rft_id=info:doi/10.1007%2Fs13042-012-0120-x&rft.externalDocID=10_1007_s13042_012_0120_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |