An auto-adaptive convex map generating path-finding algorithm: Genetic Convex A

Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A * is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 4; no. 5; pp. 551 - 563
Main Authors Su, Pan, Li, Yan, Li, Yingjie, Shiu, Simon Chi-Keung
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-012-0120-x

Cover

Abstract Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A * is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the abstract and the original maps. However, most of these methods do not consider obstacle distributions, which may result in unnecessary storage and non-optimal paths in certain open areas. In this paper, a new abstract graph-based path-finding method named Genetic Convex A * is proposed. An important convex map concept which guides the partition of the original map is defined. It is proven that the path length between any two nodes within a convex map is equal to their Manhattan distance. Based on the convex map, a fitness function is defined to improve the extraction of key nodes; and genetic algorithm is employed to optimize the abstraction. Finally, the on-line refinement is accelerated by Convex A * , which is a fast alternative to A * on convex maps. Experimental results demonstrated that the proposed abstraction generated by Genetic Convex A * guarantees the optimality of the path whilst searches less nodes during the on-line processing.
AbstractList Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A * is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the abstract and the original maps. However, most of these methods do not consider obstacle distributions, which may result in unnecessary storage and non-optimal paths in certain open areas. In this paper, a new abstract graph-based path-finding method named Genetic Convex A * is proposed. An important convex map concept which guides the partition of the original map is defined. It is proven that the path length between any two nodes within a convex map is equal to their Manhattan distance. Based on the convex map, a fitness function is defined to improve the extraction of key nodes; and genetic algorithm is employed to optimize the abstraction. Finally, the on-line refinement is accelerated by Convex A * , which is a fast alternative to A * on convex maps. Experimental results demonstrated that the proposed abstraction generated by Genetic Convex A * guarantees the optimality of the path whilst searches less nodes during the on-line processing.
Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A* is time-consuming when applied to large maps, some abstraction methods have been proposed. Abstractions can greatly speedup on-line path-finding by combing the abstract and the original maps. However, most of these methods do not consider obstacle distributions, which may result in unnecessary storage and non-optimal paths in certain open areas. In this paper, a new abstract graph-based path-finding method named Genetic Convex A* is proposed. An important convex map concept which guides the partition of the original map is defined. It is proven that the path length between any two nodes within a convex map is equal to their Manhattan distance. Based on the convex map, a fitness function is defined to improve the extraction of key nodes; and genetic algorithm is employed to optimize the abstraction. Finally, the on-line refinement is accelerated by Convex A*, which is a fast alternative to A* on convex maps. Experimental results demonstrated that the proposed abstraction generated by Genetic Convex A*guarantees the optimality of the path whilst searches less nodes during the on-line processing.
Author Shiu, Simon Chi-Keung
Li, Yan
Su, Pan
Li, Yingjie
Author_xml – sequence: 1
  givenname: Pan
  surname: Su
  fullname: Su, Pan
  organization: Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University
– sequence: 2
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University
– sequence: 3
  givenname: Yingjie
  surname: Li
  fullname: Li, Yingjie
  organization: Department of Computing, The Hong Kong Polytechnic University
– sequence: 4
  givenname: Simon Chi-Keung
  surname: Shiu
  fullname: Shiu, Simon Chi-Keung
  organization: Department of Computing, The Hong Kong Polytechnic University
BookMark eNp9kMFKAzEQhoMoWGsfwNuC5-gk2d3seitFq1DoRcFbSLPZNqVN1iQt9e1NXVEQdGCYGfi_meG_QKfWWY3QFYEbAsBvA2GQUwzkMwEfTtCAVGWFK6heT797Ts7RKIQ1pCiBMaADNB_bTO6iw7KRXTR7nSln9_qQbWWXLbXVXkZjl1kn4wq3xjbHQW6Wzpu42t5l0ySJRmWTnhpforNWboIefdUhenm4f5484tl8-jQZz7BipIyYUU0XmtaqKUuliqJmqlQVr1SrGGtzuoAiz0mRNwUn6e-q1i2BvGYEKFdNy9kQXfd7O-_edjpEsXY7b9NJQWtSl8DLokgq0quUdyF43YrOm63074KAOFoneutEsu2YIA6J4b8YZWIywdnopdn8S9KeDOmKXWr_89Pf0AenVYO2
CitedBy_id crossref_primary_10_1007_s00500_013_1052_4
crossref_primary_10_1007_s00500_015_1922_z
crossref_primary_10_1007_s13042_015_0339_4
crossref_primary_10_1007_s10586_016_0650_1
Cites_doi 10.1109/70.508439
10.1109/70.631228
10.1016/0146-664X(82)90098-3
10.1007/s13042-011-0014-3
10.1016/j.ins.2011.06.002
10.1016/S0004-3702(01)00094-7
10.1007/s13042-011-0030-3
10.1007/s13042-011-0053-9
10.1007/978-3-540-73580-9_27
10.1016/j.artint.2003.12.001
10.1007/s13042-010-0004-x
10.1016/0004-3702(85)90084-0
10.1609/aiide.v6i1.12393
10.1109/ROBOT.1998.677046
10.1016/0004-3702(95)00111-5
10.1016/j.neucom.2005.05.006
ContentType Journal Article
Copyright Springer-Verlag 2012
Springer-Verlag 2012.
Copyright_xml – notice: Springer-Verlag 2012
– notice: Springer-Verlag 2012.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-012-0120-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 563
ExternalDocumentID 10_1007_s13042_012_0120_x
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-32e2be29cd66cc5593c6c878cfc33f42b0544154d57107189ef104931027cdf73
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Fri Jul 25 10:59:03 EDT 2025
Wed Oct 01 04:29:26 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 21 02:40:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Convex map
Path-finding
G-CA
Abstract graph
Genetic algorithm
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-32e2be29cd66cc5593c6c878cfc33f42b0544154d57107189ef104931027cdf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919607655
PQPubID 2043904
PageCount 13
ParticipantIDs proquest_journals_2919607655
crossref_primary_10_1007_s13042_012_0120_x
crossref_citationtrail_10_1007_s13042_012_0120_x
springer_journals_10_1007_s13042_012_0120_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131000
2013-10-00
20131001
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 20131000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Su P, Li Y, Li WL (2010) A game map complexity measure based on hamming distance. In: Proceedings of PACIIA. Wuhan, Hubei, pp 332–335
ZhuJLiXPShenWMEffective genetic algorithm for resource-constrained project scheduling with limited preemptionsInt J Mach Learn Cyber201022556510.1007/s13042-011-0014-3
KorfREDepth-first iterative-deepening: an optimal admissible tree searchArtif Intell19852719710981028010.1016/0004-3702(85)90084-00573.68030
Chen CJ (2011) Structural vibration suppression by using neural classifier with genetic algorithm. Int J Mach Learn Cyber. doi:10.1007/s13042-011-0053-9
SametHNeighbor finding techniques for image represented by quadtreesComputer Graphic Image Process1982181375710.1016/0146-664X(82)90098-30531.68041
Michalewicz Z, Janikow C (1991) Handling constraints in genetic algorithms. In: Proceedings of the 4th ICGA. San Diego, CA, pp 151–157
KavraliLESvestkaPLatombeJCOvermarsHMProbabilistic roadmaps for path planning in high dimensional configuration spacesIEEE Trans Robot Automat199612456658010.1109/70.508439
KorfREReidMEdelkampSTime complexity of Iterative-Deepening-A*Artif Intell20011291–2199218183577710.1016/S0004-3702(01)00094-70971.68147
YanHBLiuYCA new algorithm for finding shortcut in a city’s road net based on GIS technologyChinese J Comput20022000–02210215
Sturtevant N (2010) Pathfinding benchmarks. http://www.movingai.com/benchmarks/index.html. Accessed 19 April 2011
PetterssonPODohertyPProbabilistic roadmap based path planning for an autonomous unmanned helicopterJ Intell and Fuzzy Syst2006174395405
Stout B (2000). The basics of A* for path planning. In: DeLoura M (ed) Game Programming Gems. Charles River Media, Rockland, pp 254–263
Samuel E, Johan F (2008) Pathfinding with hard constraints—mobile systems and real time strategy games combined. Master Thesis of Blekinge Institute of Technology, Sweden
ChenDZSzczerbaRJUhranJJA framed-quadtree approach for determining Euclidean shortest paths in a 2-D environmentIEEE Trans Robot Automat199713566868110.1109/70.631228
WangXZHeQChenDGYeungDA genetic algorithm for solving the inverse problem of support vector machinesNeurocomputing20056822523810.1016/j.neucom.2005.05.006
Sturtevant N (2007) Memory-efficient Abstraction for Pathfinding. In: Proceedings of the 3rd AIIDE. Stanford, California, pp 31–36
KoenigSLikhachevMFurcyDLifelong Planning A*Artif Intell20041551–293146205292610.1016/j.artint.2003.12.0011085.68674
Demyen D, Buro M (2006) Efficient triangulation-based pathfinding. In: Proceedings of the 21th AAAI. Boston, Massachusetts, pp 942–947
HolteRCMkadmiTZimmerRMMacDonaldAJSpeeding up problem solving by abstraction: a graph oriented approachArtif Intell1996851–232136110.1016/0004-3702(95)00111-5
Yahja A, Stentz A, Singh S, Brummit B (1998) Framed-quadtree path planning for mobile robots operating in sparse environments. In: Proceedings of IEEE Conf on Robot and Automat. Leuven, Belgium, pp 650–655
BoteaAMullerMScheafferJNear-optimal hierarchical pathfindingJ Game Dev200411728
Harabor D, Botea A (2010) Breaking path symmetries on 4-connected grid maps. In: Proceedings of the 6th AIIDE. Stanford, California, pp 33–38
Sturtevant N, Buro M (2005) Partial pathfinding using map abstraction and refinement. In: Proceedings of the 20th NCAI. Pittsburgh, Pennsylvania, pp 1392–1397
TongDLMintramRGenetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selectionInt J Mach Learn Cyber201011–4758710.1007/s13042-010-0004-x
Snook G (2000) Simplified 3D movement and pathfinding using navigation meshes. In: DeLoura M (ed) Game programming gems. Charles River Media, Rockland, pp 288–304
Sturtevant N, Jansen R (2007) An analysis of map-based abstraction and refinement. In: Proceedings of the 7th SARA. Whistler, Canada, pp 344–358
WangXZHeYLDongLCZhaoHYParticle swarm optimization for determining fuzzy measures from dataInform Sci2011181194230425210.1016/j.ins.2011.06.0021242.68296
BoehmOHardoonDRManevitzLMClassifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithmsInt J Mach Learn Cyber20112312513410.1007/s13042-011-0030-3
O Boehm (120_CR20) 2011; 2
120_CR11
XZ Wang (120_CR22) 2005; 68
RE Korf (120_CR4) 1985; 27
H Samet (120_CR8) 1982; 18
120_CR27
120_CR28
A Botea (120_CR7) 2004; 1
120_CR24
LE Kavrali (120_CR9) 1996; 12
120_CR26
S Koenig (120_CR6) 2004; 155
120_CR1
DZ Chen (120_CR25) 1997; 13
120_CR16
XZ Wang (120_CR23) 2011; 181
120_CR17
120_CR18
DL Tong (120_CR21) 2010; 1
120_CR12
120_CR13
120_CR14
RC Holte (120_CR10) 1996; 85
120_CR15
PO Pettersson (120_CR2) 2006; 17
J Zhu (120_CR19) 2010; 2
HB Yan (120_CR3) 2002; 2000–02
RE Korf (120_CR5) 2001; 129
References_xml – reference: Chen CJ (2011) Structural vibration suppression by using neural classifier with genetic algorithm. Int J Mach Learn Cyber. doi:10.1007/s13042-011-0053-9
– reference: BoteaAMullerMScheafferJNear-optimal hierarchical pathfindingJ Game Dev200411728
– reference: KorfREDepth-first iterative-deepening: an optimal admissible tree searchArtif Intell19852719710981028010.1016/0004-3702(85)90084-00573.68030
– reference: KorfREReidMEdelkampSTime complexity of Iterative-Deepening-A*Artif Intell20011291–2199218183577710.1016/S0004-3702(01)00094-70971.68147
– reference: BoehmOHardoonDRManevitzLMClassifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithmsInt J Mach Learn Cyber20112312513410.1007/s13042-011-0030-3
– reference: Sturtevant N (2007) Memory-efficient Abstraction for Pathfinding. In: Proceedings of the 3rd AIIDE. Stanford, California, pp 31–36
– reference: Harabor D, Botea A (2010) Breaking path symmetries on 4-connected grid maps. In: Proceedings of the 6th AIIDE. Stanford, California, pp 33–38
– reference: KavraliLESvestkaPLatombeJCOvermarsHMProbabilistic roadmaps for path planning in high dimensional configuration spacesIEEE Trans Robot Automat199612456658010.1109/70.508439
– reference: Stout B (2000). The basics of A* for path planning. In: DeLoura M (ed) Game Programming Gems. Charles River Media, Rockland, pp 254–263
– reference: Demyen D, Buro M (2006) Efficient triangulation-based pathfinding. In: Proceedings of the 21th AAAI. Boston, Massachusetts, pp 942–947
– reference: YanHBLiuYCA new algorithm for finding shortcut in a city’s road net based on GIS technologyChinese J Comput20022000–02210215
– reference: ZhuJLiXPShenWMEffective genetic algorithm for resource-constrained project scheduling with limited preemptionsInt J Mach Learn Cyber201022556510.1007/s13042-011-0014-3
– reference: KoenigSLikhachevMFurcyDLifelong Planning A*Artif Intell20041551–293146205292610.1016/j.artint.2003.12.0011085.68674
– reference: PetterssonPODohertyPProbabilistic roadmap based path planning for an autonomous unmanned helicopterJ Intell and Fuzzy Syst2006174395405
– reference: Sturtevant N, Jansen R (2007) An analysis of map-based abstraction and refinement. In: Proceedings of the 7th SARA. Whistler, Canada, pp 344–358
– reference: WangXZHeQChenDGYeungDA genetic algorithm for solving the inverse problem of support vector machinesNeurocomputing20056822523810.1016/j.neucom.2005.05.006
– reference: SametHNeighbor finding techniques for image represented by quadtreesComputer Graphic Image Process1982181375710.1016/0146-664X(82)90098-30531.68041
– reference: Michalewicz Z, Janikow C (1991) Handling constraints in genetic algorithms. In: Proceedings of the 4th ICGA. San Diego, CA, pp 151–157
– reference: Sturtevant N (2010) Pathfinding benchmarks. http://www.movingai.com/benchmarks/index.html. Accessed 19 April 2011
– reference: TongDLMintramRGenetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selectionInt J Mach Learn Cyber201011–4758710.1007/s13042-010-0004-x
– reference: WangXZHeYLDongLCZhaoHYParticle swarm optimization for determining fuzzy measures from dataInform Sci2011181194230425210.1016/j.ins.2011.06.0021242.68296
– reference: Su P, Li Y, Li WL (2010) A game map complexity measure based on hamming distance. In: Proceedings of PACIIA. Wuhan, Hubei, pp 332–335
– reference: Yahja A, Stentz A, Singh S, Brummit B (1998) Framed-quadtree path planning for mobile robots operating in sparse environments. In: Proceedings of IEEE Conf on Robot and Automat. Leuven, Belgium, pp 650–655
– reference: Snook G (2000) Simplified 3D movement and pathfinding using navigation meshes. In: DeLoura M (ed) Game programming gems. Charles River Media, Rockland, pp 288–304
– reference: Samuel E, Johan F (2008) Pathfinding with hard constraints—mobile systems and real time strategy games combined. Master Thesis of Blekinge Institute of Technology, Sweden
– reference: ChenDZSzczerbaRJUhranJJA framed-quadtree approach for determining Euclidean shortest paths in a 2-D environmentIEEE Trans Robot Automat199713566868110.1109/70.631228
– reference: HolteRCMkadmiTZimmerRMMacDonaldAJSpeeding up problem solving by abstraction: a graph oriented approachArtif Intell1996851–232136110.1016/0004-3702(95)00111-5
– reference: Sturtevant N, Buro M (2005) Partial pathfinding using map abstraction and refinement. In: Proceedings of the 20th NCAI. Pittsburgh, Pennsylvania, pp 1392–1397
– ident: 120_CR12
– volume: 17
  start-page: 395
  issue: 4
  year: 2006
  ident: 120_CR2
  publication-title: J Intell and Fuzzy Syst
– volume: 12
  start-page: 566
  issue: 4
  year: 1996
  ident: 120_CR9
  publication-title: IEEE Trans Robot Automat
  doi: 10.1109/70.508439
– volume: 13
  start-page: 668
  issue: 5
  year: 1997
  ident: 120_CR25
  publication-title: IEEE Trans Robot Automat
  doi: 10.1109/70.631228
– ident: 120_CR14
– ident: 120_CR16
– volume: 18
  start-page: 37
  issue: 1
  year: 1982
  ident: 120_CR8
  publication-title: Computer Graphic Image Process
  doi: 10.1016/0146-664X(82)90098-3
– volume: 2
  start-page: 55
  issue: 2
  year: 2010
  ident: 120_CR19
  publication-title: Int J Mach Learn Cyber
  doi: 10.1007/s13042-011-0014-3
– volume: 1
  start-page: 7
  issue: 1
  year: 2004
  ident: 120_CR7
  publication-title: J Game Dev
– volume: 181
  start-page: 4230
  issue: 19
  year: 2011
  ident: 120_CR23
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2011.06.002
– ident: 120_CR24
– volume: 129
  start-page: 199
  issue: 1–2
  year: 2001
  ident: 120_CR5
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(01)00094-7
– ident: 120_CR26
– ident: 120_CR17
– volume: 2
  start-page: 125
  issue: 3
  year: 2011
  ident: 120_CR20
  publication-title: Int J Mach Learn Cyber
  doi: 10.1007/s13042-011-0030-3
– ident: 120_CR18
  doi: 10.1007/s13042-011-0053-9
– ident: 120_CR11
  doi: 10.1007/978-3-540-73580-9_27
– ident: 120_CR13
– volume: 155
  start-page: 93
  issue: 1–2
  year: 2004
  ident: 120_CR6
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2003.12.001
– ident: 120_CR15
– volume: 1
  start-page: 75
  issue: 1–4
  year: 2010
  ident: 120_CR21
  publication-title: Int J Mach Learn Cyber
  doi: 10.1007/s13042-010-0004-x
– volume: 27
  start-page: 97
  issue: 1
  year: 1985
  ident: 120_CR4
  publication-title: Artif Intell
  doi: 10.1016/0004-3702(85)90084-0
– ident: 120_CR28
  doi: 10.1609/aiide.v6i1.12393
– ident: 120_CR1
  doi: 10.1109/ROBOT.1998.677046
– volume: 2000–02
  start-page: 210
  year: 2002
  ident: 120_CR3
  publication-title: Chinese J Comput
– volume: 85
  start-page: 321
  issue: 1–2
  year: 1996
  ident: 120_CR10
  publication-title: Artif Intell
  doi: 10.1016/0004-3702(95)00111-5
– volume: 68
  start-page: 225
  year: 2005
  ident: 120_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.05.006
– ident: 120_CR27
SSID ssj0000603302
ssib031263576
ssib033405570
Score 1.973248
Snippet Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A * is time-consuming...
Path-finding is a fundamental problem in many applications, such as robot control, global positioning system and computer games. Since A* is time-consuming...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 551
SubjectTerms Artificial Intelligence
Complex Systems
Computational Intelligence
Computer & video games
Control
Engineering
Genetic algorithms
Global positioning systems
GPS
Graphs
Heuristic
Mechatronics
Nodes
Optimization
Original Article
Pattern Recognition
Robot control
Robotics
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA9zu3gR5wdOp-TgwQ-CbdJPQWSOjSE4RRzsVtI0m4etq66D_fnmpc2Kgjvk0DZJ4eXlfeS9_B5Cl9x3ExbGgoiJYMRxQovEobQJU8qa-0HsW_ro4mXoDUbO89gd19DQ3IWBtEojE7WgThYCzsjvaKh4RTndrvuYfRGoGgXRVVNCg5elFZIHDTG2gxoUkLHqqPHUG769Gw5jNmCvVAqYMUdjUG1OZSxPvSsSFQMvAKRe24RC9X07cP6V962bRda_lVllof4Jqmpd1d9He6WRiTsFVzRRTaYHqFlu4yW-KrGmrw_RayfFfJUvCE94BpIP6zT0NZ7zDE91N8iLxlC4mOj4tnrgs6miTP45v8cwk_oJ7hajOkdo1O99dAekrLFABLO9nDAqaSxpKBLPE0K5F0x4IvADWDo2cWhsQZEy10lcZYooPRbKiXLgQmUUUl8kE58do3q6SOUJJEkpWeAKyX2PA649lxzeSBkHwrUkbSHLECsSJQA51MGYRRV0MtA3UrSFZkXrFrrZDMkK9I1tndtmBaJyIy6jim1a6NasSvX538lOt092hnYp1MXQWX1tVM-_V_JcWSd5fFGy3A8DEdqw
  priority: 102
  providerName: ProQuest
Title An auto-adaptive convex map generating path-finding algorithm: Genetic Convex A
URI https://link.springer.com/article/10.1007/s13042-012-0120-x
https://www.proquest.com/docview/2919607655
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AFBBN
  dateStart: 20101201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-808X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSysxEA8-vfgO4tfj1Y-Sg4enEkiTTXbX21ZaRXlVxIKelmw2VUHb0q7QP9-ZdNdVUcFDCJvNB2SSzExm8htC9kyochlnltmBlSwIYs6y2LWYBGZtwigLub-6-N_Tp_3g7EbdlO-4p5W3e2WS9Cd1_dgNNW9QfX3iDATHJYVoXrCI-yKpFpFsIbxKzWOlDDzM1OvFC9dQNvdFjHSEYLytytr52Sjv-VUthH6wm3p21F0lK6UcSZM54dfIghuuk99v0AXXyVq5b6f0Xwkuvb9BLpIhNc_FiJncjPGoo97vfEafzJje-WroCE0xUjHzBm34MI93o8lDcf90RLEnGJIez1slm6Tf7Vwfn7IyqAKzsqULJoUTmROxzbW2FvQJabWNwghpJQeByDhGJVNBrkD2AMYVuwFobDFIgSK0-SCUf8jicDR0f9ErCja_ss6E2iCQvXEGS5zLIqu4Ew3Cq6lLbYk4joEvHtMaKxlnO4WZxsTTWYMcvDYZz-E2vqu8U9EjLXfeNBUxnCk81Eo1yGFFo_r3l51t_aj2NlkWGBfDe_XtkMVi8ux2QTopsib5FXVPmmQp6bbbPcxPbs87kLc7vcurpl-rLxIF2xE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED919GF7mVYYWjcGfgAJNllL7XwiVah0VIWWbkIg8RYcx2UP0HZrEN0_t7-NO9ch2qTxxkMe4thOdHe5D_v8O4BtFQW5TDLN9VhL7vuJx7PEtLhEY62iOIs8u3RxOgr7F_7JZXBZgz_lWRhKqyx1olXU-VTTGvkXkaCsYNAdBAezn5yqRtHuallCQ7nSCnnbQoy5gx0D8_seQ7h5-_gr8ntHiN7RebfPXZUBrmUrLLgURmRGJDoPQ63RwZY61HEU08fLsS8yj8p0BX4eoDFGTZ6YMYYwCbpFItL5OJI47wuo-9JPMPirHx6Nvp-VEi1bhPVSGXwpfYt59bgK5IXYtkyMjMOYkIFb5darPd9Hiw0Y7dvL44u_jWflEf-ziWttY-8NvHZOLesspbABNTNZhYZTG3O267Ct99bgW2fC1F0x5SpXM9K0zKa9L9itmrFr243ysBkVSuZ2Px1v1M01cqL4cbvPaCZ8CesuR3XewsWzUHsdVibTiXlHSVmoewJtVBQqwtFXRlGLMVmsA8-IJnglsVLtAM-p7sZNWkE1E31TpC1dXrpowqfHIbMl2sdTnTdKDqTux5-nlZg24XPJlerxfyd7__RkW_Cyf346TIfHo8EHeCWoJofNKNyAleLXnfmInlGRbTrxY3D13BL_AEGpFgU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QSAgOiPEQ45kDBx6KSJM2bblNg2m8OTCJW5Wm6UDaumkr0n4-cdpSQIDEIYemeUiOE9ux8xmhQ-l7CQ9jRVSqOHHdkJI41A7hRlhLP4h9aq8u7u5Ft-deP3vPZZ7TaRXtXrkkizcNgNKU5WfjJD2rH76BFW7MYFsoMUrkggs4CYahe6xVMRR3AGqllrecuxZy6uMShgpTV8QlBiIAYF6n8nz-NMtX2VUrpN98qFY0dVbRSqlT4lbBBA00p7M1tPwJaXANNco9PMVHJdD08Tp6aGVYvuUjIhM5hmMP2xj0GR7KMe7bZhAUjSFrMbHObfMhB_3R5DV_GZ5jGMlMidtFr9YG6nUun9pdUiZYIIo7IiecaRZrFqpECKWMbcGVUIEfwLrx1GUxhQxlnpt4Rg8xQizUqbHeQqMRMl8lqc830Xw2yvQWREiZg8BTWvpCAqi91BJqtI4D5VHNmohWpItUiT4OSTAGUY2bDNSODKWh0GjWRCcfXcYF9MZfjXer9YjKXTiNWGjOF-oLz2ui02qN6t-_Drb9r9YHaPHxohPdXt3f7KAlBukybLDfLprPJ296zygtebxvGfMd1NfcqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+auto-adaptive+convex+map+generating+path-finding+algorithm%3A+Genetic+Convex+A&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Su%2C+Pan&rft.au=Li%2C+Yan&rft.au=Li%2C+Yingjie&rft.au=Shiu%2C+Simon+Chi-Keung&rft.date=2013-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=4&rft.issue=5&rft.spage=551&rft.epage=563&rft_id=info:doi/10.1007%2Fs13042-012-0120-x&rft.externalDocID=10_1007_s13042_012_0120_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon