A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method

Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, w...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 28; no. 7; pp. 1657 - 1666
Main Author Gürüler, Hüseyin
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-015-2142-2

Cover

Abstract Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, we have developed a new hybrid diagnostic system for addressing the PD diagnosis problem. The main novelty of this paper lies in the proposed approach that involves a combination of the k-means clustering-based feature weighting (KMCFW) method and a complex-valued artificial neural network (CVANN). A Parkinson dataset comprising the features obtained from speech and sound samples were used for the diagnosis of PD. PD attributes are weighted through the use of the KMCFW method. New features obtained are converted into a complex number format. These feature values are presented as an input to the CVANN. The efficiency and effectiveness of the proposed system have been rigorously evaluated against the PD dataset in terms of five different evaluation methods. Experimental results have demonstrated that the proposed hybrid system, entitled KMCFW–CVANN, significantly outperforms the other methods detailed in the literature and achieves the highest classification results reported so far, with a classification accuracy of 99.52 %. Therefore, the proposed system appears to be promising in terms of a more accurate diagnosis of PD. Also, the application confirms the conclusion that the reliability of the classification ability of a complex-valued algorithm with regard to a real-valued dataset is high.
AbstractList Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, we have developed a new hybrid diagnostic system for addressing the PD diagnosis problem. The main novelty of this paper lies in the proposed approach that involves a combination of the k-means clustering-based feature weighting (KMCFW) method and a complex-valued artificial neural network (CVANN). A Parkinson dataset comprising the features obtained from speech and sound samples were used for the diagnosis of PD. PD attributes are weighted through the use of the KMCFW method. New features obtained are converted into a complex number format. These feature values are presented as an input to the CVANN. The efficiency and effectiveness of the proposed system have been rigorously evaluated against the PD dataset in terms of five different evaluation methods. Experimental results have demonstrated that the proposed hybrid system, entitled KMCFW–CVANN, significantly outperforms the other methods detailed in the literature and achieves the highest classification results reported so far, with a classification accuracy of 99.52 %. Therefore, the proposed system appears to be promising in terms of a more accurate diagnosis of PD. Also, the application confirms the conclusion that the reliability of the classification ability of a complex-valued algorithm with regard to a real-valued dataset is high.
Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, we have developed a new hybrid diagnostic system for addressing the PD diagnosis problem. The main novelty of this paper lies in the proposed approach that involves a combination of the k-means clustering-based feature weighting (KMCFW) method and a complex-valued artificial neural network (CVANN). A Parkinson dataset comprising the features obtained from speech and sound samples were used for the diagnosis of PD. PD attributes are weighted through the use of the KMCFW method. New features obtained are converted into a complex number format. These feature values are presented as an input to the CVANN. The efficiency and effectiveness of the proposed system have been rigorously evaluated against the PD dataset in terms of five different evaluation methods. Experimental results have demonstrated that the proposed hybrid system, entitled KMCFW–CVANN, significantly outperforms the other methods detailed in the literature and achieves the highest classification results reported so far, with a classification accuracy of 99.52 %. Therefore, the proposed system appears to be promising in terms of a more accurate diagnosis of PD. Also, the application confirms the conclusion that the reliability of the classification ability of a complex-valued algorithm with regard to a real-valued dataset is high.
Author Gürüler, Hüseyin
Author_xml – sequence: 1
  givenname: Hüseyin
  surname: Gürüler
  fullname: Gürüler, Hüseyin
  email: hguruler@mu.edu.tr
  organization: Department of Information Systems Engineering, Faculty of Technology, Mugla Sitki Kocman University
BookMark eNp9kMtuFDEQRS2USEweH8DOEmuDn_1YRhEvKRJZwNryuKtnnOm2B5c7Q3b5Bnb8Hl9CN8MiQiKrklz33LLOGTmJKQIhrwR_Iziv3yLnRgrGhWFSaMnkC7ISWimmuGlOyIq3et5WWr0kZ4h3nHNdNWZFflzRmO5hoF1wm5gwIMUHLDDSPmV66_IuREzx1-NPnCMIDoFOGOKG-jTuB_jO7t0wQUddLqEPPriBRpjyn1EOKe_oIZQt3bERXETqh2luz0tBD65MGegBwmZblpcRyjZ1F-S0dwPC5d95Tr6-f_fl-iO7-fzh0_XVDfNKVIXJljeVaVqx9tL4mstairpZ17oxrVqLytRaG9BOcWgrbbq10byqO-Mb1fYwmzgnr4-9-5y-TYDF3qUpx_mkFa0wLVdCVnNKHFM-J8QMvd3nMLr8YAW3i3p7VG9n9XZRb-XM1P8wPhRXQooluzA8S8ojifvFEeQnf_ov9BvkhJx9
CitedBy_id crossref_primary_10_1007_s11517_024_03139_3
crossref_primary_10_1007_s11761_023_00372_w
crossref_primary_10_21015_vtse_v9i3_652
crossref_primary_10_1007_s00521_020_05233_7
crossref_primary_10_1007_s00521_022_07046_2
crossref_primary_10_1016_j_eswa_2021_115424
crossref_primary_10_1038_s41598_022_23247_0
crossref_primary_10_1016_j_jocn_2019_04_004
crossref_primary_10_1080_14767058_2019_1668922
crossref_primary_10_1007_s13246_021_01001_6
crossref_primary_10_1109_ACCESS_2020_3005614
crossref_primary_10_1016_j_asoc_2018_10_022
crossref_primary_10_3233_JIFS_179603
crossref_primary_10_3389_fnins_2021_754058
crossref_primary_10_35784_iapgos_5309
crossref_primary_10_4018_IJSI_315655
crossref_primary_10_1016_j_bbe_2020_01_003
crossref_primary_10_28948_ngumuh_524658
crossref_primary_10_1007_s13755_020_00104_w
crossref_primary_10_1109_JTEHM_2019_2940900
crossref_primary_10_1016_j_powtec_2023_118516
crossref_primary_10_36548_rrrj_2023_1_03
crossref_primary_10_1109_ACCESS_2021_3124765
crossref_primary_10_1016_j_artmed_2023_102524
crossref_primary_10_1007_s11517_020_02260_3
crossref_primary_10_1007_s42979_021_00710_9
crossref_primary_10_1515_bmt_2022_0022
crossref_primary_10_1038_s41598_024_51600_y
crossref_primary_10_3390_app10186553
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_1007_s11517_023_02944_6
crossref_primary_10_1007_s40815_016_0196_7
crossref_primary_10_3390_diagnostics10040214
crossref_primary_10_1007_s10489_022_04345_y
crossref_primary_10_3389_fphy_2022_1048833
crossref_primary_10_1145_3433180
crossref_primary_10_1002_cpe_7289
crossref_primary_10_4015_S1016237218500254
crossref_primary_10_1186_s12883_024_04001_7
crossref_primary_10_1108_IJICC_10_2021_0226
crossref_primary_10_1007_s00500_023_08744_2
crossref_primary_10_2298_FIL2307997S
crossref_primary_10_31590_ejosat_655795
crossref_primary_10_1109_ACCESS_2020_2989032
crossref_primary_10_1016_j_compbiomed_2021_104799
crossref_primary_10_35193_bseufbd_566857
crossref_primary_10_1109_ACCESS_2019_2936564
crossref_primary_10_1109_ACCESS_2020_2968177
crossref_primary_10_1016_j_bspc_2022_104013
crossref_primary_10_1007_s00521_019_04618_7
crossref_primary_10_1016_j_ipm_2022_102909
crossref_primary_10_1016_j_neunet_2022_02_028
crossref_primary_10_31590_ejosat_568544
crossref_primary_10_1016_j_eswa_2019_06_052
crossref_primary_10_1155_2022_1487212
crossref_primary_10_3390_app14219747
crossref_primary_10_1016_j_neucom_2024_129176
crossref_primary_10_1007_s00521_021_05741_0
crossref_primary_10_1109_JAS_2022_105743
crossref_primary_10_1007_s42979_024_03404_0
crossref_primary_10_1007_s00521_021_05974_z
crossref_primary_10_3390_diagnostics11061076
crossref_primary_10_1016_j_mehy_2020_109722
crossref_primary_10_1007_s11571_022_09823_0
crossref_primary_10_4103_abr_abr_254_21
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_1007_s13369_020_05080_7
crossref_primary_10_1016_j_bspc_2021_102415
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_1007_s13369_020_04357_1
crossref_primary_10_1155_2017_5907264
crossref_primary_10_29130_dubited_688223
Cites_doi 10.1002/mds.21899
10.1044/1092-4388(2009/08-0184)
10.1016/j.specom.2007.10.003
10.1016/j.neucom.2013.06.048
10.1016/j.eswa.2010.09.133
10.1016/j.artmed.2007.02.001
10.1016/j.bandc.2004.05.002
10.1007/s10916-014-0147-5
10.1007/978-1-4757-0450-1
10.3109/9781841849096
10.1136/jnnp.2007.131045
10.1109/JBHI.2013.2245674
10.1177/001316446002000104
10.1016/j.eswa.2012.07.014
10.1016/j.neucom.2014.04.075
10.1007/s10916-011-9678-1
10.1016/j.eswa.2009.06.040
10.1109/91.324806
10.1007/s00521-012-0960-z
10.1007/978-3-642-20353-4
10.1016/j.cmpb.2011.03.018
10.1007/s00521-013-1437-4
10.1016/S0895-4356(01)00425-5
10.1002/mds.22430
10.1016/j.bspc.2013.02.006
10.1016/S0161-813X(02)00098-0
10.1056/NEJM199810083391506
10.1002/mds.10248
10.1109/TBME.2008.2005954
10.1016/j.eswa.2011.02.025
10.1162/08997660460734001
10.1016/S0892-1997(97)80010-0
10.1016/j.artmed.2011.02.001
10.1080/00207721.2011.581395
10.1016/j.eswa.2011.04.028
10.1044/jshr.1202.246
10.1016/j.eswa.2010.04.043
10.1016/S0893-6080(97)00036-1
10.1146/annurev.neuro.28.061604.135718
10.1007/978-3-642-13923-9_33
10.1007/s10916-009-9272-y
10.1136/jnnp.73.5.529
10.1109/IJCNN.1993.716968
10.1109/IEMBS.2011.6091936
10.1109/JBHI.2014.23877952015
10.1007/s00521-015-1852-9
10.1155/2014/985789
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2015
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Natural Computing Applications Forum 2015
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00521-015-2142-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1666
ExternalDocumentID 10_1007_s00521_015_2142_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
PQGLB
ID FETCH-LOGICAL-c316t-290865891bc25c70272178b748593b1657445e4a30e9645db54067d5c839fe643
IEDL.DBID AGYKE
ISSN 0941-0643
IngestDate Fri Jul 25 03:25:50 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Tue Jul 01 01:46:41 EDT 2025
Fri Feb 21 02:34:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Automated diagnostic systems
K-means clustering-based feature weighting
Complex-valued artificial neural network
Parkinson’s disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-290865891bc25c70272178b748593b1657445e4a30e9645db54067d5c839fe643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1915903126
PQPubID 2043988
PageCount 10
ParticipantIDs proquest_journals_1915903126
crossref_primary_10_1007_s00521_015_2142_2
crossref_citationtrail_10_1007_s00521_015_2142_2
springer_journals_10_1007_s00521_015_2142_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Yager, Filev (CR41) 1994; 24
Ramaker, Marinus, Stiggelbout, van Hilten (CR9) 2002; 17
Guo, Bhattacharya, Kharma (CR26) 2010; 6165
Harel, Cannizzaro, Snyder (CR18) 2004; 56
Jankovic (CR1) 2007; 79
CR39
Sakar, Kursun (CR33) 2010; 34
CR36
Moftah, Azar, Al-Shammari, Ghali, Hassanien, Shoman (CR44) 2014; 24
CR30
Gunes, Polat, Yosunkaya (CR43) 2010; 37
Harel, Cannizzaro, Snyder (CR15) 2004; 56
Skodda, Rinsche, Schlegel (CR16) 2009; 24
Little, McSharry, Hunter, Ramig (CR38) 2009; 56
Seera, Lim, Tan, Loo (CR19) 2015
Langston (CR3) 2002; 23
CR47
Luukka (CR27) 2011; 38
Bezdek (CR40) 1981
Moore, West, Dawson, Dawson (CR7) 2005; 28
Chen, Huang, Yu, Xu, Sun, Wang, Wang (CR34) 2013; 40
Chiu (CR42) 1994; 2
Ozbay, Kara, Latifoglu, Ceylan, Ceylan (CR53) 2007; 40
Sivachitraa, Savithab, Sureshb, Vijayachitrac (CR48) 2015; 149
Ho, Bradshaw, Iansek (CR14) 2008; 23
Nitta (CR50) 2004; 16
Nitta (CR52) 1997; 10
Hirose, Shotaro (CR45) 2013; 22
Lang, Lozano (CR5) 1998; 339
CR11
CR54
Sapir, Ramig, Spielman, Fox (CR20) 2010; 53
Polat (CR31) 2012; 43
Shogo, Arima, Hirose (CR49) 2014; 134
Shahbaba, Neal (CR24) 2009; 10
Pahwa, Lyons (CR4) 2013
Little, McSharry, Hunter, Spielman, Ramig (CR17) 2009; 56
Little, McSharry, Hunter, Spielman, Ramig (CR23) 2009; 56
Ozcift, Gulten (CR29) 2011; 104
Elbaz, Bower, Maraganore, McDonnell, Peterson, Ahlskog, Schaid, Rocca (CR8) 2002; 55
Li, Liu, Hu (CR28) 2011; 52
Ozcift (CR10) 2012; 36
Schrag, Ben-Schlomo, Quinn (CR6) 2002; 7
Erdogdu Sakar, Isenkul, Sakar, Sertbas, Gurgen, Delil, Apaydin, Kursun (CR22) 2013; 17
Darley, Aronson, Brown (CR12) 1969; 12
Gamboa, Jimenez-Jimenez, Nieto, Montojo, Orti-Pareja, Molina, García-Albea, Cobeta (CR13) 1997; 11
Ma, Ouyang, Chen, Zhao (CR35) 2014
Zuo, Wang, Liu, Chen (CR32) 2013; 8
Cohen (CR55) 1960; 20
Ceylan, Ceylan, Ozbay, Kara (CR46) 2011; 38
Khorasani, Daliri (CR2) 2014; 38
Elbaz, Bower, Maraganore, McDonnell, Peterson, Ahlskog, Schaid, Rocca (CR37) 2002; 55
Das (CR25) 2010; 37
Aizenberg (CR51) 2011
Astrom, Koker (CR56) 2011; 38
Cnockaert, Schoentgen, Auzou, Ozsancak, Defebve, Grenez (CR21) 2008; 50
Chen, Huang, Yu, Xuc, Sund, Wangd, Wangd (CR57) 2013; 40
AE Lang (2142_CR5) 1998; 339
JC Bezdek (2142_CR40) 1981
B Harel (2142_CR18) 2004; 56
JW Langston (2142_CR3) 2002; 23
A Elbaz (2142_CR37) 2002; 55
T Nitta (2142_CR52) 1997; 10
L Cnockaert (2142_CR21) 2008; 50
HL Chen (2142_CR34) 2013; 40
B Shahbaba (2142_CR24) 2009; 10
T Nitta (2142_CR50) 2004; 16
S Sapir (2142_CR20) 2010; 53
R Ceylan (2142_CR46) 2011; 38
B Harel (2142_CR15) 2004; 56
J Jankovic (2142_CR1) 2007; 79
A Elbaz (2142_CR8) 2002; 55
WL Zuo (2142_CR32) 2013; 8
A Hirose (2142_CR45) 2013; 22
J Gamboa (2142_CR13) 1997; 11
MA Little (2142_CR17) 2009; 56
J Cohen (2142_CR55) 1960; 20
MA Little (2142_CR23) 2009; 56
B Erdogdu Sakar (2142_CR22) 2013; 17
2142_CR54
2142_CR11
A Ho (2142_CR14) 2008; 23
HM Moftah (2142_CR44) 2014; 24
A Schrag (2142_CR6) 2002; 7
DJ Moore (2142_CR7) 2005; 28
FL Darley (2142_CR12) 1969; 12
PF Guo (2142_CR26) 2010; 6165
F Astrom (2142_CR56) 2011; 38
CO Sakar (2142_CR33) 2010; 34
A Khorasani (2142_CR2) 2014; 38
P Luukka (2142_CR27) 2011; 38
MA Little (2142_CR38) 2009; 56
2142_CR47
I Aizenberg (2142_CR51) 2011
DC Li (2142_CR28) 2011; 52
O Shogo (2142_CR49) 2014; 134
A Ozcift (2142_CR10) 2012; 36
M Sivachitraa (2142_CR48) 2015; 149
Y Ozbay (2142_CR53) 2007; 40
2142_CR30
RR Yager (2142_CR41) 1994; 24
M Seera (2142_CR19) 2015
C Ramaker (2142_CR9) 2002; 17
SL Chiu (2142_CR42) 1994; 2
C Ma (2142_CR35) 2014
R Das (2142_CR25) 2010; 37
S Gunes (2142_CR43) 2010; 37
S Skodda (2142_CR16) 2009; 24
A Ozcift (2142_CR29) 2011; 104
2142_CR36
HL Chen (2142_CR57) 2013; 40
R Pahwa (2142_CR4) 2013
K Polat (2142_CR31) 2012; 43
2142_CR39
References_xml – year: 2014
  ident: CR35
  article-title: An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach
  publication-title: Comput Math Methods Med
– ident: CR39
– volume: 23
  start-page: 574
  issue: 4
  year: 2008
  end-page: 580
  ident: CR14
  article-title: For better or for worse: the effect of Levodopa on Speech in Parkinson‘s disease
  publication-title: Mov Disord
  doi: 10.1002/mds.21899
– volume: 53
  start-page: 114
  year: 2010
  end-page: 125
  ident: CR20
  article-title: Formant centralization ratio (FCR): a proposal for a new acoustic measure of dysarthric speech
  publication-title: J Speech Lang Hear Res
  doi: 10.1044/1092-4388(2009/08-0184)
– volume: 50
  start-page: 288
  year: 2008
  end-page: 300
  ident: CR21
  article-title: Low frequency vocal modulations in vowels produced by Parkinsonian subjects
  publication-title: Speech Commun
  doi: 10.1016/j.specom.2007.10.003
– volume: 134
  start-page: 247
  year: 2014
  end-page: 253
  ident: CR49
  article-title: Millimeter-wave security imaging using complex-valued self-organizing map for visualization of moving targets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.048
– ident: CR54
– volume: 10
  start-page: 1829
  year: 2009
  end-page: 1850
  ident: CR24
  article-title: Nonlinear models using Dirichlet process mixtures
  publication-title: J Mach Learn Res
– volume: 38
  start-page: 4600
  issue: 4
  year: 2011
  end-page: 4607
  ident: CR27
  article-title: Feature selection using fuzzy entropy measures with similarity classifier
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.09.133
– year: 2015
  ident: CR19
  article-title: A hybrid FAM–CART model and its application to medical data classification
  publication-title: Neural Comput Appl
– volume: 40
  start-page: 143
  issue: 2
  year: 2007
  end-page: 156
  ident: CR53
  article-title: Complex-valued wavelet artificial neural network for Doppler signals classifying
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.02.001
– volume: 56
  start-page: 24
  year: 2004
  end-page: 29
  ident: CR18
  article-title: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: a longitudinal case study
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2004.05.002
– volume: 38
  start-page: 1
  issue: 12
  year: 2014
  end-page: 6
  ident: CR2
  article-title: HMM for classification of Parkinson’s disease based on the raw gait data
  publication-title: J Med Syst
  doi: 10.1007/s10916-014-0147-5
– year: 1981
  ident: CR40
  publication-title: Pattern recognition with fuzzy objective function algorithms
  doi: 10.1007/978-1-4757-0450-1
– year: 2013
  ident: CR4
  publication-title: Handbook of Parkinson’s disease
  doi: 10.3109/9781841849096
– ident: CR11
– volume: 79
  start-page: 368
  issue: 4
  year: 2007
  end-page: 376
  ident: CR1
  article-title: Parkinson’s disease: clinical features and diagnosis
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2007.131045
– volume: 17
  start-page: 828
  issue: 4
  year: 2013
  end-page: 834
  ident: CR22
  article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2245674
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  end-page: 46
  ident: CR55
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ Psychol Measur
  doi: 10.1177/001316446002000104
– volume: 56
  start-page: 24
  year: 2004
  end-page: 29
  ident: CR15
  article-title: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: a longitudinal case study
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2004.05.002
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  end-page: 271
  ident: CR57
  article-title: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.014
– ident: CR36
– volume: 149
  start-page: 198
  year: 2015
  end-page: 206
  ident: CR48
  article-title: A fully complex-valued fast learning classifier (FC-FLC) for real-valued classification problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.075
– volume: 36
  start-page: 2141
  issue: 4
  year: 2012
  end-page: 2147
  ident: CR10
  article-title: SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9678-1
– volume: 37
  start-page: 1568
  issue: 2
  year: 2010
  end-page: 1572
  ident: CR25
  article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.06.040
– volume: 2
  start-page: 267
  year: 1994
  end-page: 278
  ident: CR42
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J Intell Fuzzy Syst
  doi: 10.1109/91.324806
– volume: 22
  start-page: 1357
  issue: 7–8
  year: 2013
  end-page: 1366
  ident: CR45
  article-title: Relationship between phase and amplitude generalization errors in complex and real-valued feed-forward neural networks
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0960-z
– start-page: 264
  year: 2011
  end-page: 265
  ident: CR51
  publication-title: Complex-valued neural networks with multi-valued neurons
  doi: 10.1007/978-3-642-20353-4
– volume: 104
  start-page: 443
  issue: 3
  year: 2011
  end-page: 451
  ident: CR29
  article-title: Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2011.03.018
– volume: 24
  start-page: 1917
  issue: 7–8
  year: 2014
  end-page: 1928
  ident: CR44
  article-title: Adaptive k-means clustering algorithm for MR breast image segmentation
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1437-4
– volume: 55
  start-page: 25
  year: 2002
  end-page: 31
  ident: CR37
  article-title: Risk tables for Parkinsonism and Parkinson’s disease
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00425-5
– ident: CR47
– volume: 24
  start-page: 209
  year: 1994
  end-page: 219
  ident: CR41
  article-title: Generation of fuzzy rules by mountain clustering
  publication-title: IEEE Trans Syst Man Cybern
– volume: 24
  start-page: 716
  issue: 5
  year: 2009
  end-page: 722
  ident: CR16
  article-title: Progression of dysprosody in Parkinson’s disease over time—a longitudinal study
  publication-title: Mov Disord
  doi: 10.1002/mds.22430
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  end-page: 271
  ident: CR34
  article-title: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.014
– ident: CR30
– volume: 8
  start-page: 364
  issue: 4
  year: 2013
  end-page: 373
  ident: CR32
  article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.02.006
– volume: 23
  start-page: 443
  issue: 4–5
  year: 2002
  end-page: 450
  ident: CR3
  article-title: Parkinson’s disease: current and future challenges
  publication-title: NeuroToxicology
  doi: 10.1016/S0161-813X(02)00098-0
– volume: 55
  start-page: 25
  year: 2002
  end-page: 31
  ident: CR8
  article-title: Risk tables for parkinsonism and Parkinson’s disease
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00425-5
– volume: 339
  start-page: 1044
  year: 1998
  end-page: 1053
  ident: CR5
  article-title: Parkinson’s disease—first of two parts
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199810083391506
– volume: 17
  start-page: 867
  issue: 5
  year: 2002
  end-page: 876
  ident: CR9
  article-title: Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease
  publication-title: Mov Disord
  doi: 10.1002/mds.10248
– volume: 56
  start-page: 1015
  issue: 4
  year: 2009
  end-page: 1022
  ident: CR23
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005954
– volume: 38
  start-page: 9744
  issue: 8
  year: 2011
  end-page: 9751
  ident: CR46
  article-title: Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.025
– volume: 16
  start-page: 73
  issue: 1
  year: 2004
  end-page: 97
  ident: CR50
  article-title: Orthogonality of decision boundaries in complex-valued neural networks
  publication-title: Neural Comput
  doi: 10.1162/08997660460734001
– volume: 11
  start-page: 314
  year: 1997
  end-page: 320
  ident: CR13
  article-title: Acoustic voice analysis in patients with Parkinson‘s disease treated with dopaminergic drugs
  publication-title: J Voice
  doi: 10.1016/S0892-1997(97)80010-0
– volume: 52
  start-page: 45
  issue: 1
  year: 2011
  end-page: 52
  ident: CR28
  article-title: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical datasets
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2011.02.001
– volume: 43
  start-page: 597
  issue: 4
  year: 2012
  end-page: 609
  ident: CR31
  article-title: Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy c-means clustering
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2011.581395
– volume: 38
  start-page: 12470
  issue: 10
  year: 2011
  end-page: 12474
  ident: CR56
  article-title: A parallel neural network approach to prediction of Parkinson’s disease
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.028
– volume: 12
  start-page: 246
  year: 1969
  end-page: 269
  ident: CR12
  article-title: Differential diagnostic patterns of dysarthria
  publication-title: J Speech Hear Res
  doi: 10.1044/jshr.1202.246
– volume: 37
  start-page: 7729
  issue: 12
  year: 2010
  end-page: 7736
  ident: CR43
  article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.04.043
– volume: 10
  start-page: 1391
  year: 1997
  end-page: 1415
  ident: CR52
  article-title: An extension of the back-propagation algorithm to complex numbers
  publication-title: Neural Network
  doi: 10.1016/S0893-6080(97)00036-1
– volume: 28
  start-page: 57
  year: 2005
  end-page: 87
  ident: CR7
  article-title: Molecular pathology of Parkinson’s disease
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.28.061604.135718
– volume: 6165
  start-page: 306
  year: 2010
  end-page: 314
  ident: CR26
  article-title: Advances in detecting Parkinson’s disease
  publication-title: Med Biom
  doi: 10.1007/978-3-642-13923-9_33
– volume: 34
  start-page: 591
  issue: 4
  year: 2010
  end-page: 599
  ident: CR33
  article-title: Telediagnosis of Parkinson’s disease using measurements of dysphonia
  publication-title: J Med Syst
  doi: 10.1007/s10916-009-9272-y
– volume: 56
  start-page: 1010
  issue: 4
  year: 2009
  end-page: 1022
  ident: CR17
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005954
– volume: 56
  start-page: 1015
  year: 2009
  end-page: 1022
  ident: CR38
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005954
– volume: 7
  start-page: 529
  year: 2002
  end-page: 535
  ident: CR6
  article-title: How valid is the clinical diagnosis of Parkinson‘s disease in the community?
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.73.5.529
– volume: 10
  start-page: 1829
  year: 2009
  ident: 2142_CR24
  publication-title: J Mach Learn Res
– volume: 22
  start-page: 1357
  issue: 7–8
  year: 2013
  ident: 2142_CR45
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0960-z
– ident: 2142_CR54
  doi: 10.1109/IJCNN.1993.716968
– volume: 37
  start-page: 1568
  issue: 2
  year: 2010
  ident: 2142_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.06.040
– volume: 38
  start-page: 4600
  issue: 4
  year: 2011
  ident: 2142_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.09.133
– volume: 11
  start-page: 314
  year: 1997
  ident: 2142_CR13
  publication-title: J Voice
  doi: 10.1016/S0892-1997(97)80010-0
– ident: 2142_CR36
– volume: 43
  start-page: 597
  issue: 4
  year: 2012
  ident: 2142_CR31
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2011.581395
– volume: 24
  start-page: 1917
  issue: 7–8
  year: 2014
  ident: 2142_CR44
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1437-4
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  ident: 2142_CR57
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.014
– ident: 2142_CR39
– volume: 40
  start-page: 143
  issue: 2
  year: 2007
  ident: 2142_CR53
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.02.001
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  ident: 2142_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.014
– volume: 24
  start-page: 209
  year: 1994
  ident: 2142_CR41
  publication-title: IEEE Trans Syst Man Cybern
– volume: 339
  start-page: 1044
  year: 1998
  ident: 2142_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199810083391506
– volume: 38
  start-page: 12470
  issue: 10
  year: 2011
  ident: 2142_CR56
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.028
– volume: 56
  start-page: 1015
  issue: 4
  year: 2009
  ident: 2142_CR23
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005954
– volume: 53
  start-page: 114
  year: 2010
  ident: 2142_CR20
  publication-title: J Speech Lang Hear Res
  doi: 10.1044/1092-4388(2009/08-0184)
– volume: 55
  start-page: 25
  year: 2002
  ident: 2142_CR8
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00425-5
– volume: 7
  start-page: 529
  year: 2002
  ident: 2142_CR6
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.73.5.529
– volume: 50
  start-page: 288
  year: 2008
  ident: 2142_CR21
  publication-title: Speech Commun
  doi: 10.1016/j.specom.2007.10.003
– ident: 2142_CR30
  doi: 10.1109/IEMBS.2011.6091936
– volume: 37
  start-page: 7729
  issue: 12
  year: 2010
  ident: 2142_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.04.043
– volume: 56
  start-page: 1010
  issue: 4
  year: 2009
  ident: 2142_CR17
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005954
– volume: 17
  start-page: 828
  issue: 4
  year: 2013
  ident: 2142_CR22
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2245674
– volume: 23
  start-page: 443
  issue: 4–5
  year: 2002
  ident: 2142_CR3
  publication-title: NeuroToxicology
  doi: 10.1016/S0161-813X(02)00098-0
– volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 1981
  ident: 2142_CR40
  doi: 10.1007/978-1-4757-0450-1
– volume: 56
  start-page: 24
  year: 2004
  ident: 2142_CR18
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2004.05.002
– volume: 34
  start-page: 591
  issue: 4
  year: 2010
  ident: 2142_CR33
  publication-title: J Med Syst
  doi: 10.1007/s10916-009-9272-y
– volume: 38
  start-page: 9744
  issue: 8
  year: 2011
  ident: 2142_CR46
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.025
– ident: 2142_CR47
  doi: 10.1109/JBHI.2014.23877952015
– volume: 6165
  start-page: 306
  year: 2010
  ident: 2142_CR26
  publication-title: Med Biom
  doi: 10.1007/978-3-642-13923-9_33
– volume: 38
  start-page: 1
  issue: 12
  year: 2014
  ident: 2142_CR2
  publication-title: J Med Syst
  doi: 10.1007/s10916-014-0147-5
– volume: 28
  start-page: 57
  year: 2005
  ident: 2142_CR7
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.28.061604.135718
– volume: 10
  start-page: 1391
  year: 1997
  ident: 2142_CR52
  publication-title: Neural Network
  doi: 10.1016/S0893-6080(97)00036-1
– volume: 52
  start-page: 45
  issue: 1
  year: 2011
  ident: 2142_CR28
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2011.02.001
– volume: 149
  start-page: 198
  year: 2015
  ident: 2142_CR48
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.075
– volume: 24
  start-page: 716
  issue: 5
  year: 2009
  ident: 2142_CR16
  publication-title: Mov Disord
  doi: 10.1002/mds.22430
– volume-title: Handbook of Parkinson’s disease
  year: 2013
  ident: 2142_CR4
  doi: 10.3109/9781841849096
– ident: 2142_CR11
– volume: 2
  start-page: 267
  year: 1994
  ident: 2142_CR42
  publication-title: J Intell Fuzzy Syst
  doi: 10.1109/91.324806
– start-page: 264
  volume-title: Complex-valued neural networks with multi-valued neurons
  year: 2011
  ident: 2142_CR51
  doi: 10.1007/978-3-642-20353-4
– volume: 56
  start-page: 24
  year: 2004
  ident: 2142_CR15
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2004.05.002
– volume: 104
  start-page: 443
  issue: 3
  year: 2011
  ident: 2142_CR29
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2011.03.018
– year: 2015
  ident: 2142_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1852-9
– volume: 8
  start-page: 364
  issue: 4
  year: 2013
  ident: 2142_CR32
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.02.006
– volume: 17
  start-page: 867
  issue: 5
  year: 2002
  ident: 2142_CR9
  publication-title: Mov Disord
  doi: 10.1002/mds.10248
– volume: 56
  start-page: 1015
  year: 2009
  ident: 2142_CR38
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005954
– volume: 12
  start-page: 246
  year: 1969
  ident: 2142_CR12
  publication-title: J Speech Hear Res
  doi: 10.1044/jshr.1202.246
– volume: 134
  start-page: 247
  year: 2014
  ident: 2142_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.048
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 2142_CR55
  publication-title: Educ Psychol Measur
  doi: 10.1177/001316446002000104
– volume: 79
  start-page: 368
  issue: 4
  year: 2007
  ident: 2142_CR1
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2007.131045
– volume: 23
  start-page: 574
  issue: 4
  year: 2008
  ident: 2142_CR14
  publication-title: Mov Disord
  doi: 10.1002/mds.21899
– volume: 55
  start-page: 25
  year: 2002
  ident: 2142_CR37
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00425-5
– volume: 16
  start-page: 73
  issue: 1
  year: 2004
  ident: 2142_CR50
  publication-title: Neural Comput
  doi: 10.1162/08997660460734001
– year: 2014
  ident: 2142_CR35
  publication-title: Comput Math Methods Med
  doi: 10.1155/2014/985789
– volume: 36
  start-page: 2141
  issue: 4
  year: 2012
  ident: 2142_CR10
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9678-1
SSID ssj0004685
Score 2.403705
Snippet Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1657
SubjectTerms Artificial Intelligence
Central nervous system
Classification
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Diagnosis
Diagnostic software
Diagnostic systems
Hybrid systems
Image Processing and Computer Vision
Neural networks
Original Article
Probability and Statistics in Computer Science
Reliability
Speech
Vector quantization
Weighting
Title A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method
URI https://link.springer.com/article/10.1007/s00521-015-2142-2
https://www.proquest.com/docview/1915903126
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYoXHopBVo1FKI5cCoySrz2_hxTGkCUoqolEj2t1vZsVRECIklBnHgGbn09noQZ725KUVuJk6Vdr7W2x_aM55tvhNhQKkt1hB1ZaK-kLlIt09IbaVOndIwZCVUAyB7GewO9f2yO6zjucYN2b1ySYaeeBbvxDSabvkYyTZikfXfBkH1Cq3Ght_vtY_9BOGTIxEmGC4N6dNQ4M__WyJ_H0W8d85FbNJw2O4viqPnPCmRysjWd2C13_YjC8YkdeSle1Non9CpxWRJzOFoWi01mB6gX-oq47cHo7CcOwVdIvB9jqCifgXRc4EjpEDR2d_NrDLWLBxhB_x0CRB2vJJOIowcWzIqjApg5MxQBdw58AQwn8hTprAQ3nDJhAzdQYqAahctwZ8tPqiTXr8Rgp3-0vSfr7A3SRd14IlVG1hLnLLROGZeQ-UvWT2oTzQxrthubRGuDuog6mMXaeEu6Y5x440hlK5Gm7bWYH52N8I2A1HW6hTelRsy0tZgWhfLKo4nKRHtTtESnmcTc1dTmnGFjmM9ImcOY5zTmOY95rlri3eyT84rX43-V1xrJyOslPs7J0DUZbYkqbonNZqIfvP5XY6tPqv1WPFesSASA8JqYn1xMcZ3UoIltk9h_-HTwtV2LP5Xv-4efv7TFs4Hq3QPETQOT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQGWDhH1EocAMTyFLr2PkZK0RVoHRqpW5REl8QoqSItsDIM7DxejwJPicpBQESU6TE8eA7--58333H2JEQgS8drPNIasFl5Evup1rx2E-EdDEwSmUBsl233ZcXAzUo6rjHJdq9TEnak3pW7EY3mBT6Kk40Ydycu4uUZaSIqy-ac8WQtg-nCVsI0iOdMpX50xRfjdGnh_ktKWptTWuNrRROIjRzqa6zBcw22GrZgAGK_bjJXpuQjR5xCDoHzN2MIWdmBuOKAhU029qu95e3MRSZGCCg-zVYJDk-c-L6Rg2kPzmVBBDBpX1YeDjQPS3c8js0Jg2S4ZR4FWiCFC0jKDzZq1V6k_ei3mL91lnvtM2LJgs8cRruhIvABDXUWjBOhEo8E6WaIMWPPUlEaHHDVZ6UCmXk1DFwpdKxcfFcT6vEeFYpmvXdZpVslOEOAz-pNyKtUokYyDhGP4qEFhqVk3pSq6jK6uVqh0nBQE6NMIbhjDvZCig0AgpJQKGosuPZL_c5_cZfg2ulCMNiJ45DE4-qwJxcwq2yk1Ksc59_m2z3X6MP2VK7d9UJO-fdyz22LMj2W0xvjVUmD1PcN57LJD6wmvoB_W_lpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hrYS4tFBALG1hDj2B3O46dh7HFXTpSxUHKpVTiO1JhbqkFZttK078Bm78vf4SPE6ylAoqoZ4iJY6V-Dnj-eb7ANalzFIV0UAUykmhilSJtHRamNRKFVPmB1UAyB7E24dq90gftTqn0w7t3oUkm5wGZmmq6s0zV27OE9_4NJPdYC2YMkz4NXhBsYREDxZG7z7ubV1LjQyqnN6JYYCPirrA5t8q-XNr-m1v3giRhp1nvASfum9uACcnG7PabNhvN-gc7_BTD2GxtUpx1AyjR3CPqmVY6hQfsF0AHsOPEVan5zRB1yD0Pk-xoYJGb_siZ1CHZLKr7z-n2IZ-kJH1xxig63QpmFycHPKAbbgrkBk1wyXg0ZEPhvFEfCG_h6KdzJjIgSsoKVCQ4kU4y-U7jfj1Ezgcb314sy1aVQdho2FcC5l5L4q1DI2V2ibeLfZeUWoSxcxrZhjrRClNqogGlMVKO-Ntyjhx2npTriTfhU-hV51W9AwwtYNh4XSpiDJlDKVFIZ10pKMyUU4XfRh0HZrblvKclTcm-ZysObR57ts85zbPZR9ezV85a_g-biu82o2SvJ3609w7wDrzS6WM-_C66_Rrj_9V2fP_Kv0S7r9_O873dw72VuCBZFsjYIhXoVd_ndGat5Rq86KdDb8ASKILSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+diagnosis+system+for+Parkinson%E2%80%99s+disease+using+complex-valued+artificial+neural+network+with+k-means+clustering+feature+weighting+method&rft.jtitle=Neural+computing+%26+applications&rft.au=G%C3%BCr%C3%BCler%2C+H%C3%BCseyin&rft.date=2017-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=7&rft.spage=1657&rft.epage=1666&rft_id=info:doi/10.1007%2Fs00521-015-2142-2&rft.externalDocID=10_1007_s00521_015_2142_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon