Activated porous carbons originated from the Indonesian snake skin fruit peel as cathode components for lithium sulfur battery
Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl 2 activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials pos...
Saved in:
Published in | Ionics Vol. 25; no. 5; pp. 2121 - 2129 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0947-7047 1862-0760 |
DOI | 10.1007/s11581-018-2712-2 |
Cover
Abstract | Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl
2
activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials possessed a high surface area of 2247 m
2
g
−1
and a large pore volume of 1.97 cm
3
g
−1
with sulfur loading of 63%. From the x-ray diffraction (XRD) patterns, Raman analysis, and SEM observation of the composites, it was shown that the sulfur was uniformly encapsulated inside the carbon pores, which was beneficial for the optimum utilization of sulfur and the confinement of soluble lithium polysulfides. The fabricated carbon-sulfur composite electrodes demonstrated an initial specific capacity of 945 mAh g
−1
and good capacity retention until the 100th cycle at 0.1 C rate. At high C rate (1 and 2 C), the composite electrodes exhibited specific discharge capacity of 538 and 466 mAh g
−1
until the 100th cycle, respectively. Those excellent electrochemical performances were attributed to the high surface area, combination of micropore/mesopore structures and low average pore diameter of porous carbons. |
---|---|
AbstractList | Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl2 activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials possessed a high surface area of 2247 m2 g−1 and a large pore volume of 1.97 cm3 g−1 with sulfur loading of 63%. From the x-ray diffraction (XRD) patterns, Raman analysis, and SEM observation of the composites, it was shown that the sulfur was uniformly encapsulated inside the carbon pores, which was beneficial for the optimum utilization of sulfur and the confinement of soluble lithium polysulfides. The fabricated carbon-sulfur composite electrodes demonstrated an initial specific capacity of 945 mAh g−1 and good capacity retention until the 100th cycle at 0.1 C rate. At high C rate (1 and 2 C), the composite electrodes exhibited specific discharge capacity of 538 and 466 mAh g−1 until the 100th cycle, respectively. Those excellent electrochemical performances were attributed to the high surface area, combination of micropore/mesopore structures and low average pore diameter of porous carbons. Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl 2 activation process. This porous carbon was then applied as cathode component along with sulfur in lithium sulfur (Li–S) batteries. The carbon materials possessed a high surface area of 2247 m 2 g −1 and a large pore volume of 1.97 cm 3 g −1 with sulfur loading of 63%. From the x-ray diffraction (XRD) patterns, Raman analysis, and SEM observation of the composites, it was shown that the sulfur was uniformly encapsulated inside the carbon pores, which was beneficial for the optimum utilization of sulfur and the confinement of soluble lithium polysulfides. The fabricated carbon-sulfur composite electrodes demonstrated an initial specific capacity of 945 mAh g −1 and good capacity retention until the 100th cycle at 0.1 C rate. At high C rate (1 and 2 C), the composite electrodes exhibited specific discharge capacity of 538 and 466 mAh g −1 until the 100th cycle, respectively. Those excellent electrochemical performances were attributed to the high surface area, combination of micropore/mesopore structures and low average pore diameter of porous carbons. |
Author | Arie, Arenst Andreas Kristianto, Hans Demir-Cakan, Rezan Cengiz, Elif Ceylan |
Author_xml | – sequence: 1 givenname: Arenst Andreas surname: Arie fullname: Arie, Arenst Andreas email: arenst@unpar.ac.id organization: Department of Chemical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University – sequence: 2 givenname: Hans surname: Kristianto fullname: Kristianto, Hans organization: Department of Chemical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University – sequence: 3 givenname: Elif Ceylan surname: Cengiz fullname: Cengiz, Elif Ceylan organization: Department of Material Science and Engineering, Gebze Technical University, Institute of Nanotechnology, Gebze Technical University – sequence: 4 givenname: Rezan surname: Demir-Cakan fullname: Demir-Cakan, Rezan organization: Institute of Nanotechnology, Gebze Technical University, Department of Chemical Engineering, Gebze Technical University |
BookMark | eNp9kE9LwzAYh4NMcJt-AG8Bz9UkbZP2OIZ_BgMveg5pkm7ZuqQmqbCLn93MCoKgp_fw-z3v-_LMwMQ6qwG4xugWI8TuAsZlhTOEq4wwTDJyBqa4oiRDjKIJmKK6YBlDBbsAsxB2CFGKCZuCj4WM5l1ErWDvvBsClMI3zgbovNkY-5W03h1g3Gq4siqdDUZYGKzYaxj2xqZ4MBH2WndQnPi4dUpD6Q59KtsYYOs87EzcmuEAw9C1g4eNiFH74yU4b0UX9NX3nIPXh_uX5VO2fn5cLRfrTOaYxoxIgipWq0qIOke0LUWDJBOa1RVt6pxWjW4pw6woVaFqrHDBqFaSlKpkjRQyn4ObcW_v3dugQ-Q7N3ibTnJCSEmSHlSnFhtb0rsQvG65NFFE42z0wnQcI36SzUfZPMnmJ9mcJBL_IntvDsIf_2XIyITUtRvtf376G_oEIG2V_w |
CitedBy_id | crossref_primary_10_1039_D1DT03705F crossref_primary_10_1007_s11664_024_11297_1 crossref_primary_10_1088_1757_899X_742_1_012045 crossref_primary_10_1088_1757_899X_742_1_012044 crossref_primary_10_1002_slct_202002986 crossref_primary_10_1039_D1MA00332A crossref_primary_10_1016_j_rser_2021_111783 crossref_primary_10_1007_s11581_019_03196_x crossref_primary_10_1021_acsami_4c15406 crossref_primary_10_1021_acs_energyfuels_0c03699 crossref_primary_10_1016_j_cis_2020_102263 crossref_primary_10_1002_adfm_202008354 crossref_primary_10_1007_s42452_021_04540_5 crossref_primary_10_1016_j_mset_2022_12_009 crossref_primary_10_1039_D1QM00255D crossref_primary_10_3390_molecules29174183 crossref_primary_10_1016_j_hazadv_2023_100317 crossref_primary_10_1166_sam_2022_4382 |
Cites_doi | 10.1166/jnn.2018.15724 10.1007/s12598-017-0900-2 10.1007/s12274-017-1659-3 10.1016/j.coche.2016.08.004 10.1039/C5RA21416E 10.1016/j.electacta.2017.01.166 10.1016/j.electacta.2015.07.077 10.1007/s11581-015-1528-6 10.1016/j.ensm.2015.09.007 10.1016/j.jpowsour.2016.11.038 10.1016/j.jallcom.2017.05.206 10.3390/app7101036 10.1016/j.ssi.2016.10.012 10.1016/j.jallcom.2017.07.118 10.1007/s10853-017-1288-y 10.1007/s10008-017-3629-9 10.1016/j.jpowsour.2015.03.135 10.1016/j.electacta.2017.10.076 10.1007/s40843-016-5047-8 10.1016/j.cogsc.2017.02.008 10.1016/j.matlet.2018.01.096 10.1016/j.jpowsour.2016.05.024 10.1016/j.matlet.2017.08.090 10.1016/j.electacta.2013.11.035 10.5185/amlett.2016.6194 10.1016/j.jpowsour.2017.07.038 10.1039/C6NR04923K 10.15376/biores.12.4.8078-8092 10.1002/cbdv.201500039 10.1016/j.jpowsour.2013.02.095 10.1016/j.mser.2017.09.001 10.1021/acsami.7b04069 10.1016/j.jallcom.2016.11.075 10.1016/j.electacta.2016.03.176 10.3390/en10121937 10.1016/j.matchemphys.2018.06.076 10.1039/C4TA03503H 10.1021/acsami.7b09310 10.1016/j.nantod.2015.04.011 10.1016/j.jpowsour.2016.11.102 10.3390/nano7090260 10.1016/j.electacta.2016.11.139 10.1016/j.nanoen.2015.05.006 10.1016/j.rser.2015.02.051 10.1007/s12598-017-0891-z 10.1002/chem.201600040 10.1016/j.electacta.2016.07.153 10.1039/C6RA09338H 10.1007/s11581-017-2260-1 10.1016/j.carbon.2014.01.002 10.20964/2017.07.17 10.1021/acs.jpcc.7b05554 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11581-018-2712-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1862-0760 |
EndPage | 2129 |
ExternalDocumentID | 10_1007_s11581_018_2712_2 |
GroupedDBID | -4Y -58 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- NB0 NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SCG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~A9 -Y2 2.D 2VQ AAIKT AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 IHE N2Q NDZJH O9- RHV RNI RZK S1Z S26 S28 SCLPG T16 UZXMN VFIZW W4F ABRTQ |
ID | FETCH-LOGICAL-c316t-2c20879d8aa9306f5ab0c7ae7986b9368bef671745d4d91d1476edc25d57bcac3 |
IEDL.DBID | U2A |
ISSN | 0947-7047 |
IngestDate | Wed Sep 17 23:56:15 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Tue Jul 01 00:58:45 EDT 2025 Fri Feb 21 02:32:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Li–S battery Porous carbon Biomass Cathode Fruit peel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-2c20879d8aa9306f5ab0c7ae7986b9368bef671745d4d91d1476edc25d57bcac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2225209409 |
PQPubID | 2043901 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2225209409 crossref_citationtrail_10_1007_s11581_018_2712_2 crossref_primary_10_1007_s11581_018_2712_2 springer_journals_10_1007_s11581_018_2712_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Ionics The Science and Technology of Ionic Motion |
PublicationTitle | Ionics |
PublicationTitleAbbrev | Ionics |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Zhang, Xiang, Dong, Liu, Wu, Xu, du (CR18) 2014; 116 Zhang, Xie, Kim, Zaghib, Mauger, Julien (CR3) 2017; 121 Zhu, Gu, Chen, Yang, Wei, Zhou (CR32) 2017; 24 Yuan, Yin, Zhao, Bakenov, Wang, Zhang (CR33) 2016; 22 Arie, Kristianto, Demir, Cakan (CR43) 2018; 217 Yahya, Al-Qodah, Ngah (CR40) 2015; 46 Zhao, Ren, Tan, Babaa, Bakenov, Liu, Zhang (CR36) 2017; 7 Wu, Mou, Zhou, Zheng, Jiang, Lin (CR19) 2016; 212 Guo, Zhang, Jiang, Zhao, Su, du (CR22) 2015; 176 Zhang, Zheng, Lin, Li, Liu, Zhao, Pang, Cao, He, Shi (CR51) 2014; 2 Zheng, Zhang, Chen, Lin, Pang, Yu (CR9) 2017; 10 Liang, Sun, Li, Cheng (CR12) 2016; 2 Borchardt, Althues, Kaskel (CR14) 2017; 4 Wang, Xie, Wei (CR11) 2015; 15 Du, Xu, Jin (CR37) 2017; 341 Li, Hu, Li, Ye, Gao (CR52) 2013; 240 Ma, Hendrickson, Wei, Archer (CR7) 2015; 10 Cui, Liang, Ouyang, Huang, Zeng, Wu, Li, du, Li, Baker, Huang, Zhang (CR8) 2016; 6 Borchardt, Oschatz, Kaskel (CR13) 2016; 22 You, Liu, Zhang, Walle, Li, Liu (CR30) 2018; 217 Xiang, Wang, Wu, Guo, Wu, Zhang, Liu (CR23) 2017; 227 Xue, Chen, Ren, Tan, Li, Zhang (CR16) 2017; 209 CR47 Cheng, Ji, Xu, Liu (CR31) 2015; 5 Zhang, Huang, Chen, Wu, Zhang (CR49) 2017; 724 Półrolniczak, Nowicki, Wasiński, Pietrzak, Walkowiak (CR34) 2016; 297 Zeng, Li, Jiang, Yu (CR5) 2017; 36 Nara, Tsuda, Osaka (CR6) 2017; 21 Susanti, Kevin, Erico, Kevien, Andreas, Kristianto, Handoko (CR42) 2018; 18 Wang, Huang, Li, Lin, Liu, Li (CR10) 2017; 339 Canales-Flores, Prieto-García (CR39) 2016; 13 Deng, Hu, Chen, Zhang, Tang, Liu, Fan, Xiao (CR48) 2016; 322 Imtiaz, Zhang, Zafar, Ji, Huang, Anderson, Zhang, Huang (CR35) 2016; 59 Liu, Liu, Wang, Huang, Hu, Ke, Liu, Shi, Guo (CR15) 2017; 718 Wang, Fu, Li, Wang, Guo, Liu, Zhao (CR46) 2015; 285 Chen, Du, He (CR17) 2017; 9 Ai, Liu, Wang, Wang, Wang, Zhang, Huang (CR21) 2017; 258 Arie, Vincent (CR44) 2016; 7 Li, Wang, Wang, Gu (CR45) 2017; 36 Hencz, Gu, Zhou, Martens, Zhang (CR28) 2017; 52 Zheng, Hu, Zhang, Tang, Li, Pang (CR27) 2017; 7 Li, Wang, Gao, Li, Cai, Li, Peng, Huo, Chu (CR20) 2017; 229 Geng, Xiao, Wang, Yi, Xu, Li, Zhang (CR50) 2016; 202 CR29 CR26 Varil, Bergna, Lahti (CR38) 2017; 12 Zhu, Xu, Zhang, Wang, Li, Wang (CR24) 2017; 695 Kang, Deng, Ju, Li, Wu, Ma, Li, Naebe, Cheng (CR1) 2016; 8 Fu, Guo (CR4) 2016; 13 Li, Qin, Zhang, Fang, Lai, Li (CR25) 2017; 362 Halim, Liu, Ardhi, Hudaya, Wijaya, Lee, Kim, Lee (CR41) 2017; 9 Fotouhi, Auger, O’Neill, Cleaver, Walus (CR2) 2017; 10 MA Yahya (2712_CR40) 2015; 46 J Guo (2712_CR22) 2015; 176 RF Susanti (2712_CR42) 2018; 18 Z Geng (2712_CR50) 2016; 202 M Halim (2712_CR41) 2017; 9 M Xue (2712_CR16) 2017; 209 F Ai (2712_CR21) 2017; 258 X Zhang (2712_CR3) 2017; 121 W Deng (2712_CR48) 2016; 322 D Wang (2712_CR46) 2015; 285 2712_CR26 Z Du (2712_CR37) 2017; 341 2712_CR29 J Liang (2712_CR12) 2016; 2 T Varil (2712_CR38) 2017; 12 L Borchardt (2712_CR13) 2016; 22 G Yuan (2712_CR33) 2016; 22 Y Zhu (2712_CR24) 2017; 695 W Zhang (2712_CR49) 2017; 724 F Li (2712_CR25) 2017; 362 H Wu (2712_CR19) 2016; 212 GC Li (2712_CR52) 2013; 240 M Xiang (2712_CR23) 2017; 227 L Borchardt (2712_CR14) 2017; 4 J Liu (2712_CR15) 2017; 718 M Zheng (2712_CR27) 2017; 7 X You (2712_CR30) 2018; 217 S Zhang (2712_CR51) 2014; 2 LC Zeng (2712_CR5) 2017; 36 QQ Wang (2712_CR10) 2017; 339 Y Cui (2712_CR8) 2016; 6 Z Chen (2712_CR17) 2017; 9 L Ma (2712_CR7) 2015; 10 Y Zhao (2712_CR36) 2017; 7 M Zheng (2712_CR9) 2017; 10 W Kang (2712_CR1) 2016; 8 2712_CR47 Y Cheng (2712_CR31) 2015; 5 AA Arie (2712_CR43) 2018; 217 AA Arie (2712_CR44) 2016; 7 J Zhang (2712_CR18) 2014; 116 P Półrolniczak (2712_CR34) 2016; 297 RA Canales-Flores (2712_CR39) 2016; 13 C Li (2712_CR45) 2017; 36 Y Li (2712_CR20) 2017; 229 C Fu (2712_CR4) 2016; 13 H Nara (2712_CR6) 2017; 21 L Hencz (2712_CR28) 2017; 52 JG Wang (2712_CR11) 2015; 15 A Fotouhi (2712_CR2) 2017; 10 S Imtiaz (2712_CR35) 2016; 59 Y-E Zhu (2712_CR32) 2017; 24 |
References_xml | – volume: 18 start-page: 7263 year: 2018 end-page: 7268 ident: CR42 article-title: Delignification, carbonization temperature and carbonization time effects on the hydrothermal conversion of salacca peel publication-title: J Nanosci Nanotechnol doi: 10.1166/jnn.2018.15724 – volume: 36 start-page: 365 year: 2017 end-page: 380 ident: CR45 article-title: Recent advances in cathode materials for Li–S battery: structure and performance publication-title: Rare Metals doi: 10.1007/s12598-017-0900-2 – volume: 10 start-page: 4305 year: 2017 end-page: 4317 ident: CR9 article-title: Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries publication-title: Nano Res doi: 10.1007/s12274-017-1659-3 – volume: 13 start-page: 53 year: 2016 end-page: 62 ident: CR4 article-title: Challenges and current development of sulfur cathode in lithium–sulfur battery publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2016.08.004 – volume: 5 start-page: 100089 year: 2015 end-page: 100096 ident: CR31 article-title: Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for Li–S batteries publication-title: RSC Adv doi: 10.1039/C5RA21416E – volume: 229 start-page: 352 year: 2017 end-page: 360 ident: CR20 article-title: Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium–sulfur batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.01.166 – volume: 176 start-page: 853 year: 2015 end-page: 860 ident: CR22 article-title: Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.07.077 – volume: 22 start-page: 63 year: 2016 end-page: 69 ident: CR33 article-title: Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries publication-title: Ionics (Kiel) doi: 10.1007/s11581-015-1528-6 – ident: CR29 – volume: 2 start-page: 76 year: 2016 end-page: 106 ident: CR12 article-title: Carbon materials for Li-S batteries: functional evolution and performance improvement publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2015.09.007 – volume: 339 start-page: 20 year: 2017 end-page: 26 ident: CR10 article-title: A facile and scalable method to prepare carbon nanotube-grafted-graphene for high performance Li-S battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.11.038 – volume: 718 start-page: 373 year: 2017 end-page: 378 ident: CR15 article-title: Walnut shell-derived activated carbon: synthesis and its application in the sulfur cathode for lithium–sulfur batteries publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.05.206 – volume: 7 start-page: 1036 year: 2017 ident: CR27 article-title: Macroporous activated carbon derived from rapeseed shell for lithium–sulfur batteries publication-title: Appl Sci doi: 10.3390/app7101036 – volume: 297 start-page: 59 year: 2016 end-page: 63 ident: CR34 article-title: Biomass-derived hierarchical carbon as sulfur cathode stabilizing agent for lithium-sulfur batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2016.10.012 – volume: 724 start-page: 575 year: 2017 end-page: 580 ident: CR49 article-title: Shaddock wadding created activated carbon as high sulfur content encapsulator for lithium-sulfur batteries publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.07.118 – volume: 52 start-page: 12336 year: 2017 end-page: 12347 ident: CR28 article-title: Materials highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries publication-title: J Mater Sci doi: 10.1007/s10853-017-1288-y – volume: 21 start-page: 1925 year: 2017 end-page: 1937 ident: CR6 article-title: Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries publication-title: J Solid State Electrochem doi: 10.1007/s10008-017-3629-9 – volume: 285 start-page: 469 year: 2015 end-page: 477 ident: CR46 article-title: Mesoporous carbon spheres with controlled porosity for high-performance lithium sulfur batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.03.135 – volume: 258 start-page: 80 year: 2017 end-page: 89 ident: CR21 article-title: Heteroatoms-doped porous carbon derived from tuna bone for high performance Li-S batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.10.076 – volume: 59 start-page: 389 year: 2016 end-page: 407 ident: CR35 article-title: Biomass-derived nanostructured porous carbons for lithium-sulfur batteries publication-title: Sci China Mater doi: 10.1007/s40843-016-5047-8 – volume: 4 start-page: 64 year: 2017 end-page: 71 ident: CR14 article-title: Carbon nano-composites for lithium–sulfur batteries publication-title: Curr Opin Green Sustain Chem doi: 10.1016/j.cogsc.2017.02.008 – volume: 217 start-page: 167 year: 2018 end-page: 170 ident: CR30 article-title: Novel biomass derived hierarchical porous carbon for lithium sulfur batteries publication-title: Mater Lett doi: 10.1016/j.matlet.2018.01.096 – ident: CR26 – volume: 322 start-page: 138 year: 2016 end-page: 146 ident: CR48 article-title: Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.05.024 – volume: 209 start-page: 594 year: 2017 end-page: 597 ident: CR16 article-title: A novel mangosteen peels derived hierarchical porous carbon for lithium sulfur battery publication-title: Mater Lett doi: 10.1016/j.matlet.2017.08.090 – volume: 116 start-page: 146 year: 2014 end-page: 151 ident: CR18 article-title: Biomass derived activated carbon with 3D connected architecture for rechargeable lithium–sulfur batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.11.035 – volume: 7 start-page: 226 year: 2016 end-page: 229 ident: CR44 article-title: Activated carbons from KOH-activation of salacca peels as low cost potential adsorbents for dye removal publication-title: Adv Mater Lett doi: 10.5185/amlett.2016.6194 – volume: 362 start-page: 160 year: 2017 end-page: 167 ident: CR25 article-title: Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.07.038 – ident: CR47 – volume: 8 start-page: 16541 year: 2016 end-page: 16588 ident: CR1 article-title: A review of recent developments in rechargeable lithium–sulfur batteries publication-title: Nanoscale doi: 10.1039/C6NR04923K – volume: 12 start-page: 8078 year: 2017 end-page: 8092 ident: CR38 article-title: Activated carbon production from peat using ZnCl2: characterization and applications publication-title: BioResources doi: 10.15376/biores.12.4.8078-8092 – volume: 13 start-page: 261 year: 2016 end-page: 268 ident: CR39 article-title: Activation methods of carbonaceous materials obtained from agricultural waste publication-title: Chem Biodivers doi: 10.1002/cbdv.201500039 – volume: 240 start-page: 598 year: 2013 end-page: 605 ident: CR52 article-title: Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.02.095 – volume: 121 start-page: 1 year: 2017 end-page: 29 ident: CR3 article-title: Advances in lithium–sulfur batteries publication-title: Mater Sci Eng R Rep doi: 10.1016/j.mser.2017.09.001 – volume: 9 start-page: 20566 year: 2017 end-page: 20576 ident: CR41 article-title: Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b04069 – volume: 695 start-page: 2246 year: 2017 end-page: 2252 ident: CR24 article-title: Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium-sulfur batteries publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.11.075 – volume: 202 start-page: 131 year: 2016 end-page: 139 ident: CR50 article-title: Improved electrochemical performance of biomass-derived Nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.03.176 – volume: 10 start-page: 1937 year: 2017 ident: CR2 article-title: Lithium-sulfur battery technology readiness and applications—a review publication-title: Energies doi: 10.3390/en10121937 – volume: 217 start-page: 254 year: 2018 end-page: 261 ident: CR43 article-title: Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2018.06.076 – volume: 2 start-page: 15889 year: 2014 end-page: 15896 ident: CR51 article-title: Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium-sulfur batteries publication-title: J Mater Chem A doi: 10.1039/C4TA03503H – volume: 9 start-page: 33855 year: 2017 end-page: 33862 ident: CR17 article-title: Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b09310 – volume: 10 start-page: 315 year: 2015 end-page: 338 ident: CR7 article-title: Nanomaterials: science and applications in the lithium-sulfur battery publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.011 – volume: 341 start-page: 139 year: 2017 end-page: 146 ident: CR37 article-title: The correlation between carbon structures and electrochemical properties of sulfur/carbon composites for Li-S batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.11.102 – volume: 7 start-page: 260 year: 2017 ident: CR36 article-title: Biomass waste inspired highly porous carbon for high performance lithium/sulfur batteries publication-title: Nanomaterials doi: 10.3390/nano7090260 – volume: 227 start-page: 7 year: 2017 end-page: 16 ident: CR23 article-title: Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium-sulfur batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.11.139 – volume: 15 start-page: 413 year: 2015 end-page: 444 ident: CR11 article-title: Advanced engineering of nanostructured carbons for lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.006 – volume: 46 start-page: 218 year: 2015 end-page: 235 ident: CR40 article-title: Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2015.02.051 – volume: 36 start-page: 339 year: 2017 end-page: 364 ident: CR5 article-title: Recent progress in Li–S and Li–se batteries publication-title: Rare Metals doi: 10.1007/s12598-017-0891-z – volume: 22 start-page: 7324 year: 2016 end-page: 7351 ident: CR13 article-title: Carbon materials for lithium sulfur batteries—ten critical questions publication-title: Chemistry doi: 10.1002/chem.201600040 – volume: 212 start-page: 1021 year: 2016 end-page: 1030 ident: CR19 article-title: Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.07.153 – volume: 6 start-page: 64228 year: 2016 end-page: 64233 ident: CR8 article-title: A novel sulfur-impregnated porous carbon matrix as a cathode material for a lithium sulfur battery publication-title: RSC Adv doi: 10.1039/C6RA09338H – volume: 24 start-page: 1075 year: 2017 end-page: 1081 ident: CR32 article-title: Hard carbon derived from corn straw piths as anode materials for sodium ion batteries publication-title: Ionics (Kiel) doi: 10.1007/s11581-017-2260-1 – volume: 36 start-page: 365 year: 2017 ident: 2712_CR45 publication-title: Rare Metals doi: 10.1007/s12598-017-0900-2 – volume: 341 start-page: 139 year: 2017 ident: 2712_CR37 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.11.102 – volume: 229 start-page: 352 year: 2017 ident: 2712_CR20 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.01.166 – volume: 7 start-page: 260 year: 2017 ident: 2712_CR36 publication-title: Nanomaterials doi: 10.3390/nano7090260 – volume: 217 start-page: 167 year: 2018 ident: 2712_CR30 publication-title: Mater Lett doi: 10.1016/j.matlet.2018.01.096 – volume: 24 start-page: 1075 year: 2017 ident: 2712_CR32 publication-title: Ionics (Kiel) doi: 10.1007/s11581-017-2260-1 – volume: 9 start-page: 33855 year: 2017 ident: 2712_CR17 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b09310 – volume: 2 start-page: 76 year: 2016 ident: 2712_CR12 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2015.09.007 – volume: 212 start-page: 1021 year: 2016 ident: 2712_CR19 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.07.153 – volume: 322 start-page: 138 year: 2016 ident: 2712_CR48 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.05.024 – volume: 176 start-page: 853 year: 2015 ident: 2712_CR22 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.07.077 – volume: 21 start-page: 1925 year: 2017 ident: 2712_CR6 publication-title: J Solid State Electrochem doi: 10.1007/s10008-017-3629-9 – volume: 217 start-page: 254 year: 2018 ident: 2712_CR43 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2018.06.076 – volume: 7 start-page: 226 year: 2016 ident: 2712_CR44 publication-title: Adv Mater Lett doi: 10.5185/amlett.2016.6194 – volume: 10 start-page: 1937 year: 2017 ident: 2712_CR2 publication-title: Energies doi: 10.3390/en10121937 – volume: 297 start-page: 59 year: 2016 ident: 2712_CR34 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2016.10.012 – ident: 2712_CR26 doi: 10.1016/j.carbon.2014.01.002 – ident: 2712_CR29 doi: 10.20964/2017.07.17 – volume: 7 start-page: 1036 year: 2017 ident: 2712_CR27 publication-title: Appl Sci doi: 10.3390/app7101036 – volume: 10 start-page: 4305 year: 2017 ident: 2712_CR9 publication-title: Nano Res doi: 10.1007/s12274-017-1659-3 – volume: 121 start-page: 1 year: 2017 ident: 2712_CR3 publication-title: Mater Sci Eng R Rep doi: 10.1016/j.mser.2017.09.001 – volume: 9 start-page: 20566 year: 2017 ident: 2712_CR41 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b04069 – ident: 2712_CR47 doi: 10.1021/acs.jpcc.7b05554 – volume: 258 start-page: 80 year: 2017 ident: 2712_CR21 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.10.076 – volume: 227 start-page: 7 year: 2017 ident: 2712_CR23 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.11.139 – volume: 18 start-page: 7263 year: 2018 ident: 2712_CR42 publication-title: J Nanosci Nanotechnol doi: 10.1166/jnn.2018.15724 – volume: 718 start-page: 373 year: 2017 ident: 2712_CR15 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.05.206 – volume: 59 start-page: 389 year: 2016 ident: 2712_CR35 publication-title: Sci China Mater doi: 10.1007/s40843-016-5047-8 – volume: 13 start-page: 53 year: 2016 ident: 2712_CR4 publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2016.08.004 – volume: 209 start-page: 594 year: 2017 ident: 2712_CR16 publication-title: Mater Lett doi: 10.1016/j.matlet.2017.08.090 – volume: 240 start-page: 598 year: 2013 ident: 2712_CR52 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.02.095 – volume: 339 start-page: 20 year: 2017 ident: 2712_CR10 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.11.038 – volume: 22 start-page: 63 year: 2016 ident: 2712_CR33 publication-title: Ionics (Kiel) doi: 10.1007/s11581-015-1528-6 – volume: 285 start-page: 469 year: 2015 ident: 2712_CR46 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.03.135 – volume: 10 start-page: 315 year: 2015 ident: 2712_CR7 publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.011 – volume: 15 start-page: 413 year: 2015 ident: 2712_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.006 – volume: 4 start-page: 64 year: 2017 ident: 2712_CR14 publication-title: Curr Opin Green Sustain Chem doi: 10.1016/j.cogsc.2017.02.008 – volume: 22 start-page: 7324 year: 2016 ident: 2712_CR13 publication-title: Chemistry doi: 10.1002/chem.201600040 – volume: 362 start-page: 160 year: 2017 ident: 2712_CR25 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.07.038 – volume: 8 start-page: 16541 year: 2016 ident: 2712_CR1 publication-title: Nanoscale doi: 10.1039/C6NR04923K – volume: 6 start-page: 64228 year: 2016 ident: 2712_CR8 publication-title: RSC Adv doi: 10.1039/C6RA09338H – volume: 5 start-page: 100089 year: 2015 ident: 2712_CR31 publication-title: RSC Adv doi: 10.1039/C5RA21416E – volume: 695 start-page: 2246 year: 2017 ident: 2712_CR24 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.11.075 – volume: 2 start-page: 15889 year: 2014 ident: 2712_CR51 publication-title: J Mater Chem A doi: 10.1039/C4TA03503H – volume: 36 start-page: 339 year: 2017 ident: 2712_CR5 publication-title: Rare Metals doi: 10.1007/s12598-017-0891-z – volume: 13 start-page: 261 year: 2016 ident: 2712_CR39 publication-title: Chem Biodivers doi: 10.1002/cbdv.201500039 – volume: 202 start-page: 131 year: 2016 ident: 2712_CR50 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.03.176 – volume: 116 start-page: 146 year: 2014 ident: 2712_CR18 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.11.035 – volume: 12 start-page: 8078 year: 2017 ident: 2712_CR38 publication-title: BioResources doi: 10.15376/biores.12.4.8078-8092 – volume: 724 start-page: 575 year: 2017 ident: 2712_CR49 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.07.118 – volume: 52 start-page: 12336 year: 2017 ident: 2712_CR28 publication-title: J Mater Sci doi: 10.1007/s10853-017-1288-y – volume: 46 start-page: 218 year: 2015 ident: 2712_CR40 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2015.02.051 |
SSID | ssj0066127 |
Score | 2.2776244 |
Snippet | Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl
2
activation... Activated porous carbons originating from the Indonesian snake skin fruit peel has been prepared by carbonization process followed by the ZnCl2 activation... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2121 |
SubjectTerms | Activated carbon Carbon Carbonization Cathodes Chemistry Chemistry and Materials Science Condensed Matter Physics Diffraction patterns Electrochemistry Electrodes Energy Storage Lithium Lithium sulfur batteries Optical and Electronic Materials Original Paper Raman spectroscopy Renewable and Green Energy Sulfur Surface area X-ray diffraction Zinc chloride |
Title | Activated porous carbons originated from the Indonesian snake skin fruit peel as cathode components for lithium sulfur battery |
URI | https://link.springer.com/article/10.1007/s11581-018-2712-2 https://www.proquest.com/docview/2225209409 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iB72IK44bOXhSAm2mSZrjKI4benJATyXLKw6ORabtwYu_3ZdO66Co4KmHvKTQL02-x1s-Qo4S4B5SDszmGlgIFLFUK8_QHnRsnNSNZuTtnbwcJdcP4qGt4y67bPcuJNmc1PNit1ikwfVFZFXMGZ67SyK0k8JNPOKD7vjF-2am06oTxVSUqC6U-dMSXy-jOcP8FhRt7prhGlltSSIdzFBdJwtQbJDls06bbZO8D1wjSwaeIn9G5506M7W4gWgrdBVGQuUIRX5Hr4JiB4RqSVoW5hlo-TwucLgeV_QVYEJNmB-UpIGGFHM0LqqSIp2lSNKfxvULLetJXk-pbbpxvm2R0fD8_uyStUoKzPVjWTHueJQq7VNjNPoIuTA2csqA0qm0ui9TC7lExy4RPvE69nGiJHjHhRfKOuP622SxwJfvECpSDQIAnJYmUeCMtNbpKHcaseAi75Go-6SZa9uMB7WLSTZvkBxQyBCFLKCQ8R45_pzyOuux8ZfxfodT1v5uZRacVh46AeoeOemwmw__utjuv6z3yArSJT1Ld9wni9W0hgOkJJU9JEuD4enpXXhePN6cHzZb8gOz_t20 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB72IT1yfOXhSAm22SZrjIsr6PLngreQxxcW1LNv24MXf7qTbuigqeM4khX7J5BsmMx8hpwlwDykHZnMNLCSKWKqVZ2gPOjZO6kYz8v5BDkfJzZN4auu4y-61e5eSbDz1otgtFmkIfRFZFXOGfnclZBlDxDXig8794n0z12nViWIqSlSXyvxpia-X0YJhfkuKNnfN1QZZb0kiHcxR3SRLUGyR1YtOm22bvA9cI0sGniJ_xuCdOjOzuIFoK3QVRkLlCEV-R6-DYgeEaklaFuYFaPkyLnC4Hld0CjChJswPStJAwxNzNC6qkiKdpUjSn8f1Ky3rSV7PqG26cb7tkNHV5ePFkLVKCsz1Y1kx7niUKu1TYzTGCLkwNnLKgNKptLovUwu5xMAuET7xOvZxoiR4x4UXyjrj-rtkucCP7xEqUg0CAJyWJlHgjLTW6Sh3Gs8yF3mPRN0vzVzbZjyoXUyyRYPkgEKGKGQBhYz3yNnnlOm8x8ZfxocdTll73MosBK08dALUPXLeYbcY_nWx_X9Zn5DV4eP9XXZ3_XB7QNaQOun508dDslzNajhCelLZ42Y7fgA-uN2H |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQVgIuvBFbCvjACeQ28foRH1elS0uh4kClcgp-TMRql3S1SQ5w4Lcz3sSsqAAJcfbYScYT-xvN4yPkuQAeoODAXGWAxUARK4wODOXB5NYrs-GMfHemjs_Fmwt5MfCcNinbPYUk-5qG2KWpbg9WoTrYFr7lsohuMO6yzjnDM3hHRAqJEdmZvv54epQOY7x9etZWIzTTmdApsPm7RX69mrZ480qIdHPzzG6TT-md-4STxX7Xun3_7Uo7x__4qDvk1oBK6bQ3o7vkGtT3yI3DRAZ3n3yf-g0PGgSKgP2ya6i3a4cWSwdmrTgSS1UoAkp6EilCIJZn0qa2C6DNYl7jcDdv6QpgSW2cH6mrgcacdhSu24YifqboFXyed19o0y2rbk3dpv3n1wfkfHb04fCYDdQNzE9y1TLueVZoEwprDTollbQu89qCNoVyZqIKB5VCT1LIIILJQy60guC5DFI7b_3kIRnV-PBHhMrCgAQAb5QVGrxVznmTVd7g4cFlNSZZ2rXSD33NI73Gstx2ZI6KLVGxZVRsycfkxc8pq76px9-E95IplMP_3ZTRS-ax9aAZk5dpZ7fDf1xs95-kn5Hr71_NyrcnZ6ePyU2EaqZPtdwjo3bdwROEQ617Opj8DzMVAzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activated+porous+carbons+originated+from+the+Indonesian+snake+skin+fruit+peel+as+cathode+components+for+lithium+sulfur+battery&rft.jtitle=Ionics&rft.au=Arie%2C+Arenst+Andreas&rft.au=Kristianto%2C+Hans&rft.au=Cengiz%2C+Elif+Ceylan&rft.au=Demir-Cakan%2C+Rezan&rft.date=2019-05-01&rft.issn=0947-7047&rft.eissn=1862-0760&rft.volume=25&rft.issue=5&rft.spage=2121&rft.epage=2129&rft_id=info:doi/10.1007%2Fs11581-018-2712-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11581_018_2712_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7047&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7047&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7047&client=summon |