A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method
Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, w...
Saved in:
Published in | Neural computing & applications Vol. 28; no. 7; pp. 1657 - 1666 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.07.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-015-2142-2 |
Cover
Abstract | Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, we have developed a new hybrid diagnostic system for addressing the PD diagnosis problem. The main novelty of this paper lies in the proposed approach that involves a combination of the k-means clustering-based feature weighting (KMCFW) method and a complex-valued artificial neural network (CVANN). A Parkinson dataset comprising the features obtained from speech and sound samples were used for the diagnosis of PD. PD attributes are weighted through the use of the KMCFW method. New features obtained are converted into a complex number format. These feature values are presented as an input to the CVANN. The efficiency and effectiveness of the proposed system have been rigorously evaluated against the PD dataset in terms of five different evaluation methods. Experimental results have demonstrated that the proposed hybrid system, entitled KMCFW–CVANN, significantly outperforms the other methods detailed in the literature and achieves the highest classification results reported so far, with a classification accuracy of 99.52 %. Therefore, the proposed system appears to be promising in terms of a more accurate diagnosis of PD. Also, the application confirms the conclusion that the reliability of the classification ability of a complex-valued algorithm with regard to a real-valued dataset is high. |
---|---|
AbstractList | Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, we have developed a new hybrid diagnostic system for addressing the PD diagnosis problem. The main novelty of this paper lies in the proposed approach that involves a combination of the k-means clustering-based feature weighting (KMCFW) method and a complex-valued artificial neural network (CVANN). A Parkinson dataset comprising the features obtained from speech and sound samples were used for the diagnosis of PD. PD attributes are weighted through the use of the KMCFW method. New features obtained are converted into a complex number format. These feature values are presented as an input to the CVANN. The efficiency and effectiveness of the proposed system have been rigorously evaluated against the PD dataset in terms of five different evaluation methods. Experimental results have demonstrated that the proposed hybrid system, entitled KMCFW–CVANN, significantly outperforms the other methods detailed in the literature and achieves the highest classification results reported so far, with a classification accuracy of 99.52 %. Therefore, the proposed system appears to be promising in terms of a more accurate diagnosis of PD. Also, the application confirms the conclusion that the reliability of the classification ability of a complex-valued algorithm with regard to a real-valued dataset is high. Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, we have developed a new hybrid diagnostic system for addressing the PD diagnosis problem. The main novelty of this paper lies in the proposed approach that involves a combination of the k-means clustering-based feature weighting (KMCFW) method and a complex-valued artificial neural network (CVANN). A Parkinson dataset comprising the features obtained from speech and sound samples were used for the diagnosis of PD. PD attributes are weighted through the use of the KMCFW method. New features obtained are converted into a complex number format. These feature values are presented as an input to the CVANN. The efficiency and effectiveness of the proposed system have been rigorously evaluated against the PD dataset in terms of five different evaluation methods. Experimental results have demonstrated that the proposed hybrid system, entitled KMCFW–CVANN, significantly outperforms the other methods detailed in the literature and achieves the highest classification results reported so far, with a classification accuracy of 99.52 %. Therefore, the proposed system appears to be promising in terms of a more accurate diagnosis of PD. Also, the application confirms the conclusion that the reliability of the classification ability of a complex-valued algorithm with regard to a real-valued dataset is high. |
Author | Gürüler, Hüseyin |
Author_xml | – sequence: 1 givenname: Hüseyin surname: Gürüler fullname: Gürüler, Hüseyin email: hguruler@mu.edu.tr organization: Department of Information Systems Engineering, Faculty of Technology, Mugla Sitki Kocman University |
BookMark | eNp9kMtuFDEQRS2USEweH8DOEmuDn_1YRhEvKRJZwNryuKtnnOm2B5c7Q3b5Bnb8Hl9CN8MiQiKrklz33LLOGTmJKQIhrwR_Iziv3yLnRgrGhWFSaMnkC7ISWimmuGlOyIq3et5WWr0kZ4h3nHNdNWZFflzRmO5hoF1wm5gwIMUHLDDSPmV66_IuREzx1-NPnCMIDoFOGOKG-jTuB_jO7t0wQUddLqEPPriBRpjyn1EOKe_oIZQt3bERXETqh2luz0tBD65MGegBwmZblpcRyjZ1F-S0dwPC5d95Tr6-f_fl-iO7-fzh0_XVDfNKVIXJljeVaVqx9tL4mstairpZ17oxrVqLytRaG9BOcWgrbbq10byqO-Mb1fYwmzgnr4-9-5y-TYDF3qUpx_mkFa0wLVdCVnNKHFM-J8QMvd3nMLr8YAW3i3p7VG9n9XZRb-XM1P8wPhRXQooluzA8S8ojifvFEeQnf_ov9BvkhJx9 |
CitedBy_id | crossref_primary_10_1007_s11517_024_03139_3 crossref_primary_10_1007_s11761_023_00372_w crossref_primary_10_21015_vtse_v9i3_652 crossref_primary_10_1007_s00521_020_05233_7 crossref_primary_10_1007_s00521_022_07046_2 crossref_primary_10_1016_j_eswa_2021_115424 crossref_primary_10_1038_s41598_022_23247_0 crossref_primary_10_1016_j_jocn_2019_04_004 crossref_primary_10_1080_14767058_2019_1668922 crossref_primary_10_1007_s13246_021_01001_6 crossref_primary_10_1109_ACCESS_2020_3005614 crossref_primary_10_1016_j_asoc_2018_10_022 crossref_primary_10_3233_JIFS_179603 crossref_primary_10_3389_fnins_2021_754058 crossref_primary_10_35784_iapgos_5309 crossref_primary_10_4018_IJSI_315655 crossref_primary_10_1016_j_bbe_2020_01_003 crossref_primary_10_28948_ngumuh_524658 crossref_primary_10_1007_s13755_020_00104_w crossref_primary_10_1109_JTEHM_2019_2940900 crossref_primary_10_1016_j_powtec_2023_118516 crossref_primary_10_36548_rrrj_2023_1_03 crossref_primary_10_1109_ACCESS_2021_3124765 crossref_primary_10_1016_j_artmed_2023_102524 crossref_primary_10_1007_s11517_020_02260_3 crossref_primary_10_1007_s42979_021_00710_9 crossref_primary_10_1515_bmt_2022_0022 crossref_primary_10_1038_s41598_024_51600_y crossref_primary_10_3390_app10186553 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_1007_s11517_023_02944_6 crossref_primary_10_1007_s40815_016_0196_7 crossref_primary_10_3390_diagnostics10040214 crossref_primary_10_1007_s10489_022_04345_y crossref_primary_10_3389_fphy_2022_1048833 crossref_primary_10_1145_3433180 crossref_primary_10_1002_cpe_7289 crossref_primary_10_4015_S1016237218500254 crossref_primary_10_1186_s12883_024_04001_7 crossref_primary_10_1108_IJICC_10_2021_0226 crossref_primary_10_1007_s00500_023_08744_2 crossref_primary_10_2298_FIL2307997S crossref_primary_10_31590_ejosat_655795 crossref_primary_10_1109_ACCESS_2020_2989032 crossref_primary_10_1016_j_compbiomed_2021_104799 crossref_primary_10_35193_bseufbd_566857 crossref_primary_10_1109_ACCESS_2019_2936564 crossref_primary_10_1109_ACCESS_2020_2968177 crossref_primary_10_1016_j_bspc_2022_104013 crossref_primary_10_1007_s00521_019_04618_7 crossref_primary_10_1016_j_ipm_2022_102909 crossref_primary_10_1016_j_neunet_2022_02_028 crossref_primary_10_31590_ejosat_568544 crossref_primary_10_1016_j_eswa_2019_06_052 crossref_primary_10_1155_2022_1487212 crossref_primary_10_3390_app14219747 crossref_primary_10_1016_j_neucom_2024_129176 crossref_primary_10_1007_s00521_021_05741_0 crossref_primary_10_1109_JAS_2022_105743 crossref_primary_10_1007_s42979_024_03404_0 crossref_primary_10_1007_s00521_021_05974_z crossref_primary_10_3390_diagnostics11061076 crossref_primary_10_1016_j_mehy_2020_109722 crossref_primary_10_1007_s11571_022_09823_0 crossref_primary_10_4103_abr_abr_254_21 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_1007_s13369_020_05080_7 crossref_primary_10_1016_j_bspc_2021_102415 crossref_primary_10_1109_ACCESS_2024_3487001 crossref_primary_10_1007_s13369_020_04357_1 crossref_primary_10_1155_2017_5907264 crossref_primary_10_29130_dubited_688223 |
Cites_doi | 10.1002/mds.21899 10.1044/1092-4388(2009/08-0184) 10.1016/j.specom.2007.10.003 10.1016/j.neucom.2013.06.048 10.1016/j.eswa.2010.09.133 10.1016/j.artmed.2007.02.001 10.1016/j.bandc.2004.05.002 10.1007/s10916-014-0147-5 10.1007/978-1-4757-0450-1 10.3109/9781841849096 10.1136/jnnp.2007.131045 10.1109/JBHI.2013.2245674 10.1177/001316446002000104 10.1016/j.eswa.2012.07.014 10.1016/j.neucom.2014.04.075 10.1007/s10916-011-9678-1 10.1016/j.eswa.2009.06.040 10.1109/91.324806 10.1007/s00521-012-0960-z 10.1007/978-3-642-20353-4 10.1016/j.cmpb.2011.03.018 10.1007/s00521-013-1437-4 10.1016/S0895-4356(01)00425-5 10.1002/mds.22430 10.1016/j.bspc.2013.02.006 10.1016/S0161-813X(02)00098-0 10.1056/NEJM199810083391506 10.1002/mds.10248 10.1109/TBME.2008.2005954 10.1016/j.eswa.2011.02.025 10.1162/08997660460734001 10.1016/S0892-1997(97)80010-0 10.1016/j.artmed.2011.02.001 10.1080/00207721.2011.581395 10.1016/j.eswa.2011.04.028 10.1044/jshr.1202.246 10.1016/j.eswa.2010.04.043 10.1016/S0893-6080(97)00036-1 10.1146/annurev.neuro.28.061604.135718 10.1007/978-3-642-13923-9_33 10.1007/s10916-009-9272-y 10.1136/jnnp.73.5.529 10.1109/IJCNN.1993.716968 10.1109/IEMBS.2011.6091936 10.1109/JBHI.2014.23877952015 10.1007/s00521-015-1852-9 10.1155/2014/985789 |
ContentType | Journal Article |
Copyright | The Natural Computing Applications Forum 2015 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: The Natural Computing Applications Forum 2015 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00521-015-2142-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 1666 |
ExternalDocumentID | 10_1007_s00521_015_2142_2 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ PQGLB |
ID | FETCH-LOGICAL-c316t-290865891bc25c70272178b748593b1657445e4a30e9645db54067d5c839fe643 |
IEDL.DBID | AGYKE |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 03:25:50 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Tue Jul 01 01:46:41 EDT 2025 Fri Feb 21 02:34:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Automated diagnostic systems K-means clustering-based feature weighting Complex-valued artificial neural network Parkinson’s disease |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-290865891bc25c70272178b748593b1657445e4a30e9645db54067d5c839fe643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1915903126 |
PQPubID | 2043988 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1915903126 crossref_primary_10_1007_s00521_015_2142_2 crossref_citationtrail_10_1007_s00521_015_2142_2 springer_journals_10_1007_s00521_015_2142_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2017 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Yager, Filev (CR41) 1994; 24 Ramaker, Marinus, Stiggelbout, van Hilten (CR9) 2002; 17 Guo, Bhattacharya, Kharma (CR26) 2010; 6165 Harel, Cannizzaro, Snyder (CR18) 2004; 56 Jankovic (CR1) 2007; 79 CR39 Sakar, Kursun (CR33) 2010; 34 CR36 Moftah, Azar, Al-Shammari, Ghali, Hassanien, Shoman (CR44) 2014; 24 CR30 Gunes, Polat, Yosunkaya (CR43) 2010; 37 Harel, Cannizzaro, Snyder (CR15) 2004; 56 Skodda, Rinsche, Schlegel (CR16) 2009; 24 Little, McSharry, Hunter, Ramig (CR38) 2009; 56 Seera, Lim, Tan, Loo (CR19) 2015 Langston (CR3) 2002; 23 CR47 Luukka (CR27) 2011; 38 Bezdek (CR40) 1981 Moore, West, Dawson, Dawson (CR7) 2005; 28 Chen, Huang, Yu, Xu, Sun, Wang, Wang (CR34) 2013; 40 Chiu (CR42) 1994; 2 Ozbay, Kara, Latifoglu, Ceylan, Ceylan (CR53) 2007; 40 Sivachitraa, Savithab, Sureshb, Vijayachitrac (CR48) 2015; 149 Ho, Bradshaw, Iansek (CR14) 2008; 23 Nitta (CR50) 2004; 16 Nitta (CR52) 1997; 10 Hirose, Shotaro (CR45) 2013; 22 Lang, Lozano (CR5) 1998; 339 CR11 CR54 Sapir, Ramig, Spielman, Fox (CR20) 2010; 53 Polat (CR31) 2012; 43 Shogo, Arima, Hirose (CR49) 2014; 134 Shahbaba, Neal (CR24) 2009; 10 Pahwa, Lyons (CR4) 2013 Little, McSharry, Hunter, Spielman, Ramig (CR17) 2009; 56 Little, McSharry, Hunter, Spielman, Ramig (CR23) 2009; 56 Ozcift, Gulten (CR29) 2011; 104 Elbaz, Bower, Maraganore, McDonnell, Peterson, Ahlskog, Schaid, Rocca (CR8) 2002; 55 Li, Liu, Hu (CR28) 2011; 52 Ozcift (CR10) 2012; 36 Schrag, Ben-Schlomo, Quinn (CR6) 2002; 7 Erdogdu Sakar, Isenkul, Sakar, Sertbas, Gurgen, Delil, Apaydin, Kursun (CR22) 2013; 17 Darley, Aronson, Brown (CR12) 1969; 12 Gamboa, Jimenez-Jimenez, Nieto, Montojo, Orti-Pareja, Molina, García-Albea, Cobeta (CR13) 1997; 11 Ma, Ouyang, Chen, Zhao (CR35) 2014 Zuo, Wang, Liu, Chen (CR32) 2013; 8 Cohen (CR55) 1960; 20 Ceylan, Ceylan, Ozbay, Kara (CR46) 2011; 38 Khorasani, Daliri (CR2) 2014; 38 Elbaz, Bower, Maraganore, McDonnell, Peterson, Ahlskog, Schaid, Rocca (CR37) 2002; 55 Das (CR25) 2010; 37 Aizenberg (CR51) 2011 Astrom, Koker (CR56) 2011; 38 Cnockaert, Schoentgen, Auzou, Ozsancak, Defebve, Grenez (CR21) 2008; 50 Chen, Huang, Yu, Xuc, Sund, Wangd, Wangd (CR57) 2013; 40 AE Lang (2142_CR5) 1998; 339 JC Bezdek (2142_CR40) 1981 B Harel (2142_CR18) 2004; 56 JW Langston (2142_CR3) 2002; 23 A Elbaz (2142_CR37) 2002; 55 T Nitta (2142_CR52) 1997; 10 L Cnockaert (2142_CR21) 2008; 50 HL Chen (2142_CR34) 2013; 40 B Shahbaba (2142_CR24) 2009; 10 T Nitta (2142_CR50) 2004; 16 S Sapir (2142_CR20) 2010; 53 R Ceylan (2142_CR46) 2011; 38 B Harel (2142_CR15) 2004; 56 J Jankovic (2142_CR1) 2007; 79 A Elbaz (2142_CR8) 2002; 55 WL Zuo (2142_CR32) 2013; 8 A Hirose (2142_CR45) 2013; 22 J Gamboa (2142_CR13) 1997; 11 MA Little (2142_CR17) 2009; 56 J Cohen (2142_CR55) 1960; 20 MA Little (2142_CR23) 2009; 56 B Erdogdu Sakar (2142_CR22) 2013; 17 2142_CR54 2142_CR11 A Ho (2142_CR14) 2008; 23 HM Moftah (2142_CR44) 2014; 24 A Schrag (2142_CR6) 2002; 7 DJ Moore (2142_CR7) 2005; 28 FL Darley (2142_CR12) 1969; 12 PF Guo (2142_CR26) 2010; 6165 F Astrom (2142_CR56) 2011; 38 CO Sakar (2142_CR33) 2010; 34 A Khorasani (2142_CR2) 2014; 38 P Luukka (2142_CR27) 2011; 38 MA Little (2142_CR38) 2009; 56 2142_CR47 I Aizenberg (2142_CR51) 2011 DC Li (2142_CR28) 2011; 52 O Shogo (2142_CR49) 2014; 134 A Ozcift (2142_CR10) 2012; 36 M Sivachitraa (2142_CR48) 2015; 149 Y Ozbay (2142_CR53) 2007; 40 2142_CR30 RR Yager (2142_CR41) 1994; 24 M Seera (2142_CR19) 2015 C Ramaker (2142_CR9) 2002; 17 SL Chiu (2142_CR42) 1994; 2 C Ma (2142_CR35) 2014 R Das (2142_CR25) 2010; 37 S Gunes (2142_CR43) 2010; 37 S Skodda (2142_CR16) 2009; 24 A Ozcift (2142_CR29) 2011; 104 2142_CR36 HL Chen (2142_CR57) 2013; 40 R Pahwa (2142_CR4) 2013 K Polat (2142_CR31) 2012; 43 2142_CR39 |
References_xml | – year: 2014 ident: CR35 article-title: An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach publication-title: Comput Math Methods Med – ident: CR39 – volume: 23 start-page: 574 issue: 4 year: 2008 end-page: 580 ident: CR14 article-title: For better or for worse: the effect of Levodopa on Speech in Parkinson‘s disease publication-title: Mov Disord doi: 10.1002/mds.21899 – volume: 53 start-page: 114 year: 2010 end-page: 125 ident: CR20 article-title: Formant centralization ratio (FCR): a proposal for a new acoustic measure of dysarthric speech publication-title: J Speech Lang Hear Res doi: 10.1044/1092-4388(2009/08-0184) – volume: 50 start-page: 288 year: 2008 end-page: 300 ident: CR21 article-title: Low frequency vocal modulations in vowels produced by Parkinsonian subjects publication-title: Speech Commun doi: 10.1016/j.specom.2007.10.003 – volume: 134 start-page: 247 year: 2014 end-page: 253 ident: CR49 article-title: Millimeter-wave security imaging using complex-valued self-organizing map for visualization of moving targets publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.048 – ident: CR54 – volume: 10 start-page: 1829 year: 2009 end-page: 1850 ident: CR24 article-title: Nonlinear models using Dirichlet process mixtures publication-title: J Mach Learn Res – volume: 38 start-page: 4600 issue: 4 year: 2011 end-page: 4607 ident: CR27 article-title: Feature selection using fuzzy entropy measures with similarity classifier publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.09.133 – year: 2015 ident: CR19 article-title: A hybrid FAM–CART model and its application to medical data classification publication-title: Neural Comput Appl – volume: 40 start-page: 143 issue: 2 year: 2007 end-page: 156 ident: CR53 article-title: Complex-valued wavelet artificial neural network for Doppler signals classifying publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.02.001 – volume: 56 start-page: 24 year: 2004 end-page: 29 ident: CR18 article-title: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: a longitudinal case study publication-title: Brain Cogn doi: 10.1016/j.bandc.2004.05.002 – volume: 38 start-page: 1 issue: 12 year: 2014 end-page: 6 ident: CR2 article-title: HMM for classification of Parkinson’s disease based on the raw gait data publication-title: J Med Syst doi: 10.1007/s10916-014-0147-5 – year: 1981 ident: CR40 publication-title: Pattern recognition with fuzzy objective function algorithms doi: 10.1007/978-1-4757-0450-1 – year: 2013 ident: CR4 publication-title: Handbook of Parkinson’s disease doi: 10.3109/9781841849096 – ident: CR11 – volume: 79 start-page: 368 issue: 4 year: 2007 end-page: 376 ident: CR1 article-title: Parkinson’s disease: clinical features and diagnosis publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2007.131045 – volume: 17 start-page: 828 issue: 4 year: 2013 end-page: 834 ident: CR22 article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2245674 – volume: 20 start-page: 37 issue: 1 year: 1960 end-page: 46 ident: CR55 article-title: A coefficient of agreement for nominal scales publication-title: Educ Psychol Measur doi: 10.1177/001316446002000104 – volume: 56 start-page: 24 year: 2004 end-page: 29 ident: CR15 article-title: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: a longitudinal case study publication-title: Brain Cogn doi: 10.1016/j.bandc.2004.05.002 – volume: 40 start-page: 263 issue: 1 year: 2013 end-page: 271 ident: CR57 article-title: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.014 – ident: CR36 – volume: 149 start-page: 198 year: 2015 end-page: 206 ident: CR48 article-title: A fully complex-valued fast learning classifier (FC-FLC) for real-valued classification problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.075 – volume: 36 start-page: 2141 issue: 4 year: 2012 end-page: 2147 ident: CR10 article-title: SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease publication-title: J Med Syst doi: 10.1007/s10916-011-9678-1 – volume: 37 start-page: 1568 issue: 2 year: 2010 end-page: 1572 ident: CR25 article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.06.040 – volume: 2 start-page: 267 year: 1994 end-page: 278 ident: CR42 article-title: Fuzzy model identification based on cluster estimation publication-title: J Intell Fuzzy Syst doi: 10.1109/91.324806 – volume: 22 start-page: 1357 issue: 7–8 year: 2013 end-page: 1366 ident: CR45 article-title: Relationship between phase and amplitude generalization errors in complex and real-valued feed-forward neural networks publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0960-z – start-page: 264 year: 2011 end-page: 265 ident: CR51 publication-title: Complex-valued neural networks with multi-valued neurons doi: 10.1007/978-3-642-20353-4 – volume: 104 start-page: 443 issue: 3 year: 2011 end-page: 451 ident: CR29 article-title: Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2011.03.018 – volume: 24 start-page: 1917 issue: 7–8 year: 2014 end-page: 1928 ident: CR44 article-title: Adaptive k-means clustering algorithm for MR breast image segmentation publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1437-4 – volume: 55 start-page: 25 year: 2002 end-page: 31 ident: CR37 article-title: Risk tables for Parkinsonism and Parkinson’s disease publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(01)00425-5 – ident: CR47 – volume: 24 start-page: 209 year: 1994 end-page: 219 ident: CR41 article-title: Generation of fuzzy rules by mountain clustering publication-title: IEEE Trans Syst Man Cybern – volume: 24 start-page: 716 issue: 5 year: 2009 end-page: 722 ident: CR16 article-title: Progression of dysprosody in Parkinson’s disease over time—a longitudinal study publication-title: Mov Disord doi: 10.1002/mds.22430 – volume: 40 start-page: 263 issue: 1 year: 2013 end-page: 271 ident: CR34 article-title: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.014 – ident: CR30 – volume: 8 start-page: 364 issue: 4 year: 2013 end-page: 373 ident: CR32 article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.02.006 – volume: 23 start-page: 443 issue: 4–5 year: 2002 end-page: 450 ident: CR3 article-title: Parkinson’s disease: current and future challenges publication-title: NeuroToxicology doi: 10.1016/S0161-813X(02)00098-0 – volume: 55 start-page: 25 year: 2002 end-page: 31 ident: CR8 article-title: Risk tables for parkinsonism and Parkinson’s disease publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(01)00425-5 – volume: 339 start-page: 1044 year: 1998 end-page: 1053 ident: CR5 article-title: Parkinson’s disease—first of two parts publication-title: N Engl J Med doi: 10.1056/NEJM199810083391506 – volume: 17 start-page: 867 issue: 5 year: 2002 end-page: 876 ident: CR9 article-title: Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease publication-title: Mov Disord doi: 10.1002/mds.10248 – volume: 56 start-page: 1015 issue: 4 year: 2009 end-page: 1022 ident: CR23 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005954 – volume: 38 start-page: 9744 issue: 8 year: 2011 end-page: 9751 ident: CR46 article-title: Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.025 – volume: 16 start-page: 73 issue: 1 year: 2004 end-page: 97 ident: CR50 article-title: Orthogonality of decision boundaries in complex-valued neural networks publication-title: Neural Comput doi: 10.1162/08997660460734001 – volume: 11 start-page: 314 year: 1997 end-page: 320 ident: CR13 article-title: Acoustic voice analysis in patients with Parkinson‘s disease treated with dopaminergic drugs publication-title: J Voice doi: 10.1016/S0892-1997(97)80010-0 – volume: 52 start-page: 45 issue: 1 year: 2011 end-page: 52 ident: CR28 article-title: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical datasets publication-title: Artif Intell Med doi: 10.1016/j.artmed.2011.02.001 – volume: 43 start-page: 597 issue: 4 year: 2012 end-page: 609 ident: CR31 article-title: Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy c-means clustering publication-title: Int J Syst Sci doi: 10.1080/00207721.2011.581395 – volume: 38 start-page: 12470 issue: 10 year: 2011 end-page: 12474 ident: CR56 article-title: A parallel neural network approach to prediction of Parkinson’s disease publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.028 – volume: 12 start-page: 246 year: 1969 end-page: 269 ident: CR12 article-title: Differential diagnostic patterns of dysarthria publication-title: J Speech Hear Res doi: 10.1044/jshr.1202.246 – volume: 37 start-page: 7729 issue: 12 year: 2010 end-page: 7736 ident: CR43 article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.04.043 – volume: 10 start-page: 1391 year: 1997 end-page: 1415 ident: CR52 article-title: An extension of the back-propagation algorithm to complex numbers publication-title: Neural Network doi: 10.1016/S0893-6080(97)00036-1 – volume: 28 start-page: 57 year: 2005 end-page: 87 ident: CR7 article-title: Molecular pathology of Parkinson’s disease publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.28.061604.135718 – volume: 6165 start-page: 306 year: 2010 end-page: 314 ident: CR26 article-title: Advances in detecting Parkinson’s disease publication-title: Med Biom doi: 10.1007/978-3-642-13923-9_33 – volume: 34 start-page: 591 issue: 4 year: 2010 end-page: 599 ident: CR33 article-title: Telediagnosis of Parkinson’s disease using measurements of dysphonia publication-title: J Med Syst doi: 10.1007/s10916-009-9272-y – volume: 56 start-page: 1010 issue: 4 year: 2009 end-page: 1022 ident: CR17 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005954 – volume: 56 start-page: 1015 year: 2009 end-page: 1022 ident: CR38 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005954 – volume: 7 start-page: 529 year: 2002 end-page: 535 ident: CR6 article-title: How valid is the clinical diagnosis of Parkinson‘s disease in the community? publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.73.5.529 – volume: 10 start-page: 1829 year: 2009 ident: 2142_CR24 publication-title: J Mach Learn Res – volume: 22 start-page: 1357 issue: 7–8 year: 2013 ident: 2142_CR45 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0960-z – ident: 2142_CR54 doi: 10.1109/IJCNN.1993.716968 – volume: 37 start-page: 1568 issue: 2 year: 2010 ident: 2142_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.06.040 – volume: 38 start-page: 4600 issue: 4 year: 2011 ident: 2142_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.09.133 – volume: 11 start-page: 314 year: 1997 ident: 2142_CR13 publication-title: J Voice doi: 10.1016/S0892-1997(97)80010-0 – ident: 2142_CR36 – volume: 43 start-page: 597 issue: 4 year: 2012 ident: 2142_CR31 publication-title: Int J Syst Sci doi: 10.1080/00207721.2011.581395 – volume: 24 start-page: 1917 issue: 7–8 year: 2014 ident: 2142_CR44 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1437-4 – volume: 40 start-page: 263 issue: 1 year: 2013 ident: 2142_CR57 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.014 – ident: 2142_CR39 – volume: 40 start-page: 143 issue: 2 year: 2007 ident: 2142_CR53 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.02.001 – volume: 40 start-page: 263 issue: 1 year: 2013 ident: 2142_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.014 – volume: 24 start-page: 209 year: 1994 ident: 2142_CR41 publication-title: IEEE Trans Syst Man Cybern – volume: 339 start-page: 1044 year: 1998 ident: 2142_CR5 publication-title: N Engl J Med doi: 10.1056/NEJM199810083391506 – volume: 38 start-page: 12470 issue: 10 year: 2011 ident: 2142_CR56 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.028 – volume: 56 start-page: 1015 issue: 4 year: 2009 ident: 2142_CR23 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005954 – volume: 53 start-page: 114 year: 2010 ident: 2142_CR20 publication-title: J Speech Lang Hear Res doi: 10.1044/1092-4388(2009/08-0184) – volume: 55 start-page: 25 year: 2002 ident: 2142_CR8 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(01)00425-5 – volume: 7 start-page: 529 year: 2002 ident: 2142_CR6 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.73.5.529 – volume: 50 start-page: 288 year: 2008 ident: 2142_CR21 publication-title: Speech Commun doi: 10.1016/j.specom.2007.10.003 – ident: 2142_CR30 doi: 10.1109/IEMBS.2011.6091936 – volume: 37 start-page: 7729 issue: 12 year: 2010 ident: 2142_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.04.043 – volume: 56 start-page: 1010 issue: 4 year: 2009 ident: 2142_CR17 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005954 – volume: 17 start-page: 828 issue: 4 year: 2013 ident: 2142_CR22 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2245674 – volume: 23 start-page: 443 issue: 4–5 year: 2002 ident: 2142_CR3 publication-title: NeuroToxicology doi: 10.1016/S0161-813X(02)00098-0 – volume-title: Pattern recognition with fuzzy objective function algorithms year: 1981 ident: 2142_CR40 doi: 10.1007/978-1-4757-0450-1 – volume: 56 start-page: 24 year: 2004 ident: 2142_CR18 publication-title: Brain Cogn doi: 10.1016/j.bandc.2004.05.002 – volume: 34 start-page: 591 issue: 4 year: 2010 ident: 2142_CR33 publication-title: J Med Syst doi: 10.1007/s10916-009-9272-y – volume: 38 start-page: 9744 issue: 8 year: 2011 ident: 2142_CR46 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.025 – ident: 2142_CR47 doi: 10.1109/JBHI.2014.23877952015 – volume: 6165 start-page: 306 year: 2010 ident: 2142_CR26 publication-title: Med Biom doi: 10.1007/978-3-642-13923-9_33 – volume: 38 start-page: 1 issue: 12 year: 2014 ident: 2142_CR2 publication-title: J Med Syst doi: 10.1007/s10916-014-0147-5 – volume: 28 start-page: 57 year: 2005 ident: 2142_CR7 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.28.061604.135718 – volume: 10 start-page: 1391 year: 1997 ident: 2142_CR52 publication-title: Neural Network doi: 10.1016/S0893-6080(97)00036-1 – volume: 52 start-page: 45 issue: 1 year: 2011 ident: 2142_CR28 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2011.02.001 – volume: 149 start-page: 198 year: 2015 ident: 2142_CR48 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.075 – volume: 24 start-page: 716 issue: 5 year: 2009 ident: 2142_CR16 publication-title: Mov Disord doi: 10.1002/mds.22430 – volume-title: Handbook of Parkinson’s disease year: 2013 ident: 2142_CR4 doi: 10.3109/9781841849096 – ident: 2142_CR11 – volume: 2 start-page: 267 year: 1994 ident: 2142_CR42 publication-title: J Intell Fuzzy Syst doi: 10.1109/91.324806 – start-page: 264 volume-title: Complex-valued neural networks with multi-valued neurons year: 2011 ident: 2142_CR51 doi: 10.1007/978-3-642-20353-4 – volume: 56 start-page: 24 year: 2004 ident: 2142_CR15 publication-title: Brain Cogn doi: 10.1016/j.bandc.2004.05.002 – volume: 104 start-page: 443 issue: 3 year: 2011 ident: 2142_CR29 publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2011.03.018 – year: 2015 ident: 2142_CR19 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1852-9 – volume: 8 start-page: 364 issue: 4 year: 2013 ident: 2142_CR32 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.02.006 – volume: 17 start-page: 867 issue: 5 year: 2002 ident: 2142_CR9 publication-title: Mov Disord doi: 10.1002/mds.10248 – volume: 56 start-page: 1015 year: 2009 ident: 2142_CR38 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005954 – volume: 12 start-page: 246 year: 1969 ident: 2142_CR12 publication-title: J Speech Hear Res doi: 10.1044/jshr.1202.246 – volume: 134 start-page: 247 year: 2014 ident: 2142_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.048 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 2142_CR55 publication-title: Educ Psychol Measur doi: 10.1177/001316446002000104 – volume: 79 start-page: 368 issue: 4 year: 2007 ident: 2142_CR1 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2007.131045 – volume: 23 start-page: 574 issue: 4 year: 2008 ident: 2142_CR14 publication-title: Mov Disord doi: 10.1002/mds.21899 – volume: 55 start-page: 25 year: 2002 ident: 2142_CR37 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(01)00425-5 – volume: 16 start-page: 73 issue: 1 year: 2004 ident: 2142_CR50 publication-title: Neural Comput doi: 10.1162/08997660460734001 – year: 2014 ident: 2142_CR35 publication-title: Comput Math Methods Med doi: 10.1155/2014/985789 – volume: 36 start-page: 2141 issue: 4 year: 2012 ident: 2142_CR10 publication-title: J Med Syst doi: 10.1007/s10916-011-9678-1 |
SSID | ssj0004685 |
Score | 2.403705 |
Snippet | Parkinson’s disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1657 |
SubjectTerms | Artificial Intelligence Central nervous system Classification Clustering Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Diagnosis Diagnostic software Diagnostic systems Hybrid systems Image Processing and Computer Vision Neural networks Original Article Probability and Statistics in Computer Science Reliability Speech Vector quantization Weighting |
Title | A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method |
URI | https://link.springer.com/article/10.1007/s00521-015-2142-2 https://www.proquest.com/docview/1915903126 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYoXHopBVo1FKI5cCoySrz2_hxTGkCUoqolEj2t1vZsVRECIklBnHgGbn09noQZ725KUVuJk6Vdr7W2x_aM55tvhNhQKkt1hB1ZaK-kLlIt09IbaVOndIwZCVUAyB7GewO9f2yO6zjucYN2b1ySYaeeBbvxDSabvkYyTZikfXfBkH1Cq3Ght_vtY_9BOGTIxEmGC4N6dNQ4M__WyJ_H0W8d85FbNJw2O4viqPnPCmRysjWd2C13_YjC8YkdeSle1Non9CpxWRJzOFoWi01mB6gX-oq47cHo7CcOwVdIvB9jqCifgXRc4EjpEDR2d_NrDLWLBxhB_x0CRB2vJJOIowcWzIqjApg5MxQBdw58AQwn8hTprAQ3nDJhAzdQYqAahctwZ8tPqiTXr8Rgp3-0vSfr7A3SRd14IlVG1hLnLLROGZeQ-UvWT2oTzQxrthubRGuDuog6mMXaeEu6Y5x440hlK5Gm7bWYH52N8I2A1HW6hTelRsy0tZgWhfLKo4nKRHtTtESnmcTc1dTmnGFjmM9ImcOY5zTmOY95rlri3eyT84rX43-V1xrJyOslPs7J0DUZbYkqbonNZqIfvP5XY6tPqv1WPFesSASA8JqYn1xMcZ3UoIltk9h_-HTwtV2LP5Xv-4efv7TFs4Hq3QPETQOT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQGWDhH1EocAMTyFLr2PkZK0RVoHRqpW5REl8QoqSItsDIM7DxejwJPicpBQESU6TE8eA7--58333H2JEQgS8drPNIasFl5Evup1rx2E-EdDEwSmUBsl233ZcXAzUo6rjHJdq9TEnak3pW7EY3mBT6Kk40Ydycu4uUZaSIqy-ac8WQtg-nCVsI0iOdMpX50xRfjdGnh_ktKWptTWuNrRROIjRzqa6zBcw22GrZgAGK_bjJXpuQjR5xCDoHzN2MIWdmBuOKAhU029qu95e3MRSZGCCg-zVYJDk-c-L6Rg2kPzmVBBDBpX1YeDjQPS3c8js0Jg2S4ZR4FWiCFC0jKDzZq1V6k_ei3mL91lnvtM2LJgs8cRruhIvABDXUWjBOhEo8E6WaIMWPPUlEaHHDVZ6UCmXk1DFwpdKxcfFcT6vEeFYpmvXdZpVslOEOAz-pNyKtUokYyDhGP4qEFhqVk3pSq6jK6uVqh0nBQE6NMIbhjDvZCig0AgpJQKGosuPZL_c5_cZfg2ulCMNiJ45DE4-qwJxcwq2yk1Ksc59_m2z3X6MP2VK7d9UJO-fdyz22LMj2W0xvjVUmD1PcN57LJD6wmvoB_W_lpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hrYS4tFBALG1hDj2B3O46dh7HFXTpSxUHKpVTiO1JhbqkFZttK078Bm78vf4SPE6ylAoqoZ4iJY6V-Dnj-eb7ANalzFIV0UAUykmhilSJtHRamNRKFVPmB1UAyB7E24dq90gftTqn0w7t3oUkm5wGZmmq6s0zV27OE9_4NJPdYC2YMkz4NXhBsYREDxZG7z7ubV1LjQyqnN6JYYCPirrA5t8q-XNr-m1v3giRhp1nvASfum9uACcnG7PabNhvN-gc7_BTD2GxtUpx1AyjR3CPqmVY6hQfsF0AHsOPEVan5zRB1yD0Pk-xoYJGb_siZ1CHZLKr7z-n2IZ-kJH1xxig63QpmFycHPKAbbgrkBk1wyXg0ZEPhvFEfCG_h6KdzJjIgSsoKVCQ4kU4y-U7jfj1Ezgcb314sy1aVQdho2FcC5l5L4q1DI2V2ibeLfZeUWoSxcxrZhjrRClNqogGlMVKO-Ntyjhx2npTriTfhU-hV51W9AwwtYNh4XSpiDJlDKVFIZ10pKMyUU4XfRh0HZrblvKclTcm-ZysObR57ts85zbPZR9ezV85a_g-biu82o2SvJ3609w7wDrzS6WM-_C66_Rrj_9V2fP_Kv0S7r9_O873dw72VuCBZFsjYIhXoVd_ndGat5Rq86KdDb8ASKILSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+diagnosis+system+for+Parkinson%E2%80%99s+disease+using+complex-valued+artificial+neural+network+with+k-means+clustering+feature+weighting+method&rft.jtitle=Neural+computing+%26+applications&rft.au=G%C3%BCr%C3%BCler%2C+H%C3%BCseyin&rft.date=2017-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=7&rft.spage=1657&rft.epage=1666&rft_id=info:doi/10.1007%2Fs00521-015-2142-2&rft.externalDocID=10_1007_s00521_015_2142_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |