Activated porous carbons originated from the Indonesian snake skin fruit peel as cathode components for lithium sulfur battery

Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl 2 activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials pos...

Full description

Saved in:
Bibliographic Details
Published inIonics Vol. 25; no. 5; pp. 2121 - 2129
Main Authors Arie, Arenst Andreas, Kristianto, Hans, Cengiz, Elif Ceylan, Demir-Cakan, Rezan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0947-7047
1862-0760
DOI10.1007/s11581-018-2712-2

Cover

Abstract Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl 2 activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials possessed a high surface area of 2247 m 2  g −1 and a large pore volume of 1.97 cm 3  g −1 with sulfur loading of 63%. From the x-ray diffraction (XRD) patterns, Raman analysis, and SEM observation of the composites, it was shown that the sulfur was uniformly encapsulated inside the carbon pores, which was beneficial for the optimum utilization of sulfur and the confinement of soluble lithium polysulfides. The fabricated carbon-sulfur composite electrodes demonstrated an initial specific capacity of 945 mAh g −1 and good capacity retention until the 100th cycle at 0.1 C rate. At high C rate (1 and 2 C), the composite electrodes exhibited specific discharge capacity of 538 and 466 mAh g −1 until the 100th cycle, respectively. Those excellent electrochemical performances were attributed to the high surface area, combination of micropore/mesopore structures and low average pore diameter of porous carbons.
AbstractList Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl2 activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials possessed a high surface area of 2247 m2 g−1 and a large pore volume of 1.97 cm3 g−1 with sulfur loading of 63%. From the x-ray diffraction (XRD) patterns, Raman analysis, and SEM observation of the composites, it was shown that the sulfur was uniformly encapsulated inside the carbon pores, which was beneficial for the optimum utilization of sulfur and the confinement of soluble lithium polysulfides. The fabricated carbon-sulfur composite electrodes demonstrated an initial specific capacity of 945 mAh g−1 and good capacity retention until the 100th cycle at 0.1 C rate. At high C rate (1 and 2 C), the composite electrodes exhibited specific discharge capacity of 538 and 466 mAh g−1 until the 100th cycle, respectively. Those excellent electrochemical performances were attributed to the high surface area, combination of micropore/mesopore structures and low average pore diameter of porous carbons.
Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl 2 activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials possessed a high surface area of 2247 m 2  g −1 and a large pore volume of 1.97 cm 3  g −1 with sulfur loading of 63%. From the x-ray diffraction (XRD) patterns, Raman analysis, and SEM observation of the composites, it was shown that the sulfur was uniformly encapsulated inside the carbon pores, which was beneficial for the optimum utilization of sulfur and the confinement of soluble lithium polysulfides. The fabricated carbon-sulfur composite electrodes demonstrated an initial specific capacity of 945 mAh g −1 and good capacity retention until the 100th cycle at 0.1 C rate. At high C rate (1 and 2 C), the composite electrodes exhibited specific discharge capacity of 538 and 466 mAh g −1 until the 100th cycle, respectively. Those excellent electrochemical performances were attributed to the high surface area, combination of micropore/mesopore structures and low average pore diameter of porous carbons.
Author Arie, Arenst Andreas
Kristianto, Hans
Demir-Cakan, Rezan
Cengiz, Elif Ceylan
Author_xml – sequence: 1
  givenname: Arenst Andreas
  surname: Arie
  fullname: Arie, Arenst Andreas
  email: arenst@unpar.ac.id
  organization: Department of Chemical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University
– sequence: 2
  givenname: Hans
  surname: Kristianto
  fullname: Kristianto, Hans
  organization: Department of Chemical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University
– sequence: 3
  givenname: Elif Ceylan
  surname: Cengiz
  fullname: Cengiz, Elif Ceylan
  organization: Department of Material Science and Engineering, Gebze Technical University, Institute of Nanotechnology, Gebze Technical University
– sequence: 4
  givenname: Rezan
  surname: Demir-Cakan
  fullname: Demir-Cakan, Rezan
  organization: Institute of Nanotechnology, Gebze Technical University, Department of Chemical Engineering, Gebze Technical University
BookMark eNp9kE9LwzAYh4NMcJt-AG8Bz9UkbZP2OIZ_BgMveg5pkm7ZuqQmqbCLn93MCoKgp_fw-z3v-_LMwMQ6qwG4xugWI8TuAsZlhTOEq4wwTDJyBqa4oiRDjKIJmKK6YBlDBbsAsxB2CFGKCZuCj4WM5l1ErWDvvBsClMI3zgbovNkY-5W03h1g3Gq4siqdDUZYGKzYaxj2xqZ4MBH2WndQnPi4dUpD6Q59KtsYYOs87EzcmuEAw9C1g4eNiFH74yU4b0UX9NX3nIPXh_uX5VO2fn5cLRfrTOaYxoxIgipWq0qIOke0LUWDJBOa1RVt6pxWjW4pw6woVaFqrHDBqFaSlKpkjRQyn4ObcW_v3dugQ-Q7N3ibTnJCSEmSHlSnFhtb0rsQvG65NFFE42z0wnQcI36SzUfZPMnmJ9mcJBL_IntvDsIf_2XIyITUtRvtf376G_oEIG2V_w
CitedBy_id crossref_primary_10_1039_D1DT03705F
crossref_primary_10_1007_s11664_024_11297_1
crossref_primary_10_1088_1757_899X_742_1_012045
crossref_primary_10_1088_1757_899X_742_1_012044
crossref_primary_10_1002_slct_202002986
crossref_primary_10_1039_D1MA00332A
crossref_primary_10_1016_j_rser_2021_111783
crossref_primary_10_1007_s11581_019_03196_x
crossref_primary_10_1021_acsami_4c15406
crossref_primary_10_1021_acs_energyfuels_0c03699
crossref_primary_10_1016_j_cis_2020_102263
crossref_primary_10_1002_adfm_202008354
crossref_primary_10_1007_s42452_021_04540_5
crossref_primary_10_1016_j_mset_2022_12_009
crossref_primary_10_1039_D1QM00255D
crossref_primary_10_3390_molecules29174183
crossref_primary_10_1016_j_hazadv_2023_100317
crossref_primary_10_1166_sam_2022_4382
Cites_doi 10.1166/jnn.2018.15724
10.1007/s12598-017-0900-2
10.1007/s12274-017-1659-3
10.1016/j.coche.2016.08.004
10.1039/C5RA21416E
10.1016/j.electacta.2017.01.166
10.1016/j.electacta.2015.07.077
10.1007/s11581-015-1528-6
10.1016/j.ensm.2015.09.007
10.1016/j.jpowsour.2016.11.038
10.1016/j.jallcom.2017.05.206
10.3390/app7101036
10.1016/j.ssi.2016.10.012
10.1016/j.jallcom.2017.07.118
10.1007/s10853-017-1288-y
10.1007/s10008-017-3629-9
10.1016/j.jpowsour.2015.03.135
10.1016/j.electacta.2017.10.076
10.1007/s40843-016-5047-8
10.1016/j.cogsc.2017.02.008
10.1016/j.matlet.2018.01.096
10.1016/j.jpowsour.2016.05.024
10.1016/j.matlet.2017.08.090
10.1016/j.electacta.2013.11.035
10.5185/amlett.2016.6194
10.1016/j.jpowsour.2017.07.038
10.1039/C6NR04923K
10.15376/biores.12.4.8078-8092
10.1002/cbdv.201500039
10.1016/j.jpowsour.2013.02.095
10.1016/j.mser.2017.09.001
10.1021/acsami.7b04069
10.1016/j.jallcom.2016.11.075
10.1016/j.electacta.2016.03.176
10.3390/en10121937
10.1016/j.matchemphys.2018.06.076
10.1039/C4TA03503H
10.1021/acsami.7b09310
10.1016/j.nantod.2015.04.011
10.1016/j.jpowsour.2016.11.102
10.3390/nano7090260
10.1016/j.electacta.2016.11.139
10.1016/j.nanoen.2015.05.006
10.1016/j.rser.2015.02.051
10.1007/s12598-017-0891-z
10.1002/chem.201600040
10.1016/j.electacta.2016.07.153
10.1039/C6RA09338H
10.1007/s11581-017-2260-1
10.1016/j.carbon.2014.01.002
10.20964/2017.07.17
10.1021/acs.jpcc.7b05554
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s11581-018-2712-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1862-0760
EndPage 2129
ExternalDocumentID 10_1007_s11581_018_2712_2
GroupedDBID -4Y
-58
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NB0
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~A9
-Y2
2.D
2VQ
AAIKT
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
IHE
N2Q
NDZJH
O9-
RHV
RNI
RZK
S1Z
S26
S28
SCLPG
T16
UZXMN
VFIZW
W4F
ABRTQ
ID FETCH-LOGICAL-c316t-2c20879d8aa9306f5ab0c7ae7986b9368bef671745d4d91d1476edc25d57bcac3
IEDL.DBID U2A
ISSN 0947-7047
IngestDate Wed Sep 17 23:56:15 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 00:58:45 EDT 2025
Fri Feb 21 02:32:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Li–S battery
Porous carbon
Biomass
Cathode
Fruit peel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-2c20879d8aa9306f5ab0c7ae7986b9368bef671745d4d91d1476edc25d57bcac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2225209409
PQPubID 2043901
PageCount 9
ParticipantIDs proquest_journals_2225209409
crossref_citationtrail_10_1007_s11581_018_2712_2
crossref_primary_10_1007_s11581_018_2712_2
springer_journals_10_1007_s11581_018_2712_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Ionics The Science and Technology of Ionic Motion
PublicationTitle Ionics
PublicationTitleAbbrev Ionics
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Zhang, Xiang, Dong, Liu, Wu, Xu, du (CR18) 2014; 116
Zhang, Xie, Kim, Zaghib, Mauger, Julien (CR3) 2017; 121
Zhu, Gu, Chen, Yang, Wei, Zhou (CR32) 2017; 24
Yuan, Yin, Zhao, Bakenov, Wang, Zhang (CR33) 2016; 22
Arie, Kristianto, Demir, Cakan (CR43) 2018; 217
Yahya, Al-Qodah, Ngah (CR40) 2015; 46
Zhao, Ren, Tan, Babaa, Bakenov, Liu, Zhang (CR36) 2017; 7
Wu, Mou, Zhou, Zheng, Jiang, Lin (CR19) 2016; 212
Guo, Zhang, Jiang, Zhao, Su, du (CR22) 2015; 176
Zhang, Zheng, Lin, Li, Liu, Zhao, Pang, Cao, He, Shi (CR51) 2014; 2
Zheng, Zhang, Chen, Lin, Pang, Yu (CR9) 2017; 10
Liang, Sun, Li, Cheng (CR12) 2016; 2
Borchardt, Althues, Kaskel (CR14) 2017; 4
Wang, Xie, Wei (CR11) 2015; 15
Du, Xu, Jin (CR37) 2017; 341
Li, Hu, Li, Ye, Gao (CR52) 2013; 240
Ma, Hendrickson, Wei, Archer (CR7) 2015; 10
Cui, Liang, Ouyang, Huang, Zeng, Wu, Li, du, Li, Baker, Huang, Zhang (CR8) 2016; 6
Borchardt, Oschatz, Kaskel (CR13) 2016; 22
You, Liu, Zhang, Walle, Li, Liu (CR30) 2018; 217
Xiang, Wang, Wu, Guo, Wu, Zhang, Liu (CR23) 2017; 227
Xue, Chen, Ren, Tan, Li, Zhang (CR16) 2017; 209
CR47
Cheng, Ji, Xu, Liu (CR31) 2015; 5
Zhang, Huang, Chen, Wu, Zhang (CR49) 2017; 724
Półrolniczak, Nowicki, Wasiński, Pietrzak, Walkowiak (CR34) 2016; 297
Zeng, Li, Jiang, Yu (CR5) 2017; 36
Nara, Tsuda, Osaka (CR6) 2017; 21
Susanti, Kevin, Erico, Kevien, Andreas, Kristianto, Handoko (CR42) 2018; 18
Wang, Huang, Li, Lin, Liu, Li (CR10) 2017; 339
Canales-Flores, Prieto-García (CR39) 2016; 13
Deng, Hu, Chen, Zhang, Tang, Liu, Fan, Xiao (CR48) 2016; 322
Imtiaz, Zhang, Zafar, Ji, Huang, Anderson, Zhang, Huang (CR35) 2016; 59
Liu, Liu, Wang, Huang, Hu, Ke, Liu, Shi, Guo (CR15) 2017; 718
Wang, Fu, Li, Wang, Guo, Liu, Zhao (CR46) 2015; 285
Chen, Du, He (CR17) 2017; 9
Ai, Liu, Wang, Wang, Wang, Zhang, Huang (CR21) 2017; 258
Arie, Vincent (CR44) 2016; 7
Li, Wang, Wang, Gu (CR45) 2017; 36
Hencz, Gu, Zhou, Martens, Zhang (CR28) 2017; 52
Zheng, Hu, Zhang, Tang, Li, Pang (CR27) 2017; 7
Li, Wang, Gao, Li, Cai, Li, Peng, Huo, Chu (CR20) 2017; 229
Geng, Xiao, Wang, Yi, Xu, Li, Zhang (CR50) 2016; 202
CR29
CR26
Varil, Bergna, Lahti (CR38) 2017; 12
Zhu, Xu, Zhang, Wang, Li, Wang (CR24) 2017; 695
Kang, Deng, Ju, Li, Wu, Ma, Li, Naebe, Cheng (CR1) 2016; 8
Fu, Guo (CR4) 2016; 13
Li, Qin, Zhang, Fang, Lai, Li (CR25) 2017; 362
Halim, Liu, Ardhi, Hudaya, Wijaya, Lee, Kim, Lee (CR41) 2017; 9
Fotouhi, Auger, O’Neill, Cleaver, Walus (CR2) 2017; 10
MA Yahya (2712_CR40) 2015; 46
J Guo (2712_CR22) 2015; 176
RF Susanti (2712_CR42) 2018; 18
Z Geng (2712_CR50) 2016; 202
M Halim (2712_CR41) 2017; 9
M Xue (2712_CR16) 2017; 209
F Ai (2712_CR21) 2017; 258
X Zhang (2712_CR3) 2017; 121
W Deng (2712_CR48) 2016; 322
D Wang (2712_CR46) 2015; 285
2712_CR26
Z Du (2712_CR37) 2017; 341
2712_CR29
J Liang (2712_CR12) 2016; 2
T Varil (2712_CR38) 2017; 12
L Borchardt (2712_CR13) 2016; 22
G Yuan (2712_CR33) 2016; 22
Y Zhu (2712_CR24) 2017; 695
W Zhang (2712_CR49) 2017; 724
F Li (2712_CR25) 2017; 362
H Wu (2712_CR19) 2016; 212
GC Li (2712_CR52) 2013; 240
M Xiang (2712_CR23) 2017; 227
L Borchardt (2712_CR14) 2017; 4
J Liu (2712_CR15) 2017; 718
M Zheng (2712_CR27) 2017; 7
X You (2712_CR30) 2018; 217
S Zhang (2712_CR51) 2014; 2
LC Zeng (2712_CR5) 2017; 36
QQ Wang (2712_CR10) 2017; 339
Y Cui (2712_CR8) 2016; 6
Z Chen (2712_CR17) 2017; 9
L Ma (2712_CR7) 2015; 10
Y Zhao (2712_CR36) 2017; 7
M Zheng (2712_CR9) 2017; 10
W Kang (2712_CR1) 2016; 8
2712_CR47
Y Cheng (2712_CR31) 2015; 5
AA Arie (2712_CR43) 2018; 217
AA Arie (2712_CR44) 2016; 7
J Zhang (2712_CR18) 2014; 116
P Półrolniczak (2712_CR34) 2016; 297
RA Canales-Flores (2712_CR39) 2016; 13
C Li (2712_CR45) 2017; 36
Y Li (2712_CR20) 2017; 229
C Fu (2712_CR4) 2016; 13
H Nara (2712_CR6) 2017; 21
L Hencz (2712_CR28) 2017; 52
JG Wang (2712_CR11) 2015; 15
A Fotouhi (2712_CR2) 2017; 10
S Imtiaz (2712_CR35) 2016; 59
Y-E Zhu (2712_CR32) 2017; 24
References_xml – volume: 18
  start-page: 7263
  year: 2018
  end-page: 7268
  ident: CR42
  article-title: Delignification, carbonization temperature and carbonization time effects on the hydrothermal conversion of salacca peel
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2018.15724
– volume: 36
  start-page: 365
  year: 2017
  end-page: 380
  ident: CR45
  article-title: Recent advances in cathode materials for Li–S battery: structure and performance
  publication-title: Rare Metals
  doi: 10.1007/s12598-017-0900-2
– volume: 10
  start-page: 4305
  year: 2017
  end-page: 4317
  ident: CR9
  article-title: Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1659-3
– volume: 13
  start-page: 53
  year: 2016
  end-page: 62
  ident: CR4
  article-title: Challenges and current development of sulfur cathode in lithium–sulfur battery
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2016.08.004
– volume: 5
  start-page: 100089
  year: 2015
  end-page: 100096
  ident: CR31
  article-title: Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for Li–S batteries
  publication-title: RSC Adv
  doi: 10.1039/C5RA21416E
– volume: 229
  start-page: 352
  year: 2017
  end-page: 360
  ident: CR20
  article-title: Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium–sulfur batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.01.166
– volume: 176
  start-page: 853
  year: 2015
  end-page: 860
  ident: CR22
  article-title: Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.07.077
– volume: 22
  start-page: 63
  year: 2016
  end-page: 69
  ident: CR33
  article-title: Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries
  publication-title: Ionics (Kiel)
  doi: 10.1007/s11581-015-1528-6
– ident: CR29
– volume: 2
  start-page: 76
  year: 2016
  end-page: 106
  ident: CR12
  article-title: Carbon materials for Li-S batteries: functional evolution and performance improvement
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2015.09.007
– volume: 339
  start-page: 20
  year: 2017
  end-page: 26
  ident: CR10
  article-title: A facile and scalable method to prepare carbon nanotube-grafted-graphene for high performance Li-S battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.11.038
– volume: 718
  start-page: 373
  year: 2017
  end-page: 378
  ident: CR15
  article-title: Walnut shell-derived activated carbon: synthesis and its application in the sulfur cathode for lithium–sulfur batteries
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.05.206
– volume: 7
  start-page: 1036
  year: 2017
  ident: CR27
  article-title: Macroporous activated carbon derived from rapeseed shell for lithium–sulfur batteries
  publication-title: Appl Sci
  doi: 10.3390/app7101036
– volume: 297
  start-page: 59
  year: 2016
  end-page: 63
  ident: CR34
  article-title: Biomass-derived hierarchical carbon as sulfur cathode stabilizing agent for lithium-sulfur batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.10.012
– volume: 724
  start-page: 575
  year: 2017
  end-page: 580
  ident: CR49
  article-title: Shaddock wadding created activated carbon as high sulfur content encapsulator for lithium-sulfur batteries
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.07.118
– volume: 52
  start-page: 12336
  year: 2017
  end-page: 12347
  ident: CR28
  article-title: Materials highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1288-y
– volume: 21
  start-page: 1925
  year: 2017
  end-page: 1937
  ident: CR6
  article-title: Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-017-3629-9
– volume: 285
  start-page: 469
  year: 2015
  end-page: 477
  ident: CR46
  article-title: Mesoporous carbon spheres with controlled porosity for high-performance lithium sulfur batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.03.135
– volume: 258
  start-page: 80
  year: 2017
  end-page: 89
  ident: CR21
  article-title: Heteroatoms-doped porous carbon derived from tuna bone for high performance Li-S batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.10.076
– volume: 59
  start-page: 389
  year: 2016
  end-page: 407
  ident: CR35
  article-title: Biomass-derived nanostructured porous carbons for lithium-sulfur batteries
  publication-title: Sci China Mater
  doi: 10.1007/s40843-016-5047-8
– volume: 4
  start-page: 64
  year: 2017
  end-page: 71
  ident: CR14
  article-title: Carbon nano-composites for lithium–sulfur batteries
  publication-title: Curr Opin Green Sustain Chem
  doi: 10.1016/j.cogsc.2017.02.008
– volume: 217
  start-page: 167
  year: 2018
  end-page: 170
  ident: CR30
  article-title: Novel biomass derived hierarchical porous carbon for lithium sulfur batteries
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.01.096
– ident: CR26
– volume: 322
  start-page: 138
  year: 2016
  end-page: 146
  ident: CR48
  article-title: Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.05.024
– volume: 209
  start-page: 594
  year: 2017
  end-page: 597
  ident: CR16
  article-title: A novel mangosteen peels derived hierarchical porous carbon for lithium sulfur battery
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2017.08.090
– volume: 116
  start-page: 146
  year: 2014
  end-page: 151
  ident: CR18
  article-title: Biomass derived activated carbon with 3D connected architecture for rechargeable lithium–sulfur batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.11.035
– volume: 7
  start-page: 226
  year: 2016
  end-page: 229
  ident: CR44
  article-title: Activated carbons from KOH-activation of salacca peels as low cost potential adsorbents for dye removal
  publication-title: Adv Mater Lett
  doi: 10.5185/amlett.2016.6194
– volume: 362
  start-page: 160
  year: 2017
  end-page: 167
  ident: CR25
  article-title: Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.07.038
– ident: CR47
– volume: 8
  start-page: 16541
  year: 2016
  end-page: 16588
  ident: CR1
  article-title: A review of recent developments in rechargeable lithium–sulfur batteries
  publication-title: Nanoscale
  doi: 10.1039/C6NR04923K
– volume: 12
  start-page: 8078
  year: 2017
  end-page: 8092
  ident: CR38
  article-title: Activated carbon production from peat using ZnCl2: characterization and applications
  publication-title: BioResources
  doi: 10.15376/biores.12.4.8078-8092
– volume: 13
  start-page: 261
  year: 2016
  end-page: 268
  ident: CR39
  article-title: Activation methods of carbonaceous materials obtained from agricultural waste
  publication-title: Chem Biodivers
  doi: 10.1002/cbdv.201500039
– volume: 240
  start-page: 598
  year: 2013
  end-page: 605
  ident: CR52
  article-title: Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.02.095
– volume: 121
  start-page: 1
  year: 2017
  end-page: 29
  ident: CR3
  article-title: Advances in lithium–sulfur batteries
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2017.09.001
– volume: 9
  start-page: 20566
  year: 2017
  end-page: 20576
  ident: CR41
  article-title: Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b04069
– volume: 695
  start-page: 2246
  year: 2017
  end-page: 2252
  ident: CR24
  article-title: Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium-sulfur batteries
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.11.075
– volume: 202
  start-page: 131
  year: 2016
  end-page: 139
  ident: CR50
  article-title: Improved electrochemical performance of biomass-derived Nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.03.176
– volume: 10
  start-page: 1937
  year: 2017
  ident: CR2
  article-title: Lithium-sulfur battery technology readiness and applications—a review
  publication-title: Energies
  doi: 10.3390/en10121937
– volume: 217
  start-page: 254
  year: 2018
  end-page: 261
  ident: CR43
  article-title: Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2018.06.076
– volume: 2
  start-page: 15889
  year: 2014
  end-page: 15896
  ident: CR51
  article-title: Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium-sulfur batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA03503H
– volume: 9
  start-page: 33855
  year: 2017
  end-page: 33862
  ident: CR17
  article-title: Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b09310
– volume: 10
  start-page: 315
  year: 2015
  end-page: 338
  ident: CR7
  article-title: Nanomaterials: science and applications in the lithium-sulfur battery
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.011
– volume: 341
  start-page: 139
  year: 2017
  end-page: 146
  ident: CR37
  article-title: The correlation between carbon structures and electrochemical properties of sulfur/carbon composites for Li-S batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.11.102
– volume: 7
  start-page: 260
  year: 2017
  ident: CR36
  article-title: Biomass waste inspired highly porous carbon for high performance lithium/sulfur batteries
  publication-title: Nanomaterials
  doi: 10.3390/nano7090260
– volume: 227
  start-page: 7
  year: 2017
  end-page: 16
  ident: CR23
  article-title: Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium-sulfur batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.11.139
– volume: 15
  start-page: 413
  year: 2015
  end-page: 444
  ident: CR11
  article-title: Advanced engineering of nanostructured carbons for lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.006
– volume: 46
  start-page: 218
  year: 2015
  end-page: 235
  ident: CR40
  article-title: Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2015.02.051
– volume: 36
  start-page: 339
  year: 2017
  end-page: 364
  ident: CR5
  article-title: Recent progress in Li–S and Li–se batteries
  publication-title: Rare Metals
  doi: 10.1007/s12598-017-0891-z
– volume: 22
  start-page: 7324
  year: 2016
  end-page: 7351
  ident: CR13
  article-title: Carbon materials for lithium sulfur batteries—ten critical questions
  publication-title: Chemistry
  doi: 10.1002/chem.201600040
– volume: 212
  start-page: 1021
  year: 2016
  end-page: 1030
  ident: CR19
  article-title: Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.07.153
– volume: 6
  start-page: 64228
  year: 2016
  end-page: 64233
  ident: CR8
  article-title: A novel sulfur-impregnated porous carbon matrix as a cathode material for a lithium sulfur battery
  publication-title: RSC Adv
  doi: 10.1039/C6RA09338H
– volume: 24
  start-page: 1075
  year: 2017
  end-page: 1081
  ident: CR32
  article-title: Hard carbon derived from corn straw piths as anode materials for sodium ion batteries
  publication-title: Ionics (Kiel)
  doi: 10.1007/s11581-017-2260-1
– volume: 36
  start-page: 365
  year: 2017
  ident: 2712_CR45
  publication-title: Rare Metals
  doi: 10.1007/s12598-017-0900-2
– volume: 341
  start-page: 139
  year: 2017
  ident: 2712_CR37
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.11.102
– volume: 229
  start-page: 352
  year: 2017
  ident: 2712_CR20
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.01.166
– volume: 7
  start-page: 260
  year: 2017
  ident: 2712_CR36
  publication-title: Nanomaterials
  doi: 10.3390/nano7090260
– volume: 217
  start-page: 167
  year: 2018
  ident: 2712_CR30
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.01.096
– volume: 24
  start-page: 1075
  year: 2017
  ident: 2712_CR32
  publication-title: Ionics (Kiel)
  doi: 10.1007/s11581-017-2260-1
– volume: 9
  start-page: 33855
  year: 2017
  ident: 2712_CR17
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b09310
– volume: 2
  start-page: 76
  year: 2016
  ident: 2712_CR12
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2015.09.007
– volume: 212
  start-page: 1021
  year: 2016
  ident: 2712_CR19
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.07.153
– volume: 322
  start-page: 138
  year: 2016
  ident: 2712_CR48
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.05.024
– volume: 176
  start-page: 853
  year: 2015
  ident: 2712_CR22
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.07.077
– volume: 21
  start-page: 1925
  year: 2017
  ident: 2712_CR6
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-017-3629-9
– volume: 217
  start-page: 254
  year: 2018
  ident: 2712_CR43
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2018.06.076
– volume: 7
  start-page: 226
  year: 2016
  ident: 2712_CR44
  publication-title: Adv Mater Lett
  doi: 10.5185/amlett.2016.6194
– volume: 10
  start-page: 1937
  year: 2017
  ident: 2712_CR2
  publication-title: Energies
  doi: 10.3390/en10121937
– volume: 297
  start-page: 59
  year: 2016
  ident: 2712_CR34
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.10.012
– ident: 2712_CR26
  doi: 10.1016/j.carbon.2014.01.002
– ident: 2712_CR29
  doi: 10.20964/2017.07.17
– volume: 7
  start-page: 1036
  year: 2017
  ident: 2712_CR27
  publication-title: Appl Sci
  doi: 10.3390/app7101036
– volume: 10
  start-page: 4305
  year: 2017
  ident: 2712_CR9
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1659-3
– volume: 121
  start-page: 1
  year: 2017
  ident: 2712_CR3
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2017.09.001
– volume: 9
  start-page: 20566
  year: 2017
  ident: 2712_CR41
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b04069
– ident: 2712_CR47
  doi: 10.1021/acs.jpcc.7b05554
– volume: 258
  start-page: 80
  year: 2017
  ident: 2712_CR21
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.10.076
– volume: 227
  start-page: 7
  year: 2017
  ident: 2712_CR23
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.11.139
– volume: 18
  start-page: 7263
  year: 2018
  ident: 2712_CR42
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2018.15724
– volume: 718
  start-page: 373
  year: 2017
  ident: 2712_CR15
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.05.206
– volume: 59
  start-page: 389
  year: 2016
  ident: 2712_CR35
  publication-title: Sci China Mater
  doi: 10.1007/s40843-016-5047-8
– volume: 13
  start-page: 53
  year: 2016
  ident: 2712_CR4
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2016.08.004
– volume: 209
  start-page: 594
  year: 2017
  ident: 2712_CR16
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2017.08.090
– volume: 240
  start-page: 598
  year: 2013
  ident: 2712_CR52
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.02.095
– volume: 339
  start-page: 20
  year: 2017
  ident: 2712_CR10
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.11.038
– volume: 22
  start-page: 63
  year: 2016
  ident: 2712_CR33
  publication-title: Ionics (Kiel)
  doi: 10.1007/s11581-015-1528-6
– volume: 285
  start-page: 469
  year: 2015
  ident: 2712_CR46
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.03.135
– volume: 10
  start-page: 315
  year: 2015
  ident: 2712_CR7
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.011
– volume: 15
  start-page: 413
  year: 2015
  ident: 2712_CR11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.006
– volume: 4
  start-page: 64
  year: 2017
  ident: 2712_CR14
  publication-title: Curr Opin Green Sustain Chem
  doi: 10.1016/j.cogsc.2017.02.008
– volume: 22
  start-page: 7324
  year: 2016
  ident: 2712_CR13
  publication-title: Chemistry
  doi: 10.1002/chem.201600040
– volume: 362
  start-page: 160
  year: 2017
  ident: 2712_CR25
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.07.038
– volume: 8
  start-page: 16541
  year: 2016
  ident: 2712_CR1
  publication-title: Nanoscale
  doi: 10.1039/C6NR04923K
– volume: 6
  start-page: 64228
  year: 2016
  ident: 2712_CR8
  publication-title: RSC Adv
  doi: 10.1039/C6RA09338H
– volume: 5
  start-page: 100089
  year: 2015
  ident: 2712_CR31
  publication-title: RSC Adv
  doi: 10.1039/C5RA21416E
– volume: 695
  start-page: 2246
  year: 2017
  ident: 2712_CR24
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.11.075
– volume: 2
  start-page: 15889
  year: 2014
  ident: 2712_CR51
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA03503H
– volume: 36
  start-page: 339
  year: 2017
  ident: 2712_CR5
  publication-title: Rare Metals
  doi: 10.1007/s12598-017-0891-z
– volume: 13
  start-page: 261
  year: 2016
  ident: 2712_CR39
  publication-title: Chem Biodivers
  doi: 10.1002/cbdv.201500039
– volume: 202
  start-page: 131
  year: 2016
  ident: 2712_CR50
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.03.176
– volume: 116
  start-page: 146
  year: 2014
  ident: 2712_CR18
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.11.035
– volume: 12
  start-page: 8078
  year: 2017
  ident: 2712_CR38
  publication-title: BioResources
  doi: 10.15376/biores.12.4.8078-8092
– volume: 724
  start-page: 575
  year: 2017
  ident: 2712_CR49
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.07.118
– volume: 52
  start-page: 12336
  year: 2017
  ident: 2712_CR28
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1288-y
– volume: 46
  start-page: 218
  year: 2015
  ident: 2712_CR40
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2015.02.051
SSID ssj0066127
Score 2.2776244
Snippet Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl 2 activation...
Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl2 activation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2121
SubjectTerms Activated carbon
Carbon
Carbonization
Cathodes
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Diffraction patterns
Electrochemistry
Electrodes
Energy Storage
Lithium
Lithium sulfur batteries
Optical and Electronic Materials
Original Paper
Raman spectroscopy
Renewable and Green Energy
Sulfur
Surface area
X-ray diffraction
Zinc chloride
Title Activated porous carbons originated from the Indonesian snake skin fruit peel as cathode components for lithium sulfur battery
URI https://link.springer.com/article/10.1007/s11581-018-2712-2
https://www.proquest.com/docview/2225209409
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iB72IK44bOXhSAm2mSZrjKI4benJATyXLKw6ORabtwYu_3ZdO66Co4KmHvKTQL02-x1s-Qo4S4B5SDszmGlgIFLFUK8_QHnRsnNSNZuTtnbwcJdcP4qGt4y67bPcuJNmc1PNit1ikwfVFZFXMGZ67SyK0k8JNPOKD7vjF-2am06oTxVSUqC6U-dMSXy-jOcP8FhRt7prhGlltSSIdzFBdJwtQbJDls06bbZO8D1wjSwaeIn9G5506M7W4gWgrdBVGQuUIRX5Hr4JiB4RqSVoW5hlo-TwucLgeV_QVYEJNmB-UpIGGFHM0LqqSIp2lSNKfxvULLetJXk-pbbpxvm2R0fD8_uyStUoKzPVjWTHueJQq7VNjNPoIuTA2csqA0qm0ui9TC7lExy4RPvE69nGiJHjHhRfKOuP622SxwJfvECpSDQIAnJYmUeCMtNbpKHcaseAi75Go-6SZa9uMB7WLSTZvkBxQyBCFLKCQ8R45_pzyOuux8ZfxfodT1v5uZRacVh46AeoeOemwmw__utjuv6z3yArSJT1Ld9wni9W0hgOkJJU9JEuD4enpXXhePN6cHzZb8gOz_t20
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB72IT1yfOXhSAm22SZrjIsr6PLngreQxxcW1LNv24MXf7qTbuigqeM4khX7J5BsmMx8hpwlwDykHZnMNLCSKWKqVZ2gPOjZO6kYz8v5BDkfJzZN4auu4y-61e5eSbDz1otgtFmkIfRFZFXOGfnclZBlDxDXig8794n0z12nViWIqSlSXyvxpia-X0YJhfkuKNnfN1QZZb0kiHcxR3SRLUGyR1YtOm22bvA9cI0sGniJ_xuCdOjOzuIFoK3QVRkLlCEV-R6-DYgeEaklaFuYFaPkyLnC4Hld0CjChJswPStJAwxNzNC6qkiKdpUjSn8f1Ky3rSV7PqG26cb7tkNHV5ePFkLVKCsz1Y1kx7niUKu1TYzTGCLkwNnLKgNKptLovUwu5xMAuET7xOvZxoiR4x4UXyjrj-rtkucCP7xEqUg0CAJyWJlHgjLTW6Sh3Gs8yF3mPRN0vzVzbZjyoXUyyRYPkgEKGKGQBhYz3yNnnlOm8x8ZfxocdTll73MosBK08dALUPXLeYbcY_nWx_X9Zn5DV4eP9XXZ3_XB7QNaQOun508dDslzNajhCelLZ42Y7fgA-uN2H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQVgIuvBFbCvjACeQ28foRH1elS0uh4kClcgp-TMRql3S1SQ5w4Lcz3sSsqAAJcfbYScYT-xvN4yPkuQAeoODAXGWAxUARK4wODOXB5NYrs-GMfHemjs_Fmwt5MfCcNinbPYUk-5qG2KWpbg9WoTrYFr7lsohuMO6yzjnDM3hHRAqJEdmZvv54epQOY7x9etZWIzTTmdApsPm7RX69mrZ480qIdHPzzG6TT-md-4STxX7Xun3_7Uo7x__4qDvk1oBK6bQ3o7vkGtT3yI3DRAZ3n3yf-g0PGgSKgP2ya6i3a4cWSwdmrTgSS1UoAkp6EilCIJZn0qa2C6DNYl7jcDdv6QpgSW2cH6mrgcacdhSu24YifqboFXyed19o0y2rbk3dpv3n1wfkfHb04fCYDdQNzE9y1TLueVZoEwprDTollbQu89qCNoVyZqIKB5VCT1LIIILJQy60guC5DFI7b_3kIRnV-PBHhMrCgAQAb5QVGrxVznmTVd7g4cFlNSZZ2rXSD33NI73Gstx2ZI6KLVGxZVRsycfkxc8pq76px9-E95IplMP_3ZTRS-ax9aAZk5dpZ7fDf1xs95-kn5Hr71_NyrcnZ6ePyU2EaqZPtdwjo3bdwROEQ617Opj8DzMVAzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activated+porous+carbons+originated+from+the+Indonesian+snake+skin+fruit+peel+as+cathode+components+for+lithium+sulfur+battery&rft.jtitle=Ionics&rft.au=Arie%2C+Arenst+Andreas&rft.au=Kristianto%2C+Hans&rft.au=Cengiz%2C+Elif+Ceylan&rft.au=Demir-Cakan%2C+Rezan&rft.date=2019-05-01&rft.issn=0947-7047&rft.eissn=1862-0760&rft.volume=25&rft.issue=5&rft.spage=2121&rft.epage=2129&rft_id=info:doi/10.1007%2Fs11581-018-2712-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11581_018_2712_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7047&client=summon