Fault Analysis of Wind Power Rolling Bearing Based on EMD Feature Extraction
In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of wind power rolling bearings are very important to ensure the high reliability and safety of wind power equipment. In this study, the failure f...
Saved in:
| Published in | Computer modeling in engineering & sciences Vol. 130; no. 1; pp. 543 - 558 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1526-1506 1526-1492 1526-1506 |
| DOI | 10.32604/cmes.2022.018123 |
Cover
| Abstract | In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of wind power rolling bearings are very important to ensure the high reliability and safety of wind power equipment. In this study, the failure form and the corresponding reason for the failure are discussed firstly. Then, the natural frequency and the characteristic frequency are analyzed. The Empirical Mode Decomposition (EMD) algorithm is used to extract the characteristics of the vibration signal of the rolling bearing. Moreover, the eigenmode function is obtained and then filtered by the kurtosis criterion. Consequently, the relationship between the actual fault frequency spectrum and the theoretical fault frequency can be obtained. Then the fault analysis is performed. To enhance the accuracy of fault diagnosis, based on the previous feature extraction and the time-frequency domain feature extraction of the data after EMD decomposition processing, four different classifiers are added to diagnose and classify the fault status of rolling bearings and compare them with four different classifiers. |
|---|---|
| AbstractList | In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of wind power rolling bearings are very important to ensure the high reliability and safety of wind power equipment. In this study, the failure form and the corresponding reason for the failure are discussed firstly. Then, the natural frequency and the characteristic frequency are analyzed. The Empirical Mode Decomposition (EMD) algorithm is used to extract the characteristics of the vibration signal of the rolling bearing. Moreover, the eigenmode function is obtained and then filtered by the kurtosis criterion. Consequently, the relationship between the actual fault frequency spectrum and the theoretical fault frequency can be obtained. Then the fault analysis is performed. To enhance the accuracy of fault diagnosis, based on the previous feature extraction and the time-frequency domain feature extraction of the data after EMD decomposition processing, four different classifiers are added to diagnose and classify the fault status of rolling bearings and compare them with four different classifiers. |
| Author | Wang, Zihao Wang, Hongtao Hu, Zhengguo Meng, Debiao Yang, Shiyuan Lv, Zhiyuan |
| Author_xml | – sequence: 1 givenname: Debiao surname: Meng fullname: Meng, Debiao – sequence: 2 givenname: Hongtao surname: Wang fullname: Wang, Hongtao – sequence: 3 givenname: Shiyuan surname: Yang fullname: Yang, Shiyuan – sequence: 4 givenname: Zhiyuan surname: Lv fullname: Lv, Zhiyuan – sequence: 5 givenname: Zhengguo surname: Hu fullname: Hu, Zhengguo – sequence: 6 givenname: Zihao surname: Wang fullname: Wang, Zihao |
| BookMark | eNqNkE1LAzEQhoNUsFZ_gLeA59Z87KbJsdZWhYoiisclzc7KljSpyS61_96060E8iKcZmPcZZp5T1HPeAUIXlIw4EyS7MmuII0YYGxEqKeNHqE9zJoY0J6L3oz9BpzGuCOGCS9VHi7lubYMnTttdrCP2FX6rXYmf_BYCfvbW1u4dX4MOh6ojlNg7PHu4wXPQTRsAzz6boE1Te3eGjittI5x_1wF6nc9epnfDxePt_XSyGBpORTNkXGe8MmOSGZ5xZvhS55yWTHE5JjkYtZQ8V7IEqSgtK0gzJUCopQApq5QfINbtbd1G77ba2mIT6rUOu4KS4uCj2Pso9j6KzkeCLjtoE_xHC7EpVr4N6e8US4CShKQLBoh2KRN8jAGqf20e_2JM3ei9kCSmtn-QX1dKgnQ |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_115213 crossref_primary_10_3389_fenrg_2022_978767 crossref_primary_10_1080_17445302_2024_2442339 crossref_primary_10_32604_cmes_2022_020756 crossref_primary_10_1088_1361_6501_ac8abf crossref_primary_10_1088_1361_6501_ad05a2 crossref_primary_10_1002_eng2_70039 crossref_primary_10_32604_cmes_2022_021123 crossref_primary_10_32604_cmes_2023_023788 crossref_primary_10_1155_2022_5464643 crossref_primary_10_1088_1361_6501_ad4eff crossref_primary_10_32604_cmes_2022_022211 crossref_primary_10_1088_1361_6501_ad0ca6 crossref_primary_10_1109_TKDE_2024_3369719 crossref_primary_10_32604_cmes_2022_021880 crossref_primary_10_32604_cmes_2024_048782 crossref_primary_10_1109_TIM_2024_3463007 crossref_primary_10_1007_s12206_024_0602_2 crossref_primary_10_1108_IJSI_01_2022_0006 crossref_primary_10_32604_cmes_2023_025058 crossref_primary_10_1088_1361_6501_ad5037 crossref_primary_10_1016_j_est_2024_110800 crossref_primary_10_1177_1748006X241311394 crossref_primary_10_32604_sdhm_2023_029331 crossref_primary_10_1109_MSMC_2022_3211690 crossref_primary_10_1007_s00500_023_08334_2 crossref_primary_10_1088_1361_6501_ad2f98 crossref_primary_10_1109_TPAMI_2023_3310594 crossref_primary_10_32604_cmes_2022_021898 crossref_primary_10_1109_TKDE_2023_3342907 crossref_primary_10_1142_S2424913023410023 crossref_primary_10_1155_2024_2804173 crossref_primary_10_1016_j_ijfatigue_2022_107342 crossref_primary_10_1108_IJSI_11_2024_0182 crossref_primary_10_1680_jtran_24_00062 crossref_primary_10_32604_cmes_2024_047507 crossref_primary_10_1109_TIM_2022_3212547 crossref_primary_10_32604_cmes_2022_022444 crossref_primary_10_1088_1361_6501_ad108c crossref_primary_10_1109_ACCESS_2024_3508100 crossref_primary_10_1109_ACCESS_2024_3479721 crossref_primary_10_1007_s10489_022_03562_9 crossref_primary_10_1016_j_eswa_2023_122297 crossref_primary_10_1177_01423312241273781 |
| Cites_doi | 10.1007/s00366-019-00829-7 10.1007/s00500-019-03804-y 10.1108/IJSI-06-2018-0032 10.3390/app9081676 10.1016/j.jfranklin.2020.04.024 10.1007/s11831-021-09528-3 10.3390/app9112356 10.1016/j.measurement.2019.107002 10.1016/j.ymssp.2021.108139 10.1016/j.measurement.2020.107660 10.1007/s00158-019-02382-9 10.1109/Access.6287639 10.3390/s18020463 10.1016/0301-679X(84)90076-8 10.1108/IJSI-02-2018-0011 10.1016/j.measurement.2020.107554 10.1109/ACCESS.2019.2893497 10.1007/s00158-020-02766-2 10.3390/e22070739 10.1088/1742-6596/1486/3/032019 10.1016/j.cma.2020.113309 10.1016/j.measurement.2021.109298 10.1108/IJSI-03-2019-0018 10.1098/rspa.1998.0193 10.1155/2020/8875179 10.1016/j.enpol.2010.11.021 10.1007/s12206-018-1018-7 10.4283/JMAG.2020.25.2.172 10.1155/2018/6513045 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.32604/cmes.2022.018123 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1526-1506 |
| EndPage | 558 |
| ExternalDocumentID | 10.32604/cmes.2022.018123 10_32604_cmes_2022_018123 |
| GroupedDBID | -~X AAFWJ AAYXX ABJCF ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU CITATION EBS EJD F5P IPNFZ J9A K7- M7S OK1 PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO RIG RTS 7SC 7TB 8FD 8FE 8FG ABUWG ARAPS AZQEC DWQXO FR3 GNUQQ HCIFZ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c316t-23a43fc704c3432c3ba531d2938705ec9b83598de8911dfe31d96e69b6e88f2c3 |
| IEDL.DBID | BENPR |
| ISSN | 1526-1506 1526-1492 |
| IngestDate | Wed Oct 01 15:23:24 EDT 2025 Sat Sep 06 07:31:29 EDT 2025 Wed Oct 01 04:21:04 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-23a43fc704c3432c3ba531d2938705ec9b83598de8911dfe31d96e69b6e88f2c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2604980029?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2604980029 |
| PQPubID | 2048798 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_32604_cmes_2022_018123 proquest_journals_2604980029 crossref_primary_10_32604_cmes_2022_018123 crossref_citationtrail_10_32604_cmes_2022_018123 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computer modeling in engineering & sciences |
| PublicationYear | 2022 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Zhou (ref31) 2021; 178 Su (ref18) 2019; 23 Tao (ref5) 2020; 357 Liu (ref12) 2021; 63 Zhu (ref15) 2021; 37 Tan (ref4) 2019; 9 Huang (ref24) 1998; 454 Yang (ref23) 2020; 157 Zhou (ref14) 2020; 25 McFadden (ref8) 1984; 17 Zhao (ref25) 2020; 2020 Theotokoglou (ref22) 2019; 10 Wang (ref27) 2019; 7 Zhang (ref29) 2018; 18 Zhu (ref16) 2020; 371 Su (ref19) 2018; 6 Nasir (ref21) 2019; 10 Wan (ref26) 2018; 2018 Yu (ref28) 2018; 32 Li (ref10) 2020; 155 Chen (ref11) 2019; 9 Wang (ref30) 2020; 1486 Liu (ref13) 2020; 61 Li (ref20) 2019; 12 Liu (ref9) 2020; 8 Ilkılıç (ref2) 2011; 39 Liu (ref3) 2022; 163 Zhang (ref7) 2020; 22 Huo (ref6) 2019; 7 Zhu (ref17) 2021; 28 Liu (ref1) 2020; 149 |
| References_xml | – volume: 37 start-page: 381 year: 2021 ident: ref15 article-title: Reliability-based structural design optimization: Hybridized conjugate mean value approach publication-title: Engineering with Computers doi: 10.1007/s00366-019-00829-7 – volume: 23 start-page: 9793 year: 2019 ident: ref18 article-title: A new rule to combine dependent bodies of evidence publication-title: Soft Computing doi: 10.1007/s00500-019-03804-y – volume: 10 start-page: 118 year: 2019 ident: ref21 article-title: Accelerating the fatigue analysis based on strain signal using hilbert–Huang transform publication-title: International Journal of Structural Integrity doi: 10.1108/IJSI-06-2018-0032 – volume: 9 start-page: 1676 year: 2019 ident: ref4 article-title: Fault diagnosis for rolling bearing based on semi-supervised clustering and support vector data description with adaptive parameter optimization and improved decision strategy publication-title: Applied Sciences doi: 10.3390/app9081676 – volume: 357 start-page: 7286 year: 2020 ident: ref5 article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2020.04.024 – volume: 28 start-page: 4153 year: 2021 ident: ref17 article-title: Optimization of load-carrying hierarchical stiffened shells: Comparative survey and applications of six hybrid heuristic models publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-021-09528-3 – volume: 9 start-page: 2356 year: 2019 ident: ref11 article-title: A novel rolling bearing fault diagnosis and severity analysis method publication-title: Applied Sciences doi: 10.3390/app9112356 – volume: 149 start-page: 107002 year: 2020 ident: ref1 article-title: A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings publication-title: Measurement doi: 10.1016/j.measurement.2019.107002 – volume: 163 start-page: 108139 year: 2022 ident: ref3 article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2021.108139 – volume: 157 start-page: 107660 year: 2020 ident: ref23 article-title: Optimal IMF selection and unknown fault feature extraction for rolling bearings with different defect modes publication-title: Measurement doi: 10.1016/j.measurement.2020.107660 – volume: 61 start-page: 599 year: 2020 ident: ref13 article-title: Construction of probability box model based on maximum entropy principle and corresponding hybrid reliability analysis approach publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-019-02382-9 – volume: 7 start-page: 42373 year: 2019 ident: ref27 article-title: A deep learning method for bearing fault diagnosis based on time-frequency image publication-title: IEEE Access doi: 10.1109/Access.6287639 – volume: 18 start-page: 463 year: 2018 ident: ref29 article-title: Naive Bayes bearing fault diagnosis based on enhanced independence of data publication-title: Sensors doi: 10.3390/s18020463 – volume: 17 start-page: 3 year: 1984 ident: ref8 article-title: Vibration monitoring of rolling element bearings by the high-frequency resonance technique–A review publication-title: Tribology International doi: 10.1016/0301-679X(84)90076-8 – volume: 6 start-page: 71839 year: 2018 ident: ref19 article-title: Research on the fusion of dependent evidence based on mutual information publication-title: IEEE Access doi: 10.1109/Access.6287639 – volume: 10 start-page: 749 year: 2019 ident: ref22 article-title: Linear and nonlinear buckling analysis for the material design optimization of wind turbine blades publication-title: International Journal of Structural Integrity doi: 10.1108/IJSI-02-2018-0011 – volume: 155 start-page: 107554 year: 2020 ident: ref10 article-title: Fault diagnosis for rolling bearing based on VMD-fRFT publication-title: Measurement doi: 10.1016/j.measurement.2020.107554 – volume: 7 start-page: 17050 year: 2019 ident: ref6 article-title: A new bearing fault diagnosis method based on fine-to-coarse multiscale permutation entropy, laplacian score and SVM publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893497 – volume: 63 start-page: 1385 year: 2021 ident: ref12 article-title: An efficient multi-objective optimization method based on the adaptive approximation model of the radial basis function publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-020-02766-2 – volume: 22 start-page: 739 year: 2020 ident: ref7 article-title: Fault diagnosis for rolling bearings using optimized variational mode decomposition and resonance demodulation publication-title: Entropy doi: 10.3390/e22070739 – volume: 1486 start-page: 032019 year: 2020 ident: ref30 article-title: Real-time online fault diagnosis of rolling bearings based on KNN algorithm publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/1486/3/032019 – volume: 371 start-page: 113309 year: 2020 ident: ref16 article-title: Novel hybrid robust method for uncertain reliability analysis using finite conjugate map publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2020.113309 – volume: 178 start-page: 109298 year: 2021 ident: ref31 article-title: Rolling bearing fault diagnosis using transient-extracting transform and linear discriminant analysis publication-title: Measurement doi: 10.1016/j.measurement.2021.109298 – volume: 12 start-page: 17 year: 2019 ident: ref20 article-title: Multi-objective optimization design of anti-rolling torsion bar based on modified NSGA-III algorithm publication-title: International Journal of Structural Integrity doi: 10.1108/IJSI-03-2019-0018 – volume: 454 start-page: 903 year: 1998 ident: ref24 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.1998.0193 – volume: 2020 start-page: 1 year: 2020 ident: ref25 article-title: Rolling bearing fault feature extraction based on adaptive tunable Q-factor wavelet transform and spectral kurtosis publication-title: Shock and Vibration doi: 10.1155/2020/8875179 – volume: 39 start-page: 961 year: 2011 ident: ref2 article-title: The current status of wind energy in Turkey and in the world publication-title: Energy Policy doi: 10.1016/j.enpol.2010.11.021 – volume: 32 start-page: 5201 year: 2018 ident: ref28 article-title: Rolling bearing fault diagnosis based on mean multigranulation decision-theoretic rough set and non-naive Bayesian classifier publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-018-1018-7 – volume: 8 start-page: 19810 year: 2020 ident: ref9 article-title: The feature extraction and diagnosis of rolling bearing based on CEEMD and LDWPSO-PNN publication-title: IEEE Access doi: 10.1109/Access.6287639 – volume: 25 start-page: 172 year: 2020 ident: ref14 article-title: The design of linear magnetic negative stiffness element for engineering application using rectangular permanent magnets publication-title: Journal of Magnetics doi: 10.4283/JMAG.2020.25.2.172 – volume: 2018 start-page: 1 year: 2018 ident: ref26 article-title: Compound fault diagnosis of bearings using an improved spectral kurtosis by MCDK publication-title: Mathematical Problems in Engineering doi: 10.1155/2018/6513045 |
| SSID | ssj0036389 |
| Score | 2.607399 |
| Snippet | In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 543 |
| SubjectTerms | Algorithms Classifiers Critical components Empirical analysis Failure analysis Failure rates Fault diagnosis Feature extraction Frequency analysis Frequency spectrum Kurtosis Resonant frequencies Roller bearings Wind power Wind turbines |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gHDyJz4hBswdPmkLZtgs9-oAQI8aoRDw17e7sRSyEtL5-vbN94OOg8dQmO520ncd-m935BuBQelprW5LzIteWy9G3IoUeATnt2tjlqDPGm9GVGI7di4k3qUCnrIUxxyoNe2mR_7NcfTbq37afKdnGnbbrdbnTniu9AjXhEfyuQm18dX3ykPGicmER4ufLe88W-U4mgRTbbcsnNAzdnLcymirn-1z0CTBX03gevr2E0-mXuWZQh5vyLfMjJo-tNIla8v0HgeO_PmMd1grkyU5yV9mACsabUC-7OrAiyLfgchCm04SVbCVsptk9LdzZtemnxgoSb3ZKEZJdaRZUbBaz_uicGTyZLpD1X5NFXjCxDeNB_-5saBU9FyzpdERicSd0HS27titNyal0opCiVBEooMD2UPpRz3D-KexRllQaacwXKPxIYK-nSX4HqvEsxl1gNg8FqlB2uY5cJTUpQD9SpM8Q-AjZALv8-4EsCMlNX4xpQAuTzGCBMVhgDBbkBmvA0fKRec7G8ZtwszRpUAQmjZOkb0Cy34DjpZn_Vrb3L-kmVJNFivuEV5LooPDQD9aY5xE priority: 102 providerName: Unpaywall |
| Title | Fault Analysis of Wind Power Rolling Bearing Based on EMD Feature Extraction |
| URI | https://www.proquest.com/docview/2604980029 https://www.techscience.com/CMES/v130n1/45723/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 130 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: ADMLS dateStart: 20180301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1526-1506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED6VdoCFN6K85IEJFBqcNE0GhCi0VAiqClFRpiixz1NJS5UK-Pfc5VFggcmDnRvO9_hs574DOFZNY4ytyHhRGsuVGFixxiYBOePa2JJoMsabh77XG7p3o-aoAv2yFoZ_qyxjYhao9UTxHXmDcLcbMLoJLqdvFneN4tfVsoVGVLRW0BcZxdgS1CQzY1Wh1u70B49lbHY4P2cMqtKz6Gwg83dOh4U31Csyf7eUZxmJlfM7U33Dz-V5Mo0-36Px-Ecm6q7DagEhxVW-5xtQwWQT1sr2DKLw1i2470bzcSpK2hExMeKZTuBiwI3RRMHGLdpk6tlI6UyLSSI6DzeCgeF8hqLzkc7yyodtGHY7T9c9q2ieYCnn3Est6USuY1TLdhXXjionjsjdNGV38tAmqiD2mbxPo0_hThukucBDL4g99H1D63egmkwS3AVhy8hDHamWNLGrlSEBGMSa5DETj6fqYJeKClXBLM4NLsYhnTAy3Yas25B1G-a6rcPJ4pNpTqvx1-KDUvth4WE0v7CHOpwuduR_YXt_C9uHFV6cX7IcQDWdzfGQYEcaH8GS3709KiyKxmF_cPXyBcLd1pk |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NU9swEN3h4wAXaAudhqZUB3qBcXFlxYkPTKdAMqEkGYaBgZuxpdUpOCF1BvLn-G3s2nIKFzhx8kHSzni13n0red8C7OiGtdbXZLworackRl5qsEFAziofmxJtwXjTH4TdS_X3unG9AI9VLQz_Vln5xMJRm5HmM_J9wt0qYnQT_R7fedw1im9XqxYaiWutYA4KijFX2HGKs3tK4f4dnBzTfv-QstO-OOp6rsuAp4NfYe7JIFGB1U1faS6y1EGakF0aCoNkyg3UUdpiljuDLfILxiKNRSGGURpiq2VpPsldhGUVqIiSv-XD9uDsvIoFAeOBgrFVhh7lIrK8Vw34Zfb1LTJfuJQ_C9Ks4GVk_A93V6bZOJndJ8Phs8jX-QBrDrKKP6WNfYQFzD7BetUOQjjvsAG9TjId5qKiOREjK64o4xdn3IhNOPZvcUg6K54UPo0YZaLdPxYMRKcTFO2HfFJWWmzC5buo8TMsZaMMv4DwZRKiSXRT2lQZbUkARqkhecz8E-oa-JWiYu2YzLmhxjCmjKbQbcy6jVm3canbGuzOl4xLGo_XJtcr7cfui6bxuf3VYG--I28L23pd2HdY6V70e3HvZHD6FVZ5YXnAU4elfDLFbwR58nTb2ZWAm_c25ScdmBA2 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gHDyJz4hBswdPmkLZtgs9-oAQI8aoRDw17e7sRSyEtL5-vbN94OOg8dQmO520ncd-m935BuBQelprW5LzIteWy9G3IoUeATnt2tjlqDPGm9GVGI7di4k3qUCnrIUxxyoNe2mR_7NcfTbq37afKdnGnbbrdbnTniu9AjXhEfyuQm18dX3ykPGicmER4ufLe88W-U4mgRTbbcsnNAzdnLcymirn-1z0CTBX03gevr2E0-mXuWZQh5vyLfMjJo-tNIla8v0HgeO_PmMd1grkyU5yV9mACsabUC-7OrAiyLfgchCm04SVbCVsptk9LdzZtemnxgoSb3ZKEZJdaRZUbBaz_uicGTyZLpD1X5NFXjCxDeNB_-5saBU9FyzpdERicSd0HS27titNyal0opCiVBEooMD2UPpRz3D-KexRllQaacwXKPxIYK-nSX4HqvEsxl1gNg8FqlB2uY5cJTUpQD9SpM8Q-AjZALv8-4EsCMlNX4xpQAuTzGCBMVhgDBbkBmvA0fKRec7G8ZtwszRpUAQmjZOkb0Cy34DjpZn_Vrb3L-kmVJNFivuEV5LooPDQD9aY5xE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Analysis+of+Wind+Power+Rolling+Bearing+Based+on+EMD+Feature+Extraction&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Meng%2C+Debiao&rft.au=Wang%2C+Hongtao&rft.au=Yang%2C+Shiyuan&rft.au=Lv%2C+Zhiyuan&rft.date=2022&rft.issn=1526-1506&rft.volume=130&rft.issue=1&rft.spage=543&rft.epage=558&rft_id=info:doi/10.32604%2Fcmes.2022.018123&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2022_018123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon |