Fault Analysis of Wind Power Rolling Bearing Based on EMD Feature Extraction

In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of wind power rolling bearings are very important to ensure the high reliability and safety of wind power equipment. In this study, the failure f...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 130; no. 1; pp. 543 - 558
Main Authors Meng, Debiao, Wang, Hongtao, Yang, Shiyuan, Lv, Zhiyuan, Hu, Zhengguo, Wang, Zihao
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2022
Subjects
Online AccessGet full text
ISSN1526-1506
1526-1492
1526-1506
DOI10.32604/cmes.2022.018123

Cover

Abstract In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of wind power rolling bearings are very important to ensure the high reliability and safety of wind power equipment. In this study, the failure form and the corresponding reason for the failure are discussed firstly. Then, the natural frequency and the characteristic frequency are analyzed. The Empirical Mode Decomposition (EMD) algorithm is used to extract the characteristics of the vibration signal of the rolling bearing. Moreover, the eigenmode function is obtained and then filtered by the kurtosis criterion. Consequently, the relationship between the actual fault frequency spectrum and the theoretical fault frequency can be obtained. Then the fault analysis is performed. To enhance the accuracy of fault diagnosis, based on the previous feature extraction and the time-frequency domain feature extraction of the data after EMD decomposition processing, four different classifiers are added to diagnose and classify the fault status of rolling bearings and compare them with four different classifiers.
AbstractList In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of wind power rolling bearings are very important to ensure the high reliability and safety of wind power equipment. In this study, the failure form and the corresponding reason for the failure are discussed firstly. Then, the natural frequency and the characteristic frequency are analyzed. The Empirical Mode Decomposition (EMD) algorithm is used to extract the characteristics of the vibration signal of the rolling bearing. Moreover, the eigenmode function is obtained and then filtered by the kurtosis criterion. Consequently, the relationship between the actual fault frequency spectrum and the theoretical fault frequency can be obtained. Then the fault analysis is performed. To enhance the accuracy of fault diagnosis, based on the previous feature extraction and the time-frequency domain feature extraction of the data after EMD decomposition processing, four different classifiers are added to diagnose and classify the fault status of rolling bearings and compare them with four different classifiers.
Author Wang, Zihao
Wang, Hongtao
Hu, Zhengguo
Meng, Debiao
Yang, Shiyuan
Lv, Zhiyuan
Author_xml – sequence: 1
  givenname: Debiao
  surname: Meng
  fullname: Meng, Debiao
– sequence: 2
  givenname: Hongtao
  surname: Wang
  fullname: Wang, Hongtao
– sequence: 3
  givenname: Shiyuan
  surname: Yang
  fullname: Yang, Shiyuan
– sequence: 4
  givenname: Zhiyuan
  surname: Lv
  fullname: Lv, Zhiyuan
– sequence: 5
  givenname: Zhengguo
  surname: Hu
  fullname: Hu, Zhengguo
– sequence: 6
  givenname: Zihao
  surname: Wang
  fullname: Wang, Zihao
BookMark eNqNkE1LAzEQhoNUsFZ_gLeA59Z87KbJsdZWhYoiisclzc7KljSpyS61_96060E8iKcZmPcZZp5T1HPeAUIXlIw4EyS7MmuII0YYGxEqKeNHqE9zJoY0J6L3oz9BpzGuCOGCS9VHi7lubYMnTttdrCP2FX6rXYmf_BYCfvbW1u4dX4MOh6ojlNg7PHu4wXPQTRsAzz6boE1Te3eGjittI5x_1wF6nc9epnfDxePt_XSyGBpORTNkXGe8MmOSGZ5xZvhS55yWTHE5JjkYtZQ8V7IEqSgtK0gzJUCopQApq5QfINbtbd1G77ba2mIT6rUOu4KS4uCj2Pso9j6KzkeCLjtoE_xHC7EpVr4N6e8US4CShKQLBoh2KRN8jAGqf20e_2JM3ei9kCSmtn-QX1dKgnQ
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115213
crossref_primary_10_3389_fenrg_2022_978767
crossref_primary_10_1080_17445302_2024_2442339
crossref_primary_10_32604_cmes_2022_020756
crossref_primary_10_1088_1361_6501_ac8abf
crossref_primary_10_1088_1361_6501_ad05a2
crossref_primary_10_1002_eng2_70039
crossref_primary_10_32604_cmes_2022_021123
crossref_primary_10_32604_cmes_2023_023788
crossref_primary_10_1155_2022_5464643
crossref_primary_10_1088_1361_6501_ad4eff
crossref_primary_10_32604_cmes_2022_022211
crossref_primary_10_1088_1361_6501_ad0ca6
crossref_primary_10_1109_TKDE_2024_3369719
crossref_primary_10_32604_cmes_2022_021880
crossref_primary_10_32604_cmes_2024_048782
crossref_primary_10_1109_TIM_2024_3463007
crossref_primary_10_1007_s12206_024_0602_2
crossref_primary_10_1108_IJSI_01_2022_0006
crossref_primary_10_32604_cmes_2023_025058
crossref_primary_10_1088_1361_6501_ad5037
crossref_primary_10_1016_j_est_2024_110800
crossref_primary_10_1177_1748006X241311394
crossref_primary_10_32604_sdhm_2023_029331
crossref_primary_10_1109_MSMC_2022_3211690
crossref_primary_10_1007_s00500_023_08334_2
crossref_primary_10_1088_1361_6501_ad2f98
crossref_primary_10_1109_TPAMI_2023_3310594
crossref_primary_10_32604_cmes_2022_021898
crossref_primary_10_1109_TKDE_2023_3342907
crossref_primary_10_1142_S2424913023410023
crossref_primary_10_1155_2024_2804173
crossref_primary_10_1016_j_ijfatigue_2022_107342
crossref_primary_10_1108_IJSI_11_2024_0182
crossref_primary_10_1680_jtran_24_00062
crossref_primary_10_32604_cmes_2024_047507
crossref_primary_10_1109_TIM_2022_3212547
crossref_primary_10_32604_cmes_2022_022444
crossref_primary_10_1088_1361_6501_ad108c
crossref_primary_10_1109_ACCESS_2024_3508100
crossref_primary_10_1109_ACCESS_2024_3479721
crossref_primary_10_1007_s10489_022_03562_9
crossref_primary_10_1016_j_eswa_2023_122297
crossref_primary_10_1177_01423312241273781
Cites_doi 10.1007/s00366-019-00829-7
10.1007/s00500-019-03804-y
10.1108/IJSI-06-2018-0032
10.3390/app9081676
10.1016/j.jfranklin.2020.04.024
10.1007/s11831-021-09528-3
10.3390/app9112356
10.1016/j.measurement.2019.107002
10.1016/j.ymssp.2021.108139
10.1016/j.measurement.2020.107660
10.1007/s00158-019-02382-9
10.1109/Access.6287639
10.3390/s18020463
10.1016/0301-679X(84)90076-8
10.1108/IJSI-02-2018-0011
10.1016/j.measurement.2020.107554
10.1109/ACCESS.2019.2893497
10.1007/s00158-020-02766-2
10.3390/e22070739
10.1088/1742-6596/1486/3/032019
10.1016/j.cma.2020.113309
10.1016/j.measurement.2021.109298
10.1108/IJSI-03-2019-0018
10.1098/rspa.1998.0193
10.1155/2020/8875179
10.1016/j.enpol.2010.11.021
10.1007/s12206-018-1018-7
10.4283/JMAG.2020.25.2.172
10.1155/2018/6513045
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.32604/cmes.2022.018123
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 558
ExternalDocumentID 10.32604/cmes.2022.018123
10_32604_cmes_2022_018123
GroupedDBID -~X
AAFWJ
AAYXX
ABJCF
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
K7-
M7S
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
RIG
RTS
7SC
7TB
8FD
8FE
8FG
ABUWG
ARAPS
AZQEC
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c316t-23a43fc704c3432c3ba531d2938705ec9b83598de8911dfe31d96e69b6e88f2c3
IEDL.DBID BENPR
ISSN 1526-1506
1526-1492
IngestDate Wed Oct 01 15:23:24 EDT 2025
Sat Sep 06 07:31:29 EDT 2025
Wed Oct 01 04:21:04 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-23a43fc704c3432c3ba531d2938705ec9b83598de8911dfe31d96e69b6e88f2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2604980029?pq-origsite=%requestingapplication%&accountid=15518
PQID 2604980029
PQPubID 2048798
PageCount 16
ParticipantIDs unpaywall_primary_10_32604_cmes_2022_018123
proquest_journals_2604980029
crossref_primary_10_32604_cmes_2022_018123
crossref_citationtrail_10_32604_cmes_2022_018123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Zhou (ref31) 2021; 178
Su (ref18) 2019; 23
Tao (ref5) 2020; 357
Liu (ref12) 2021; 63
Zhu (ref15) 2021; 37
Tan (ref4) 2019; 9
Huang (ref24) 1998; 454
Yang (ref23) 2020; 157
Zhou (ref14) 2020; 25
McFadden (ref8) 1984; 17
Zhao (ref25) 2020; 2020
Theotokoglou (ref22) 2019; 10
Wang (ref27) 2019; 7
Zhang (ref29) 2018; 18
Zhu (ref16) 2020; 371
Su (ref19) 2018; 6
Nasir (ref21) 2019; 10
Wan (ref26) 2018; 2018
Yu (ref28) 2018; 32
Li (ref10) 2020; 155
Chen (ref11) 2019; 9
Wang (ref30) 2020; 1486
Liu (ref13) 2020; 61
Li (ref20) 2019; 12
Liu (ref9) 2020; 8
Ilkılıç (ref2) 2011; 39
Liu (ref3) 2022; 163
Zhang (ref7) 2020; 22
Huo (ref6) 2019; 7
Zhu (ref17) 2021; 28
Liu (ref1) 2020; 149
References_xml – volume: 37
  start-page: 381
  year: 2021
  ident: ref15
  article-title: Reliability-based structural design optimization: Hybridized conjugate mean value approach
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00829-7
– volume: 23
  start-page: 9793
  year: 2019
  ident: ref18
  article-title: A new rule to combine dependent bodies of evidence
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03804-y
– volume: 10
  start-page: 118
  year: 2019
  ident: ref21
  article-title: Accelerating the fatigue analysis based on strain signal using hilbert–Huang transform
  publication-title: International Journal of Structural Integrity
  doi: 10.1108/IJSI-06-2018-0032
– volume: 9
  start-page: 1676
  year: 2019
  ident: ref4
  article-title: Fault diagnosis for rolling bearing based on semi-supervised clustering and support vector data description with adaptive parameter optimization and improved decision strategy
  publication-title: Applied Sciences
  doi: 10.3390/app9081676
– volume: 357
  start-page: 7286
  year: 2020
  ident: ref5
  article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2020.04.024
– volume: 28
  start-page: 4153
  year: 2021
  ident: ref17
  article-title: Optimization of load-carrying hierarchical stiffened shells: Comparative survey and applications of six hybrid heuristic models
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-021-09528-3
– volume: 9
  start-page: 2356
  year: 2019
  ident: ref11
  article-title: A novel rolling bearing fault diagnosis and severity analysis method
  publication-title: Applied Sciences
  doi: 10.3390/app9112356
– volume: 149
  start-page: 107002
  year: 2020
  ident: ref1
  article-title: A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107002
– volume: 163
  start-page: 108139
  year: 2022
  ident: ref3
  article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2021.108139
– volume: 157
  start-page: 107660
  year: 2020
  ident: ref23
  article-title: Optimal IMF selection and unknown fault feature extraction for rolling bearings with different defect modes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107660
– volume: 61
  start-page: 599
  year: 2020
  ident: ref13
  article-title: Construction of probability box model based on maximum entropy principle and corresponding hybrid reliability analysis approach
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-019-02382-9
– volume: 7
  start-page: 42373
  year: 2019
  ident: ref27
  article-title: A deep learning method for bearing fault diagnosis based on time-frequency image
  publication-title: IEEE Access
  doi: 10.1109/Access.6287639
– volume: 18
  start-page: 463
  year: 2018
  ident: ref29
  article-title: Naive Bayes bearing fault diagnosis based on enhanced independence of data
  publication-title: Sensors
  doi: 10.3390/s18020463
– volume: 17
  start-page: 3
  year: 1984
  ident: ref8
  article-title: Vibration monitoring of rolling element bearings by the high-frequency resonance technique–A review
  publication-title: Tribology International
  doi: 10.1016/0301-679X(84)90076-8
– volume: 6
  start-page: 71839
  year: 2018
  ident: ref19
  article-title: Research on the fusion of dependent evidence based on mutual information
  publication-title: IEEE Access
  doi: 10.1109/Access.6287639
– volume: 10
  start-page: 749
  year: 2019
  ident: ref22
  article-title: Linear and nonlinear buckling analysis for the material design optimization of wind turbine blades
  publication-title: International Journal of Structural Integrity
  doi: 10.1108/IJSI-02-2018-0011
– volume: 155
  start-page: 107554
  year: 2020
  ident: ref10
  article-title: Fault diagnosis for rolling bearing based on VMD-fRFT
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107554
– volume: 7
  start-page: 17050
  year: 2019
  ident: ref6
  article-title: A new bearing fault diagnosis method based on fine-to-coarse multiscale permutation entropy, laplacian score and SVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893497
– volume: 63
  start-page: 1385
  year: 2021
  ident: ref12
  article-title: An efficient multi-objective optimization method based on the adaptive approximation model of the radial basis function
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-020-02766-2
– volume: 22
  start-page: 739
  year: 2020
  ident: ref7
  article-title: Fault diagnosis for rolling bearings using optimized variational mode decomposition and resonance demodulation
  publication-title: Entropy
  doi: 10.3390/e22070739
– volume: 1486
  start-page: 032019
  year: 2020
  ident: ref30
  article-title: Real-time online fault diagnosis of rolling bearings based on KNN algorithm
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/1486/3/032019
– volume: 371
  start-page: 113309
  year: 2020
  ident: ref16
  article-title: Novel hybrid robust method for uncertain reliability analysis using finite conjugate map
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113309
– volume: 178
  start-page: 109298
  year: 2021
  ident: ref31
  article-title: Rolling bearing fault diagnosis using transient-extracting transform and linear discriminant analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109298
– volume: 12
  start-page: 17
  year: 2019
  ident: ref20
  article-title: Multi-objective optimization design of anti-rolling torsion bar based on modified NSGA-III algorithm
  publication-title: International Journal of Structural Integrity
  doi: 10.1108/IJSI-03-2019-0018
– volume: 454
  start-page: 903
  year: 1998
  ident: ref24
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref25
  article-title: Rolling bearing fault feature extraction based on adaptive tunable Q-factor wavelet transform and spectral kurtosis
  publication-title: Shock and Vibration
  doi: 10.1155/2020/8875179
– volume: 39
  start-page: 961
  year: 2011
  ident: ref2
  article-title: The current status of wind energy in Turkey and in the world
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.11.021
– volume: 32
  start-page: 5201
  year: 2018
  ident: ref28
  article-title: Rolling bearing fault diagnosis based on mean multigranulation decision-theoretic rough set and non-naive Bayesian classifier
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-018-1018-7
– volume: 8
  start-page: 19810
  year: 2020
  ident: ref9
  article-title: The feature extraction and diagnosis of rolling bearing based on CEEMD and LDWPSO-PNN
  publication-title: IEEE Access
  doi: 10.1109/Access.6287639
– volume: 25
  start-page: 172
  year: 2020
  ident: ref14
  article-title: The design of linear magnetic negative stiffness element for engineering application using rectangular permanent magnets
  publication-title: Journal of Magnetics
  doi: 10.4283/JMAG.2020.25.2.172
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref26
  article-title: Compound fault diagnosis of bearings using an improved spectral kurtosis by MCDK
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2018/6513045
SSID ssj0036389
Score 2.607399
Snippet In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 543
SubjectTerms Algorithms
Classifiers
Critical components
Empirical analysis
Failure analysis
Failure rates
Fault diagnosis
Feature extraction
Frequency analysis
Frequency spectrum
Kurtosis
Resonant frequencies
Roller bearings
Wind power
Wind turbines
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gHDyJz4hBswdPmkLZtgs9-oAQI8aoRDw17e7sRSyEtL5-vbN94OOg8dQmO520ncd-m935BuBQelprW5LzIteWy9G3IoUeATnt2tjlqDPGm9GVGI7di4k3qUCnrIUxxyoNe2mR_7NcfTbq37afKdnGnbbrdbnTniu9AjXhEfyuQm18dX3ykPGicmER4ufLe88W-U4mgRTbbcsnNAzdnLcymirn-1z0CTBX03gevr2E0-mXuWZQh5vyLfMjJo-tNIla8v0HgeO_PmMd1grkyU5yV9mACsabUC-7OrAiyLfgchCm04SVbCVsptk9LdzZtemnxgoSb3ZKEZJdaRZUbBaz_uicGTyZLpD1X5NFXjCxDeNB_-5saBU9FyzpdERicSd0HS27titNyal0opCiVBEooMD2UPpRz3D-KexRllQaacwXKPxIYK-nSX4HqvEsxl1gNg8FqlB2uY5cJTUpQD9SpM8Q-AjZALv8-4EsCMlNX4xpQAuTzGCBMVhgDBbkBmvA0fKRec7G8ZtwszRpUAQmjZOkb0Cy34DjpZn_Vrb3L-kmVJNFivuEV5LooPDQD9aY5xE
  priority: 102
  providerName: Unpaywall
Title Fault Analysis of Wind Power Rolling Bearing Based on EMD Feature Extraction
URI https://www.proquest.com/docview/2604980029
https://www.techscience.com/CMES/v130n1/45723/pdf
UnpaywallVersion publishedVersion
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: ADMLS
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED6VdoCFN6K85IEJFBqcNE0GhCi0VAiqClFRpiixz1NJS5UK-Pfc5VFggcmDnRvO9_hs574DOFZNY4ytyHhRGsuVGFixxiYBOePa2JJoMsabh77XG7p3o-aoAv2yFoZ_qyxjYhao9UTxHXmDcLcbMLoJLqdvFneN4tfVsoVGVLRW0BcZxdgS1CQzY1Wh1u70B49lbHY4P2cMqtKz6Gwg83dOh4U31Csyf7eUZxmJlfM7U33Dz-V5Mo0-36Px-Ecm6q7DagEhxVW-5xtQwWQT1sr2DKLw1i2470bzcSpK2hExMeKZTuBiwI3RRMHGLdpk6tlI6UyLSSI6DzeCgeF8hqLzkc7yyodtGHY7T9c9q2ieYCnn3Est6USuY1TLdhXXjionjsjdNGV38tAmqiD2mbxPo0_hThukucBDL4g99H1D63egmkwS3AVhy8hDHamWNLGrlSEBGMSa5DETj6fqYJeKClXBLM4NLsYhnTAy3Yas25B1G-a6rcPJ4pNpTqvx1-KDUvth4WE0v7CHOpwuduR_YXt_C9uHFV6cX7IcQDWdzfGQYEcaH8GS3709KiyKxmF_cPXyBcLd1pk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NU9swEN3h4wAXaAudhqZUB3qBcXFlxYkPTKdAMqEkGYaBgZuxpdUpOCF1BvLn-G3s2nIKFzhx8kHSzni13n0red8C7OiGtdbXZLworackRl5qsEFAziofmxJtwXjTH4TdS_X3unG9AI9VLQz_Vln5xMJRm5HmM_J9wt0qYnQT_R7fedw1im9XqxYaiWutYA4KijFX2HGKs3tK4f4dnBzTfv-QstO-OOp6rsuAp4NfYe7JIFGB1U1faS6y1EGakF0aCoNkyg3UUdpiljuDLfILxiKNRSGGURpiq2VpPsldhGUVqIiSv-XD9uDsvIoFAeOBgrFVhh7lIrK8Vw34Zfb1LTJfuJQ_C9Ks4GVk_A93V6bZOJndJ8Phs8jX-QBrDrKKP6WNfYQFzD7BetUOQjjvsAG9TjId5qKiOREjK64o4xdn3IhNOPZvcUg6K54UPo0YZaLdPxYMRKcTFO2HfFJWWmzC5buo8TMsZaMMv4DwZRKiSXRT2lQZbUkARqkhecz8E-oa-JWiYu2YzLmhxjCmjKbQbcy6jVm3canbGuzOl4xLGo_XJtcr7cfui6bxuf3VYG--I28L23pd2HdY6V70e3HvZHD6FVZ5YXnAU4elfDLFbwR58nTb2ZWAm_c25ScdmBA2
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gHDyJz4hBswdPmkLZtgs9-oAQI8aoRDw17e7sRSyEtL5-vbN94OOg8dQmO520ncd-m935BuBQelprW5LzIteWy9G3IoUeATnt2tjlqDPGm9GVGI7di4k3qUCnrIUxxyoNe2mR_7NcfTbq37afKdnGnbbrdbnTniu9AjXhEfyuQm18dX3ykPGicmER4ufLe88W-U4mgRTbbcsnNAzdnLcymirn-1z0CTBX03gevr2E0-mXuWZQh5vyLfMjJo-tNIla8v0HgeO_PmMd1grkyU5yV9mACsabUC-7OrAiyLfgchCm04SVbCVsptk9LdzZtemnxgoSb3ZKEZJdaRZUbBaz_uicGTyZLpD1X5NFXjCxDeNB_-5saBU9FyzpdERicSd0HS27titNyal0opCiVBEooMD2UPpRz3D-KexRllQaacwXKPxIYK-nSX4HqvEsxl1gNg8FqlB2uY5cJTUpQD9SpM8Q-AjZALv8-4EsCMlNX4xpQAuTzGCBMVhgDBbkBmvA0fKRec7G8ZtwszRpUAQmjZOkb0Cy34DjpZn_Vrb3L-kmVJNFivuEV5LooPDQD9aY5xE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Analysis+of+Wind+Power+Rolling+Bearing+Based+on+EMD+Feature+Extraction&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Meng%2C+Debiao&rft.au=Wang%2C+Hongtao&rft.au=Yang%2C+Shiyuan&rft.au=Lv%2C+Zhiyuan&rft.date=2022&rft.issn=1526-1506&rft.volume=130&rft.issue=1&rft.spage=543&rft.epage=558&rft_id=info:doi/10.32604%2Fcmes.2022.018123&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2022_018123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon