A Novel Fractional Gradient-Based Learning Algorithm for Recurrent Neural Networks

In this research, we propose a novel algorithm for learning of the recurrent neural networks called as the fractional back-propagation through time (FBPTT). Considering the potential of the fractional calculus, we propose to use the fractional calculus-based gradient descent method to derive the FBP...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 37; no. 2; pp. 593 - 612
Main Authors Khan, Shujaat, Ahmad, Jawwad, Naseem, Imran, Moinuddin, Muhammad
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0278-081X
1531-5878
DOI10.1007/s00034-017-0572-z

Cover

Abstract In this research, we propose a novel algorithm for learning of the recurrent neural networks called as the fractional back-propagation through time (FBPTT). Considering the potential of the fractional calculus, we propose to use the fractional calculus-based gradient descent method to derive the FBPTT algorithm. The proposed FBPTT method is shown to outperform the conventional back-propagation through time algorithm on three major problems of estimation namely nonlinear system identification, pattern classification and Mackey–Glass chaotic time series prediction.
AbstractList In this research, we propose a novel algorithm for learning of the recurrent neural networks called as the fractional back-propagation through time (FBPTT). Considering the potential of the fractional calculus, we propose to use the fractional calculus-based gradient descent method to derive the FBPTT algorithm. The proposed FBPTT method is shown to outperform the conventional back-propagation through time algorithm on three major problems of estimation namely nonlinear system identification, pattern classification and Mackey–Glass chaotic time series prediction.
Author Khan, Shujaat
Ahmad, Jawwad
Naseem, Imran
Moinuddin, Muhammad
Author_xml – sequence: 1
  givenname: Shujaat
  orcidid: 0000-0001-9676-6817
  surname: Khan
  fullname: Khan, Shujaat
  organization: Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Faculty of Engineering Science and Technology, Iqra University
– sequence: 2
  givenname: Jawwad
  surname: Ahmad
  fullname: Ahmad, Jawwad
  organization: Department of Electrical Engineering, Usman Institute of Technology
– sequence: 3
  givenname: Imran
  orcidid: 0000-0003-4429-0049
  surname: Naseem
  fullname: Naseem, Imran
  email: imran.naseem@uwa.edu.au
  organization: College of Engineering, Karachi Institute of Economics and Technology, School of Electrical, Electronic and Computer Engineering, The University of Western Australia
– sequence: 4
  givenname: Muhammad
  surname: Moinuddin
  fullname: Moinuddin, Muhammad
  organization: Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University
BookMark eNp9kE1LxDAQhoMouH78AG8Fz9FJsmna4yp-wbKCKHgLaTpdu9ZGJ13F_fVmWQ8i6GkO8z7z8eyx7T70yNiRgBMBYE4jAKgxB2E4aCP5aouNhFaC68IU22wE0hQcCvG4y_ZiXACIclzKEbubZLPwjl12Sc4Pbehdl12Rq1vsB37mItbZFB31bT_PJt08UDs8vWRNoOwO_ZIoxbIZLilhMxw-Aj3HA7bTuC7i4XfdZw-XF_fn13x6e3VzPplyr0Q-cNlUedloj74sfVGiyrVEzGVVOacrVwsvKpM-SF09BjRjDVIaULXSNYCs1T473sx9pfC2xDjYRVhSeiDaBCmpcyVFSolNylOIkbCxr9S-OPq0Auxand2os0mdXauzq8SYX4xvB7e2M5Bru39JuSFj2tLPkX7c9Cf0BRRahSA
CitedBy_id crossref_primary_10_3390_app12189264
crossref_primary_10_1140_epjs_s11734_022_00455_3
crossref_primary_10_3390_fractalfract7110789
crossref_primary_10_1016_j_rineng_2025_104450
crossref_primary_10_1007_s00521_022_07728_x
crossref_primary_10_1007_s10462_023_10474_8
crossref_primary_10_1016_j_jfranklin_2021_12_022
crossref_primary_10_1016_j_jfranklin_2024_01_013
crossref_primary_10_1016_j_chaos_2025_116009
crossref_primary_10_1016_j_isatra_2024_04_019
crossref_primary_10_2478_cait_2020_0041
crossref_primary_10_1088_1742_6596_1969_1_012038
crossref_primary_10_1155_2021_5517502
crossref_primary_10_3390_machines9110247
crossref_primary_10_3390_batteries8100148
crossref_primary_10_3389_fnsys_2024_1269190
crossref_primary_10_1007_s11063_022_10925_3
crossref_primary_10_1016_j_neunet_2021_06_021
crossref_primary_10_1007_s11063_024_11571_7
crossref_primary_10_1155_2022_9755422
crossref_primary_10_3389_fphy_2023_1201053
crossref_primary_10_3390_e25010035
crossref_primary_10_1007_s00034_021_01715_8
crossref_primary_10_1016_j_amc_2020_125797
crossref_primary_10_1016_j_jfranklin_2020_01_008
crossref_primary_10_3390_fractalfract6110640
crossref_primary_10_3390_fractalfract7020132
crossref_primary_10_3390_fractalfract9020091
crossref_primary_10_1007_s10994_023_06314_z
Cites_doi 10.1016/j.ifacol.2016.03.131
10.1109/ICETECH.2015.7275027
10.1162/neco.1990.2.4.490
10.1117/12.668189
10.1109/ICASSP.2016.7472844
10.1109/ICASSP.2016.7472917
10.1109/ICASSP.2014.6854661
10.1007/s00521-016-2548-5
10.1155/2008/369421
10.1109/ICCSCE.2016.7893626
10.1109/LSP.2015.2394301
10.1155/S0161171203301486
10.1007/978-1-4020-6042-7
10.1109/ICASSP.2015.7178896
10.1016/j.aml.2008.06.003
10.1177/1077546307087435
10.1126/science.286.5439.531
10.18653/v1/N16-1037
10.1016/j.neucom.2016.02.017
10.2478/s11534-013-0256-7
10.1088/1674-1056/23/5/050503
10.1109/ICASSP.2013.6639310
10.1016/S0893-6080(05)80125-X
10.1109/ICCV.2015.179
10.1016/j.ifacol.2015.08.048
10.1109/BIGCOMP.2016.7425963
10.23919/ECC.2013.6669201
10.1109/TCST.2010.2042296
10.1109/TNNLS.2013.2271778
10.1016/j.camwa.2006.02.001
10.1177/1077546307087433
10.1109/ICASSP.2016.7472621
10.1177/1077546307087440
10.1109/TNNLS.2014.2344002
10.1002/prot.21078
10.1016/j.automatica.2005.08.017
10.1177/1077546307087439
10.1016/j.sigpro.2005.10.017
10.1016/j.nonrwa.2009.01.003
10.1109/ICASSP.2016.7472841
10.1109/TPAMI.2005.159
10.1109/ICRA.2016.7487174
10.1016/0893-6080(89)90022-1
10.2307/2687575
10.21437/Interspeech.2015-696
10.21437/Interspeech.2015-350
10.1007/s00034-016-0375-7
10.1137/1018042
10.1016/j.conb.2015.07.006
10.1109/TIE.2011.2134057
10.1016/j.sigpro.2014.06.015
10.20965/jaciii.2007.p1079
10.1109/TIE.2016.2542787
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Circuits, Systems, and Signal Processing is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Circuits, Systems, and Signal Processing is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00034-017-0572-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 612
ExternalDocumentID 10_1007_s00034_017_0572_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-2fb69f5cec99c89e3652ee62bbaa5bad1c1b753199c540e745022703d35d002d3
IEDL.DBID BENPR
ISSN 0278-081X
IngestDate Sat Aug 16 06:11:25 EDT 2025
Wed Oct 01 05:53:58 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Fri Feb 21 02:35:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gradient descent
Minimum redundancy and maximum relevance (mRMR)
Back-propagation through time (BPTT)
Mackey–Glass chaotic time series
Fractional calculus
Recurrent neural network (RNN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-2fb69f5cec99c89e3652ee62bbaa5bad1c1b753199c540e745022703d35d002d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9676-6817
0000-0003-4429-0049
PQID 1993256321
PQPubID 30136
PageCount 20
ParticipantIDs proquest_journals_1993256321
crossref_primary_10_1007_s00034_017_0572_z
crossref_citationtrail_10_1007_s00034_017_0572_z
springer_journals_10_1007_s00034_017_0572_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180200
2018-2-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 2
  year: 2018
  text: 20180200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References H. Sak, A. Senior, K. Rao, F. Beaufays, Fast and accurate recurrent neural network acoustic models for speech recognition. arXiv preprint arXiv:1507.06947 (2015)
SunWZhaoYLiJZhangLGaoHActive suspension control with frequency band constraints and actuator input delayIEEE Trans. Ind. Electron.201259153053710.1109/TIE.2011.2134057
TanYHeZTianBA novel generalization of modified lms algorithm to fractional orderIEEE Signal Process. Lett.20152291244124810.1109/LSP.2015.2394301
JumarieGTable of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functionsAppl. Math. Lett.2009223378385248350310.1016/j.aml.2008.06.0031171.26305
A. Joulin, T. Mikolov, Inferring algorithmic patterns with stack-augmented recurrent nets, in Advances in Neural Information Processing Systems 28, eds. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Inc., 2015), pp. 190–198
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P.H. Torr, Conditional random fields as recurrent neural networks, in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1529–1537
M. Zhang, Z. McCarthy, C. Finn, S. Levine, P. Abbeel, Learning deep neural network policies with continuous memory states. arXiv preprint arXiv:1507.01273 (2015)
Q.V. Le, N. Jaitly, G.E. Hinton, A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015)
H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, GMD Report 159, (German National Research Center for Information Technology, 2002), p. 48
GolubTRSlonimDKTamayoPHuardCGaasenbeekMMesirovJPCollerHLohMLDowningJRCaligiuriMAMolecular classification of cancer: class discovery and class prediction by gene expression monitoringScience1999286543953153710.1126/science.286.5439.531
Y. Pu, X. Yuan, K. Liao, J. Zhou, N. Zhang, X. Pu, Y. Zeng, A recursive two-circuits series analog fractance circuit for any order fractional calculus, in ICO20: Optical Information Processing, 60271Y (2006). doi:10.1117/12.668189
R.J. Williams, D. Zipser, Gradient-based learning algorithms for recurrent networks and their computational complexity. Backpropagation Theory Archit. Appl. 1, 433–486 (1995)
X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M.J. Gales, P.C. Woodland, Recurrent neural network language model adaptation for multi-genre broadcast speech recognition, in Proceedings of ISCA Interspeech, Dresden, Germany, 2015, pp. 3511–3515
C. Junhua, D. Baorong, S. Guangren, A novel time-series artificial neural network: a case study for forecasting oil production. Sci. J. Control Eng. 6(1), 1–7 (2016)
DoyaKYoshizawaSAdaptive neural oscillator using continuous-time back-propagation learningNeural Netw.19892537538510.1016/0893-6080(89)90022-1
B. Shoaib, I.M. Qureshi, Shafqatullah, Ihsanulhaq, Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction. Chin. Phys. B 23(5), 050503 (2014)
JumarieGAn approach via fractional analysis to non-linearity induced by coarse-graining in spaceNonlinear Anal. Real World Appl.2010111535546257057310.1016/j.nonrwa.2009.01.0031195.37054
M. Hermans, M. Soriano, J. Dambre, P. Bienstman, I. Fischer, Photonic delay systems as machine learning implementations. arXiv preprint arXiv:1501.02592 (2015)
Y. Ji, G. Haffari, J. Eisenstein, A latent variable recurrent neural network for discourse relation language models. arXiv preprint arXiv:1603.01913 (2016)
L. Sun, S. Kang, K. Li, H. Meng, Voice conversion using deep bidirectional long short-term memory based recurrent neural networks, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2015, pp. 4869–4873
B. Krishna, K. Reddy, Active and passive realization of fractance device of order 1/2. Active Passive Electron. Compon. 2008, 369421 (2008). doi:10.1155/2008/369421
CerveraJBañosAAutomatic loop shaping in qft using crone structuresJ. Vib. Control2008149–1015131529246296310.1177/10775463070874331229.93069
M. Kleinz, T. Osler, A childs garden of fractional derivatives. The College Math Journal 31(2), 82–88 (2000)
J. An, S. Cho, Hand motion identification of grasp-and-lift task from electroencephalography recordings using recurrent neural networks, in 2016 International Conference on Big Data and Smart Computing (BigComp), IEEE, 2016, pp. 427–429
SunWZhangYHuangYGaoHKaynakOTransient-performance-guaranteed robust adaptive control and its application to precision motion control systemsIEEE Trans. Ind. Electron.201663106510651810.1109/TIE.2016.2542787
SunWGaoHKaynakOFinite frequency h∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\infty }$$\end{document} control for vehicle active suspension systemsIEEE Trans. Control Syst. Technol.201119241642210.1109/TCST.2010.2042296
P.K. Muthukumar, A.W. Black, Recurrent neural network postfilters for statistical parametric speech synthesis. arXiv preprint arXiv:1601.07215 (2016)
W. Zaremba, I. Sutskever, O. Vinyals, Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)
PandaRDashMFractional generalized splines and signal processingSignal Process.20068692340235010.1016/j.sigpro.2005.10.0171172.65315
S. Ravuri, A. Stolcke, Recurrent neural network and lstm models for lexical utterance classification, in Sixteenth Annual Conference of the International Speech Communication Association, 2015
FairbankMAlonsoEProkhorovDAn equivalence between adaptive dynamic programming with a critic and backpropagation through timeIEEE Trans. Neural Netw. Learn. Syst.201324122088210010.1109/TNNLS.2013.2271778
SahaSRaghavaGPrediction of continuous b-cell epitopes in an antigen using recurrent neural networkProteins Struct. Funct. Bioinform.2006651404810.1002/prot.21078
JumarieGModified Riemann–Liouville derivative and fractional taylor series of nondifferentiable functions further resultsComput. Math. Appl.200651913671376223763410.1016/j.camwa.2006.02.0011137.65001
RoudiYTaylorGLearning with hidden variablesCurr. Opin. Neurobiol.20153511011810.1016/j.conb.2015.07.006
DebnathLRecent applications of fractional calculus to science and engineeringInt. J. Math. Math. Sci.200320035434133442202556610.1155/S01611712033014861036.26004
Z. Gan, C. Li, R. Henao, D.E. Carlson, L. Carin, Deep temporal sigmoid belief networks for sequence modeling, in Advances in Neural Information Processing Systems 28, eds. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Inc., 2015), pp. 2467–2475
SommacalLMelchiorPOustaloupACabelguenJMIjspeertAJFractional multi-models of the frog gastrocnemius muscleJ. Vib. Control2008149–101415143010.1177/10775463070874401229.92019
GeorgeKSubramanianKSheshadhriNImproving transient response in adaptive control of nonlinear systemsIFAC PapersOnLine201649165866310.1016/j.ifacol.2016.03.131
C. Weng, D. Yu, S. Watanabe, B.H.F. Juang, Recurrent deep neural networks for robust speech recognition, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 5532–5536
BohannanGWAnalog fractional order controller in temperature and motor control applicationsJ. Vib. Control2008149–1014871498246307410.1177/1077546307087435
WigrenTRecursive prediction error identification and scaling of non-linear state space models using a restricted black box parameterizationAutomatica2006421159168218307810.1016/j.automatica.2005.08.0171121.93316
J. Ahmad, Design of Efficient Adaptive Beamforming Algorithms for Novel Mimo Architectures, Ph.D. Thesis, Iqra University, Karachi (2014)
J. Koscak, R. Jaksa, P. Sincák, Prediction of temperature daily profile by stochastic update of backpropagation through time algorithm. J. Math. Syst. Sci. 2(4), 217–225 (2012)
BaoGZengZGlobal asymptotical stability analysis for a kind of discrete-time recurrent neural network with discontinuous activation functionsNeurocomputing201619324224910.1016/j.neucom.2016.02.017
N.T. Vu, P. Gupta, H. Adel, H. Schütze, Bi-directional recurrent neural network with ranking loss for spoken language understanding, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016
LovoieJOslerTJTremblayRFractional derivatives and special functionsSIAM Rev.197618224026840991410.1137/10180420324.44002
W. Chan, N. Jaitly, Q.V. Le, O. Vinyals, Listen, attend and spell: a neural network for large vocabulary conversational speech recognition, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016
H. Jia, Investigation into the effectiveness of long short term memory networks for stock price prediction. arXiv preprint arXiv:1603.07893 (2016)
MaginROvadiaMModeling the cardiac tissue electrode interface using fractional calculusJ. Vib. Control2008149–101431144210.1177/10775463070874391229.92018
A. Mazumder, A. Rakshit, D. Tibarewala, A back-propagation through time based recurrent neural network approach for classification of cognitive eeg states, in 2015 IEEE International Conference on Engineering and Technology (ICETECH), IEEE, 2015, pp. 1–5
HaykinSONeural Networks: A Comprehensive Foundation1994Upper Saddle RiverPrentice Hall PTR0828.68103
WilliamsRJPengJAn efficient gradient-based algorithm for on-line training of recurrent network trajectoriesNeural Comput.19902449050110.1162/neco.1990.2.4.490
J. Amhad, M. Usman, S. Khan, I. Naseem, H.J. Syed, Rvp-flms: a robust variable power fractional lms algorithm, in 2016 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), IEEE, 2016
S. Khan, I. Naseem, R. Togneri, M. Bennamoun, A novel adaptive kernel for the rbf neural networks. Circuits Syst. Signal Process. 36(4), 1639–1653 (2017). doi:10.1007/s00034-016-0375-7
T.
572_CR46
572_CR48
S Saha (572_CR51) 2006; 65
T Wigren (572_CR64) 2006; 42
QV Le (572_CR35) 2015
G Jumarie (572_CR28) 2013; 11
W Sun (572_CR57) 2016; 63
H Peng (572_CR45) 2005; 27
Y Roudi (572_CR49) 2015; 35
SO Haykin (572_CR18) 1994
572_CR52
GW Bohannan (572_CR6) 2008; 14
572_CR10
J Cervera (572_CR7) 2008; 14
572_CR53
572_CR55
572_CR14
MAZ Raja (572_CR47) 2015; 107
572_CR59
EA Antonelo (572_CR4) 2015; 48
R Panda (572_CR43) 2006; 86
G Jumarie (572_CR25) 2006; 51
I Grau (572_CR17) 2013; 17
572_CR61
572_CR63
572_CR62
572_CR21
572_CR65
572_CR20
572_CR23
572_CR67
L Debnath (572_CR11) 2003; 2003
572_CR22
J Sabatier (572_CR50) 2007
G Jumarie (572_CR26) 2009; 22
572_CR69
572_CR24
572_CR68
572_CR1
572_CR3
572_CR29
572_CR2
W Sun (572_CR56) 2011; 19
572_CR9
572_CR8
MF Lima (572_CR37) 2007; 11
K Doya (572_CR12) 1989; 2
TR Golub (572_CR16) 1999; 286
572_CR70
R Magin (572_CR39) 2008; 14
M Fairbank (572_CR13) 2013; 24
572_CR32
572_CR31
572_CR34
572_CR33
572_CR36
F Ken-ichi (572_CR30) 1993; 6
G Jumarie (572_CR27) 2010; 11
L Sommacal (572_CR54) 2008; 14
RJ Williams (572_CR66) 1990; 2
W Sun (572_CR58) 2012; 59
Y Tan (572_CR60) 2015; 22
J Lovoie (572_CR38) 1976; 18
K George (572_CR15) 2016; 49
572_CR41
572_CR40
M Hermans (572_CR19) 2015; 26
572_CR42
G Bao (572_CR5) 2016; 193
572_CR44
References_xml – reference: H. Jia, Investigation into the effectiveness of long short term memory networks for stock price prediction. arXiv preprint arXiv:1603.07893 (2016)
– reference: LimaMFMachadoJATCrisóstomoMMExperimental signal analysis of robot impacts in a fractional calculus perspectiveJACIII20071191079108510.20965/jaciii.2007.p1079
– reference: W. Zaremba, I. Sutskever, O. Vinyals, Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)
– reference: S. Khan, I. Naseem, R. Togneri, M. Bennamoun, A novel adaptive kernel for the rbf neural networks. Circuits Syst. Signal Process. 36(4), 1639–1653 (2017). doi:10.1007/s00034-016-0375-7
– reference: C. Junhua, D. Baorong, S. Guangren, A novel time-series artificial neural network: a case study for forecasting oil production. Sci. J. Control Eng. 6(1), 1–7 (2016)
– reference: L. Sun, S. Kang, K. Li, H. Meng, Voice conversion using deep bidirectional long short-term memory based recurrent neural networks, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2015, pp. 4869–4873
– reference: X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M.J. Gales, P.C. Woodland, Recurrent neural network language model adaptation for multi-genre broadcast speech recognition, in Proceedings of ISCA Interspeech, Dresden, Germany, 2015, pp. 3511–3515
– reference: RoudiYTaylorGLearning with hidden variablesCurr. Opin. Neurobiol.20153511011810.1016/j.conb.2015.07.006
– reference: J. Amhad, M. Usman, S. Khan, I. Naseem, H.J. Syed, Rvp-flms: a robust variable power fractional lms algorithm, in 2016 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), IEEE, 2016
– reference: N.T. Vu, P. Gupta, H. Adel, H. Schütze, Bi-directional recurrent neural network with ranking loss for spoken language understanding, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016
– reference: SunWGaoHKaynakOFinite frequency h∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\infty }$$\end{document} control for vehicle active suspension systemsIEEE Trans. Control Syst. Technol.201119241642210.1109/TCST.2010.2042296
– reference: JumarieGAn approach via fractional analysis to non-linearity induced by coarse-graining in spaceNonlinear Anal. Real World Appl.2010111535546257057310.1016/j.nonrwa.2009.01.0031195.37054
– reference: LeQVA Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks2015CAStanford University Department of Computer Science
– reference: T. Wigren, J. Schoukens, Three free data sets for development and benchmarking in nonlinear system identification, in Control Conference (ECC), 2013 European, IEEE, 2013, pp. 2933–2938
– reference: SunWZhaoYLiJZhangLGaoHActive suspension control with frequency band constraints and actuator input delayIEEE Trans. Ind. Electron.201259153053710.1109/TIE.2011.2134057
– reference: MaginROvadiaMModeling the cardiac tissue electrode interface using fractional calculusJ. Vib. Control2008149–101431144210.1177/10775463070874391229.92018
– reference: PengHLongFDingCFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans. Pattern Anal. Mach. Intell.20052781226123810.1109/TPAMI.2005.159
– reference: RajaMAZChaudharyNITwo-stage fractional least mean square identification algorithm for parameter estimation of carma systemsSignal Process.201510732733910.1016/j.sigpro.2014.06.015
– reference: DoyaKYoshizawaSAdaptive neural oscillator using continuous-time back-propagation learningNeural Netw.19892537538510.1016/0893-6080(89)90022-1
– reference: M. Sundermeyer, I. Oparin, J.L. Gauvain, B. Freiberg, R. Schluter, H. Ney, Comparison of feedforward and recurrent neural network language models, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013, pp. 8430–8434
– reference: GolubTRSlonimDKTamayoPHuardCGaasenbeekMMesirovJPCollerHLohMLDowningJRCaligiuriMAMolecular classification of cancer: class discovery and class prediction by gene expression monitoringScience1999286543953153710.1126/science.286.5439.531
– reference: J. An, S. Cho, Hand motion identification of grasp-and-lift task from electroencephalography recordings using recurrent neural networks, in 2016 International Conference on Big Data and Smart Computing (BigComp), IEEE, 2016, pp. 427–429
– reference: A. Mazumder, A. Rakshit, D. Tibarewala, A back-propagation through time based recurrent neural network approach for classification of cognitive eeg states, in 2015 IEEE International Conference on Engineering and Technology (ICETECH), IEEE, 2015, pp. 1–5
– reference: B. Shoaib, I.M. Qureshi, Shafqatullah, Ihsanulhaq, Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction. Chin. Phys. B 23(5), 050503 (2014)
– reference: B. Krishna, K. Reddy, Active and passive realization of fractance device of order 1/2. Active Passive Electron. Compon. 2008, 369421 (2008). doi:10.1155/2008/369421
– reference: FairbankMAlonsoEProkhorovDAn equivalence between adaptive dynamic programming with a critic and backpropagation through timeIEEE Trans. Neural Netw. Learn. Syst.201324122088210010.1109/TNNLS.2013.2271778
– reference: H. Sak, A. Senior, K. Rao, F. Beaufays, Fast and accurate recurrent neural network acoustic models for speech recognition. arXiv preprint arXiv:1507.06947 (2015)
– reference: TanYHeZTianBA novel generalization of modified lms algorithm to fractional orderIEEE Signal Process. Lett.20152291244124810.1109/LSP.2015.2394301
– reference: SunWZhangYHuangYGaoHKaynakOTransient-performance-guaranteed robust adaptive control and its application to precision motion control systemsIEEE Trans. Ind. Electron.201663106510651810.1109/TIE.2016.2542787
– reference: S. Ravuri, A. Stolcke, Recurrent neural network and lstm models for lexical utterance classification, in Sixteenth Annual Conference of the International Speech Communication Association, 2015
– reference: R.J. Williams, D. Zipser, Gradient-based learning algorithms for recurrent networks and their computational complexity. Backpropagation Theory Archit. Appl. 1, 433–486 (1995)
– reference: JumarieGTable of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functionsAppl. Math. Lett.2009223378385248350310.1016/j.aml.2008.06.0031171.26305
– reference: BohannanGWAnalog fractional order controller in temperature and motor control applicationsJ. Vib. Control2008149–1014871498246307410.1177/1077546307087435
– reference: Ken-ichiFYuichiNApproximation of dynamical systems by continuous time recurrent neural networksNeural Netw.1993680180610.1016/S0893-6080(05)80125-X
– reference: SommacalLMelchiorPOustaloupACabelguenJMIjspeertAJFractional multi-models of the frog gastrocnemius muscleJ. Vib. Control2008149–101415143010.1177/10775463070874401229.92019
– reference: S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P.H. Torr, Conditional random fields as recurrent neural networks, in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1529–1537
– reference: N.I. Chaudhary, M.A.Z. Raja, M.S. Aslam, N. Ahmed, Novel generalization of volterra lms algorithm to fractional order with application to system identification. Neural Comput. Appl. (2016). doi:10.1007/s00521-016-2548-5
– reference: Z. Gan, C. Li, R. Henao, D.E. Carlson, L. Carin, Deep temporal sigmoid belief networks for sequence modeling, in Advances in Neural Information Processing Systems 28, eds. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Inc., 2015), pp. 2467–2475
– reference: A. Joulin, T. Mikolov, Inferring algorithmic patterns with stack-augmented recurrent nets, in Advances in Neural Information Processing Systems 28, eds. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Inc., 2015), pp. 190–198
– reference: M. Kleinz, T. Osler, A childs garden of fractional derivatives. The College Math Journal 31(2), 82–88 (2000)
– reference: G. Parascandolo, H. Huttunen, T. Virtanen, Recurrent neural networks for polyphonic sound event detection in real life recordings. arXiv preprint arXiv:1604.00861 (2016)
– reference: W. Chan, N. Jaitly, Q.V. Le, O. Vinyals, Listen, attend and spell: a neural network for large vocabulary conversational speech recognition, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016
– reference: M. Hermans, M. Soriano, J. Dambre, P. Bienstman, I. Fischer, Photonic delay systems as machine learning implementations. arXiv preprint arXiv:1501.02592 (2015)
– reference: PandaRDashMFractional generalized splines and signal processingSignal Process.20068692340235010.1016/j.sigpro.2005.10.0171172.65315
– reference: Y. Ji, G. Haffari, J. Eisenstein, A latent variable recurrent neural network for discourse relation language models. arXiv preprint arXiv:1603.01913 (2016)
– reference: J. Koscak, R. Jaksa, P. Sincák, Prediction of temperature daily profile by stochastic update of backpropagation through time algorithm. J. Math. Syst. Sci. 2(4), 217–225 (2012)
– reference: Y. Pu, X. Yuan, K. Liao, J. Zhou, N. Zhang, X. Pu, Y. Zeng, A recursive two-circuits series analog fractance circuit for any order fractional calculus, in ICO20: Optical Information Processing, 60271Y (2006). doi:10.1117/12.668189
– reference: JumarieGOn the derivative chain-rules in fractional calculus via fractional difference and their application to systems modellingOpen Phys.201311661763310.2478/s11534-013-0256-7
– reference: C. Weng, D. Yu, S. Watanabe, B.H.F. Juang, Recurrent deep neural networks for robust speech recognition, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 5532–5536
– reference: GeorgeKSubramanianKSheshadhriNImproving transient response in adaptive control of nonlinear systemsIFAC PapersOnLine201649165866310.1016/j.ifacol.2016.03.131
– reference: WilliamsRJPengJAn efficient gradient-based algorithm for on-line training of recurrent network trajectoriesNeural Comput.19902449050110.1162/neco.1990.2.4.490
– reference: J. Ahmad, Design of Efficient Adaptive Beamforming Algorithms for Novel Mimo Architectures, Ph.D. Thesis, Iqra University, Karachi (2014)
– reference: AntoneloEACamponogaraEPlucenioASystem identification of a vertical riser model with echo state networksIFAC PapersOnLine201548630431010.1016/j.ifacol.2015.08.048
– reference: DebnathLRecent applications of fractional calculus to science and engineeringInt. J. Math. Math. Sci.200320035434133442202556610.1155/S01611712033014861036.26004
– reference: H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, GMD Report 159, (German National Research Center for Information Technology, 2002), p. 48
– reference: Q.V. Le, N. Jaitly, G.E. Hinton, A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015)
– reference: T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, M. Ranzato, Learning longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753 (2014)
– reference: SabatierJAgrawalOPMachadoJTAdvances in Fractional Calculus2007BerlinSpringer10.1007/978-1-4020-6042-71116.00014
– reference: WigrenTRecursive prediction error identification and scaling of non-linear state space models using a restricted black box parameterizationAutomatica2006421159168218307810.1016/j.automatica.2005.08.0171121.93316
– reference: BaoGZengZGlobal asymptotical stability analysis for a kind of discrete-time recurrent neural network with discontinuous activation functionsNeurocomputing201619324224910.1016/j.neucom.2016.02.017
– reference: P.K. Muthukumar, A.W. Black, Recurrent neural network postfilters for statistical parametric speech synthesis. arXiv preprint arXiv:1601.07215 (2016)
– reference: M. Weilbeer, Efficient numerical methods for fractional differential equations and their analytical background. Papierflieger (Braunschweig University of Technology, Braunschweig, 2005)
– reference: M. Zhang, Z. McCarthy, C. Finn, S. Levine, P. Abbeel, Learning deep neural network policies with continuous memory states. arXiv preprint arXiv:1507.01273 (2015)
– reference: HermansMDambreJBienstmanPOptoelectronic systems trained with backpropagation through timeIEEE Trans. Neural Netw. Learn. Syst.201526715451550347992210.1109/TNNLS.2014.2344002
– reference: HaykinSONeural Networks: A Comprehensive Foundation1994Upper Saddle RiverPrentice Hall PTR0828.68103
– reference: SahaSRaghavaGPrediction of continuous b-cell epitopes in an antigen using recurrent neural networkProteins Struct. Funct. Bioinform.2006651404810.1002/prot.21078
– reference: CerveraJBañosAAutomatic loop shaping in qft using crone structuresJ. Vib. Control2008149–1015131529246296310.1177/10775463070874331229.93069
– reference: GrauINápolesGBonetIGarcíaMMBackpropagation through time algorithm for training recurrent neural networks using variable length instancesComput. Sist.20131711524
– reference: JumarieGModified Riemann–Liouville derivative and fractional taylor series of nondifferentiable functions further resultsComput. Math. Appl.200651913671376223763410.1016/j.camwa.2006.02.0011137.65001
– reference: LovoieJOslerTJTremblayRFractional derivatives and special functionsSIAM Rev.197618224026840991410.1137/10180420324.44002
– volume: 49
  start-page: 658
  issue: 1
  year: 2016
  ident: 572_CR15
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2016.03.131
– ident: 572_CR36
– ident: 572_CR40
  doi: 10.1109/ICETECH.2015.7275027
– volume: 2
  start-page: 490
  issue: 4
  year: 1990
  ident: 572_CR66
  publication-title: Neural Comput.
  doi: 10.1162/neco.1990.2.4.490
– ident: 572_CR46
  doi: 10.1117/12.668189
– ident: 572_CR42
– ident: 572_CR48
  doi: 10.1109/ICASSP.2016.7472844
– ident: 572_CR44
  doi: 10.1109/ICASSP.2016.7472917
– ident: 572_CR63
  doi: 10.1109/ICASSP.2014.6854661
– ident: 572_CR9
  doi: 10.1007/s00521-016-2548-5
– ident: 572_CR34
  doi: 10.1155/2008/369421
– ident: 572_CR23
– ident: 572_CR2
  doi: 10.1109/ICCSCE.2016.7893626
– volume: 22
  start-page: 1244
  issue: 9
  year: 2015
  ident: 572_CR60
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2394301
– volume: 2003
  start-page: 3413
  issue: 54
  year: 2003
  ident: 572_CR11
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/S0161171203301486
– ident: 572_CR33
– volume-title: Advances in Fractional Calculus
  year: 2007
  ident: 572_CR50
  doi: 10.1007/978-1-4020-6042-7
– ident: 572_CR55
  doi: 10.1109/ICASSP.2015.7178896
– volume: 22
  start-page: 378
  issue: 3
  year: 2009
  ident: 572_CR26
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.06.003
– volume: 14
  start-page: 1487
  issue: 9–10
  year: 2008
  ident: 572_CR6
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307087435
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 572_CR16
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: 572_CR18
– ident: 572_CR22
  doi: 10.18653/v1/N16-1037
– volume: 193
  start-page: 242
  year: 2016
  ident: 572_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.017
– volume: 11
  start-page: 617
  issue: 6
  year: 2013
  ident: 572_CR28
  publication-title: Open Phys.
  doi: 10.2478/s11534-013-0256-7
– ident: 572_CR53
  doi: 10.1088/1674-1056/23/5/050503
– ident: 572_CR59
  doi: 10.1109/ICASSP.2013.6639310
– ident: 572_CR68
– volume: 6
  start-page: 801
  year: 1993
  ident: 572_CR30
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80125-X
– ident: 572_CR70
  doi: 10.1109/ICCV.2015.179
– volume: 48
  start-page: 304
  issue: 6
  year: 2015
  ident: 572_CR4
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2015.08.048
– ident: 572_CR3
  doi: 10.1109/BIGCOMP.2016.7425963
– ident: 572_CR65
  doi: 10.23919/ECC.2013.6669201
– volume: 19
  start-page: 416
  issue: 2
  year: 2011
  ident: 572_CR56
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2010.2042296
– volume: 24
  start-page: 2088
  issue: 12
  year: 2013
  ident: 572_CR13
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2271778
– ident: 572_CR1
– volume: 51
  start-page: 1367
  issue: 9
  year: 2006
  ident: 572_CR25
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.02.001
– volume: 14
  start-page: 1513
  issue: 9–10
  year: 2008
  ident: 572_CR7
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307087433
– ident: 572_CR8
  doi: 10.1109/ICASSP.2016.7472621
– volume-title: A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks
  year: 2015
  ident: 572_CR35
– ident: 572_CR21
– volume: 14
  start-page: 1415
  issue: 9–10
  year: 2008
  ident: 572_CR54
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307087440
– volume: 26
  start-page: 1545
  issue: 7
  year: 2015
  ident: 572_CR19
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2344002
– volume: 17
  start-page: 15
  issue: 1
  year: 2013
  ident: 572_CR17
  publication-title: Comput. Sist.
– volume: 65
  start-page: 40
  issue: 1
  year: 2006
  ident: 572_CR51
  publication-title: Proteins Struct. Funct. Bioinform.
  doi: 10.1002/prot.21078
– volume: 42
  start-page: 159
  issue: 1
  year: 2006
  ident: 572_CR64
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.08.017
– ident: 572_CR67
– volume: 14
  start-page: 1431
  issue: 9–10
  year: 2008
  ident: 572_CR39
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307087439
– volume: 86
  start-page: 2340
  issue: 9
  year: 2006
  ident: 572_CR43
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2005.10.017
– volume: 11
  start-page: 535
  issue: 1
  year: 2010
  ident: 572_CR27
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2009.01.003
– ident: 572_CR61
  doi: 10.1109/ICASSP.2016.7472841
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 572_CR45
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– ident: 572_CR69
  doi: 10.1109/ICRA.2016.7487174
– volume: 2
  start-page: 375
  issue: 5
  year: 1989
  ident: 572_CR12
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90022-1
– ident: 572_CR62
– ident: 572_CR32
  doi: 10.2307/2687575
– ident: 572_CR41
– ident: 572_CR10
  doi: 10.21437/Interspeech.2015-696
– ident: 572_CR29
– ident: 572_CR52
  doi: 10.21437/Interspeech.2015-350
– ident: 572_CR20
– ident: 572_CR31
  doi: 10.1007/s00034-016-0375-7
– volume: 18
  start-page: 240
  issue: 2
  year: 1976
  ident: 572_CR38
  publication-title: SIAM Rev.
  doi: 10.1137/1018042
– volume: 35
  start-page: 110
  year: 2015
  ident: 572_CR49
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.07.006
– ident: 572_CR24
– volume: 59
  start-page: 530
  issue: 1
  year: 2012
  ident: 572_CR58
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2134057
– volume: 107
  start-page: 327
  year: 2015
  ident: 572_CR47
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.06.015
– volume: 11
  start-page: 1079
  issue: 9
  year: 2007
  ident: 572_CR37
  publication-title: JACIII
  doi: 10.20965/jaciii.2007.p1079
– ident: 572_CR14
– volume: 63
  start-page: 6510
  issue: 10
  year: 2016
  ident: 572_CR57
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2542787
SSID ssj0019492
Score 2.3451498
Snippet In this research, we propose a novel algorithm for learning of the recurrent neural networks called as the fractional back-propagation through time (FBPTT)....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 593
SubjectTerms Algorithms
Back propagation
Back propagation networks
Chaos theory
Circuits and Systems
Electrical Engineering
Electronics and Microelectronics
Engineering
Fractional calculus
Instrumentation
Machine learning
Neural networks
Nonlinear systems
Recurrent neural networks
Signal,Image and Speech Processing
System identification
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXOCAeIrBQDlwAkVqkzZtjgUxJiR2mJi0W9Um2UAa29QVDvv1OH0xECBxruODE9tfavsLwKV0tEHUr2ioE04RgaNLBUxQwRyTBHhv5qkdTn7si97Qexj5o2qOe1l3u9clySJSN8NuBZcKtVEVMQajq03Y8i2bFx7iIYua0oH0ipeQbUWNYr4b1aXMn1R8TUafCPNbUbTINd092K1AIonKXd2HDTM7gJ016sBDGESkP383U9LNytEElL_Piv6tnN5gatKkok6dkGg6mWcv-fMrQYRKBvYPu-VkIpaYA5f1y07w5REMu3dPtz1avY9AFXdFTtk4FXLsK6OkVKE0XPjMGMHSNEn8NNGuctPA-phUiMtM4PmWL9DhmvsaA6Hmx9CazWfmBAg3oWvGjhcYbSuhoQxRNfeEDhPP9bRqg1MbKlYVebh9w2IaN7THhW1jtG1sbRuv2nDVLFmUzBl_CXdq68eVEy1j21uIiIwztw3X9Y6sff5N2em_pM9gG0FQWHZid6CVZ2_mHIFGnl4UB-sDXBDI8w
  priority: 102
  providerName: Springer Nature
Title A Novel Fractional Gradient-Based Learning Algorithm for Recurrent Neural Networks
URI https://link.springer.com/article/10.1007/s00034-017-0572-z
https://www.proquest.com/docview/1993256321
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AMVHM
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1Be4EDYhVlqXzgBLJI7KwHhAJqi0BEqKJSOUWJ7ZZDaaEEDnw9M1nKIsE1sS1lvMyLZ-Y9gKPQ0gZRv-KBTiVHBI5byhce94RlUh__m2VGxcm3sXc1cK6H7nAJ4roWhtIq6zOxOKj1TNEd-SklmqF7lsI-f37hpBpF0dVaQiOtpBX0WUExtgxNQcxYDWhedOK7_iKuEDqFTDKF2zg6w2Ed57QKWlFLUkaGzxHDCP7x01N9wc9fEdPCEXXXYa1CkCwqp3wDlsx0E1a_8QpuQT9i8ezdTFh3XtYtYPvevEjuyvkF-i3NKl7VMYsmY_zM_PGJIXxlfbp-J8ImRqwd2C0u08Rft2HQ7dxfXvFKPIEraXs5F6PMC0euMioMVRAa6bnCGE9kWZq6WaptZWc-bcBQIWgzvuMSmaAltXQ1npJa7kBjOpuaXWDSBLYZWY5vNIVJgzDAoaXj6SB1bEerFli1oRJVMYuTwMUkWXAiF7ZN0LYJ2Tb5aMHxostzSavxX-OD2vpJtcNek6_10IKTeka-vf5rsL3_B9uHFRKUL7PIDqCRz9_MIcKOPGvDctDttaEZ9R5uOu1qZeHTgYg-AZaS1eE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6FcIAeKlpApDzqQ3sBWeza3ocPqAqUEAqsUARSbsuu7aSHNAnJFlR-HL-N8T4SigQ3zrbnMB57PntmvgH4Jh1tEPUrGuqEU0TgeKQC5lOfOSYJ8N3MU1ucfBH57Wvxq-t1a_BY1cLYtMrqTswvaj1S9o983yaaoXvmzP0xvqW2a5SNrlYtNJKytYI-yCnGysKOM_PvHp9w04PTn7jf3xlrHV8dtWnZZYAq7voZZb3Ulz1PGSWlCqXhvseM8VmaJomXJtpVbhpYS5UK0Y0JhGdZ9xyuuafxOtEc5S7AouBC4uNv8fA4uuzM4hhS5G2ZbXiPovPtVnFVJ6cxdbjNAAkoYiZGH_73jHO4-yJCmzu-1gp8LBEraRYm9glqZvgZPjzjMVyFTpNEozszIK1JUSeB808meTJZRg_RT2pS8rj2SXPQR7Vmv_8QhMukY7_7LUEUsSwhuCwq0tKna3D9Lmpch_pwNDQbQLgJXdNzRGC0DcuGMkTRXPg6TIQrtGqAUykqViWTuW2oMYhnHMy5bmPUbWx1Gz80YHe2ZFzQeLw1eavSflye6Gk8t78G7FU78mz4NWFf3hb2FZbaVxfn8flpdLYJywjHwiInfAvq2eSv2UbIk6U7pV0RuHlvU34C_wwPMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RkKpyqIC2IiWAD3ApsrJr7_OAqvDY8GqEokbKbbtre-GQJpBsW5Gf1l_HzD7CQ4IbZ9tzGI89nz0z3wDshJY2iPoVD3QiOSJwPFK-8LgnLJP4-G6WKRUn_-h6J33nbOAOFuB_XQtDaZX1nVhc1Hqs6I-8RYlm6J6lsFtZlRZxeRR9v7nl1EGKIq11O43SRM7N3T98vk33T49wr3eFiI5_Hp7wqsMAV9L2ci6y1AszVxkVhioIjfRcYYwn0jRJ3DTRtrJTn6w0VIhsjO-4xLhnSS1djVeJlij3HSz5xOJOVepRZx7BCJ2iITMF9ji63UEdUbUKAlNLUu6HzxEtCT576hMfgO6z2Gzh8qIV-FhhVdYujWsVFsxoDZYfMRh-gl6bdcd_zZBFk7JCAud3JkUaWc4P0ENqVjG4XrH28AqVmF__ZgiUWY8--okaihE_CC7rlgnp08_QfxMlfoHF0Xhk1oFJE9gmsxzfaArIBmGAoqXj6SBxbEerBli1omJVcZhTK41hPGdfLnQbo25j0m08a8C3-ZKbksDjtcnNWvtxdZan8YPlNWCv3pFHwy8J-_q6sG14jwYcX5x2zzfgA-KwoEwGb8JiPvljNhHr5OlWYVQMfr21Fd8DhlgMzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fractional+Gradient-Based+Learning+Algorithm+for+Recurrent+Neural+Networks&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Khan%2C+Shujaat&rft.au=Ahmad%2C+Jawwad&rft.au=Naseem%2C+Imran&rft.au=Moinuddin%2C+Muhammad&rft.date=2018-02-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=37&rft.issue=2&rft.spage=593&rft.epage=612&rft_id=info:doi/10.1007%2Fs00034-017-0572-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_017_0572_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon