An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system

A third-order in time numerical IMEX-type algorithm for the Stokes–Darcy system for flows in fluid saturated karst aquifers is proposed and analyzed. A novel third-order Adams–Moulton scheme is used for the discretization of the dissipative term whereas a third-order explicit Adams–Bashforth scheme...

Full description

Saved in:
Bibliographic Details
Published inNumerische Mathematik Vol. 134; no. 4; pp. 857 - 879
Main Authors Chen, Wenbin, Gunzburger, Max, Sun, Dong, Wang, Xiaoming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0029-599X
0945-3245
DOI10.1007/s00211-015-0789-3

Cover

Abstract A third-order in time numerical IMEX-type algorithm for the Stokes–Darcy system for flows in fluid saturated karst aquifers is proposed and analyzed. A novel third-order Adams–Moulton scheme is used for the discretization of the dissipative term whereas a third-order explicit Adams–Bashforth scheme is used for the time discretization of the interface term that couples the Stokes and Darcy components. The scheme is efficient in the sense that one needs to solve, at each time step, decoupled Stokes and Darcy problems. Therefore, legacy Stokes and Darcy solvers can be applied in parallel. The scheme is also unconditionally stable and, with a mild time-step restriction, long-time accurate in the sense that the error is bounded uniformly in time. Numerical experiments are used to illustrate the theoretical results. To the authors’ knowledge, the novel algorithm is the first third-order accurate numerical scheme for the Stokes–Darcy system possessing its favorable efficiency, stability, and accuracy properties.
AbstractList A third-order in time numerical IMEX-type algorithm for the Stokes–Darcy system for flows in fluid saturated karst aquifers is proposed and analyzed. A novel third-order Adams–Moulton scheme is used for the discretization of the dissipative term whereas a third-order explicit Adams–Bashforth scheme is used for the time discretization of the interface term that couples the Stokes and Darcy components. The scheme is efficient in the sense that one needs to solve, at each time step, decoupled Stokes and Darcy problems. Therefore, legacy Stokes and Darcy solvers can be applied in parallel. The scheme is also unconditionally stable and, with a mild time-step restriction, long-time accurate in the sense that the error is bounded uniformly in time. Numerical experiments are used to illustrate the theoretical results. To the authors’ knowledge, the novel algorithm is the first third-order accurate numerical scheme for the Stokes–Darcy system possessing its favorable efficiency, stability, and accuracy properties.
Author Chen, Wenbin
Sun, Dong
Wang, Xiaoming
Gunzburger, Max
Author_xml – sequence: 1
  givenname: Wenbin
  surname: Chen
  fullname: Chen, Wenbin
  organization: School of Mathematical Sciences, Fudan University
– sequence: 2
  givenname: Max
  surname: Gunzburger
  fullname: Gunzburger, Max
  organization: Department of Scientific Computing, Florida State University
– sequence: 3
  givenname: Dong
  surname: Sun
  fullname: Sun, Dong
  organization: Department of Mathematics, Florida State University
– sequence: 4
  givenname: Xiaoming
  surname: Wang
  fullname: Wang, Xiaoming
  email: wxm@math.fsu.edu
  organization: Department of Mathematics, Florida State University
BookMark eNp9kMtKQzEQhoMoqNUHcBdwHZ3kJOeyFO8guFDRXUjSOW1qm2iSLrrzHXxDn8QjdSGCrmZg_m9m-HbJZogBCTngcMQBmuMMIDhnwBWDpu1YtUF2oJOKVUKqzaEH0THVdU_bZDfnGQBvasl3yONJoNj33nkMhZowpvMYJqz4BVLj3DKZgrRMfRqzmMaYqJlPYvJluqB9TMME6V2Jz5g_3t7PTHIrmle54GKPbPVmnnH_u47Iw8X5_ekVu7m9vD49uWGu4nVhgjdK9rKW4CzHqraqNk4IawRI7FRrnbAdmK7pG2mVMo21FtFwKyou6rGpRuRwvfclxdcl5qJncZnCcFLztoVWtlLAkGrWKZdizgl77XwxxcdQkvFzzUF_WdRri3qwqL8s6mog-S_yJfmFSat_GbFm8pANE0w_fvoT-gRxLoeA
CitedBy_id crossref_primary_10_1016_j_cam_2021_113793
crossref_primary_10_1016_j_cam_2022_114326
crossref_primary_10_1137_16M1099601
crossref_primary_10_1007_s10915_019_00977_4
crossref_primary_10_1007_s11075_019_00791_x
crossref_primary_10_1016_j_apnum_2021_08_004
crossref_primary_10_3390_math11173763
crossref_primary_10_1016_j_apnum_2023_03_005
crossref_primary_10_1016_j_camwa_2024_02_033
crossref_primary_10_1016_j_cnsns_2024_108024
crossref_primary_10_1007_s11075_023_01507_y
crossref_primary_10_1002_num_22146
crossref_primary_10_1002_nme_6158
crossref_primary_10_1016_j_compfluid_2023_106055
crossref_primary_10_1007_s00211_017_0870_1
crossref_primary_10_1016_j_cma_2020_112923
crossref_primary_10_1016_j_apnum_2020_03_025
crossref_primary_10_1016_j_apnum_2021_02_005
crossref_primary_10_1007_s10915_018_0660_7
crossref_primary_10_1137_21M1462386
crossref_primary_10_1007_s10444_020_09828_5
crossref_primary_10_1007_s10915_018_0879_3
crossref_primary_10_1016_j_cam_2020_113128
crossref_primary_10_1016_j_cam_2021_113521
crossref_primary_10_1016_j_camwa_2022_08_025
crossref_primary_10_1017_jfm_2021_509
crossref_primary_10_1051_m2an_2023062
crossref_primary_10_1137_18M1227536
crossref_primary_10_1137_24M1629535
crossref_primary_10_1016_j_cma_2020_113469
crossref_primary_10_1016_j_jcp_2022_110968
crossref_primary_10_1016_j_jcp_2020_109400
crossref_primary_10_3390_fluids2030047
crossref_primary_10_1016_j_jmaa_2022_126700
crossref_primary_10_1002_mma_4744
crossref_primary_10_1007_s10915_023_02214_5
crossref_primary_10_1016_j_cma_2019_112616
Cites_doi 10.1137/0732037
10.1017/S0022112067001375
10.1002/num.21751
10.1016/j.apnum.2004.03.002
10.1137/110828095
10.1137/110838376
10.4310/CMS.2010.v8.n1.a2
10.5209/rev_REMA.2009.v22.n2.16263
10.1016/S0168-9274(02)00125-3
10.1137/110834494
10.1017/S0305004100047642
10.1137/080740556
10.1090/S0025-5718-09-02302-3
10.1002/num.21720
10.1007/s00211-011-0361-8
10.1007/s10915-013-9700-5
10.1137/06065091X
10.1016/j.apnum.2011.10.006
10.1137/080731542
10.1007/s002110050429
10.1137/S003613999833678X
10.1137/120897705
10.1002/mma.1292
10.1137/S0036142901392766
10.1090/S0025-5718-98-00930-2
10.1090/S0025-5718-2014-02779-8
10.1016/j.cam.2012.02.019
10.1007/978-88-470-2089-4_1
10.1002/num.21860
10.1007/s10915-013-9779-8
10.1137/050637820
10.1002/mma.2901
10.1051/m2an/2012034
10.1016/j.amc.2012.05.012
10.3133/sir20085023
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s00211-015-0789-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 879
ExternalDocumentID 10_1007_s00211_015_0789_3
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABUFD
ID FETCH-LOGICAL-c316t-21754f4640cb1e36b56ac22ba204e958bc2b90a97f74b55a7bbbeea1b23126da3
IEDL.DBID U2A
ISSN 0029-599X
IngestDate Mon Oct 06 16:31:38 EDT 2025
Wed Oct 01 00:48:31 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Fri Feb 21 02:34:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 76S05
35M13
76D07
65N55
35Q35
65N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-21754f4640cb1e36b56ac22ba204e958bc2b90a97f74b55a7bbbeea1b23126da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880848420
PQPubID 2043616
PageCount 23
ParticipantIDs proquest_journals_1880848420
crossref_citationtrail_10_1007_s00211_015_0789_3
crossref_primary_10_1007_s00211_015_0789_3
springer_journals_10_1007_s00211_015_0789_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Akrivis, Smyrlis (CR3) 2004; 51
Zuo, Hou (CR40) 2014; 30
Layton, Schieweck, Yotov (CR28) 2003; 40
Kincaid (CR25) 2004
Chen, Gunzburger, Sun, Wang (CR15) 2013; 51
Ervin, Jenkins, Lee (CR20) 2014; 59
Layton, Tran, Trenchea (CR29) 2013; 51
CR12
Kubacki (CR26) 2013; 29
Shan, Zheng (CR38) 2013; 51
Cao, Gunzburger, He, Wang (CR10) 2011; 117
Jones (CR24) 1973; 73
Boubendir, Tlupova (CR7) 2013; 35
Chen, Gunzburger, Hua, Wang (CR14) 2011; 49
Layton, Tran, Xiong (CR30) 2012; 236
Beavers, Joseph (CR6) 1967; 30
Si, Wang, Li (CR39) 2014; 37
Cao, Gunzburger, Hu, Hua, Wang, Zhao (CR9) 2010; 47
Akrivis, Crouzeix, Makridakis (CR1) 1998; 67
Galvis, Sarkis (CR22) 2007; 26
Márquez, Meddahi, Sayas (CR33) 2013; 57
Anitescu, Pahlevani, Layton (CR4) 2004; 18
CR27
Lee, Rife (CR32) 2014; 67
Mu, Zhu (CR35) 2010; 79
Discacciati, Miglio, Quarteroni (CR16) 2002; 43
Jäger, Mikelić (CR23) 2000; 60
Akrivis, Crouzeix, Makridakis (CR2) 1999; 82
Discacciati, Quarteroni, Brezzi (CR17) 2003
Shan, Zheng, Layton (CR37) 2013; 29
Chen, Chen, Gunzburger, Yan (CR13) 2010; 33
Layton, Trenchea (CR31) 2012; 62
Saffman (CR36) 1971; 1
Ascher, Ruuth, Wetton (CR5) 1995; 32
Feng, He, Wang, Zhang (CR21) 2012; 219
Cao, Gunzburger, He, Wang (CR11) 2014; 83
Discacciati, Quarteroni (CR19) 2009; 22
Mu, Xu (CR34) 2007; 45
Cao, Gunzburger, Hua, Wang (CR8) 2010; 8
Discacciati, Quarteroni, Valli (CR18) 2007; 45
M Discacciati (789_CR18) 2007; 45
T Kincaid (789_CR25) 2004
Y Boubendir (789_CR7) 2013; 35
M Discacciati (789_CR17) 2003
U Ascher (789_CR5) 1995; 32
W Layton (789_CR28) 2003; 40
G Akrivis (789_CR2) 1999; 82
789_CR27
G Akrivis (789_CR1) 1998; 67
Y Cao (789_CR8) 2010; 8
I Jones (789_CR24) 1973; 73
W Feng (789_CR21) 2012; 219
L Shan (789_CR38) 2013; 51
Z Si (789_CR39) 2014; 37
Y Cao (789_CR9) 2010; 47
W Chen (789_CR14) 2011; 49
J Galvis (789_CR22) 2007; 26
A Márquez (789_CR33) 2013; 57
M Discacciati (789_CR19) 2009; 22
L Shan (789_CR37) 2013; 29
G Beavers (789_CR6) 1967; 30
VJ Ervin (789_CR20) 2014; 59
L Zuo (789_CR40) 2014; 30
W Chen (789_CR13) 2010; 33
P Saffman (789_CR36) 1971; 1
789_CR12
W Layton (789_CR30) 2012; 236
Y Cao (789_CR11) 2014; 83
W Jäger (789_CR23) 2000; 60
Y Cao (789_CR10) 2011; 117
H Lee (789_CR32) 2014; 67
M Mu (789_CR35) 2010; 79
M Mu (789_CR34) 2007; 45
M Kubacki (789_CR26) 2013; 29
M Anitescu (789_CR4) 2004; 18
M Discacciati (789_CR16) 2002; 43
W Chen (789_CR15) 2013; 51
G Akrivis (789_CR3) 2004; 51
WJ Layton (789_CR31) 2012; 62
W Layton (789_CR29) 2013; 51
References_xml – volume: 32
  start-page: 797
  year: 1995
  end-page: 823
  ident: CR5
  article-title: Implicit–explicit methods for time-dependent partial differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0732037
– volume: 18
  start-page: 174
  year: 2004
  end-page: 187
  ident: CR4
  article-title: Implicit for local effects and explicit for nonlocal effects is unconditionally stable
  publication-title: Electron. Trans. Numer. Anal.
– volume: 30
  start-page: 197
  year: 1967
  end-page: 207
  ident: CR6
  article-title: Boundary conditions at a naturally permeable wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112067001375
– volume: 29
  start-page: 1192
  issue: 4
  year: 2013
  end-page: 1216
  ident: CR26
  article-title: Uncoupling evolutionary groundwater-surface water flows using the Crank–Nicolson leapfrog method
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21751
– volume: 51
  start-page: 151
  year: 2004
  end-page: 169
  ident: CR3
  article-title: Implicit–explicit BDF methods for the Kuramoto–Sivashinsky equation
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.03.002
– ident: CR12
– volume: 51
  start-page: 813
  issue: 2
  year: 2013
  end-page: 839
  ident: CR38
  article-title: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110828095
– volume: 35
  start-page: B82
  issue: 1
  year: 2013
  end-page: B106
  ident: CR7
  article-title: Domain decomposition methods for solving Stokes–Darcy problems with boundary integrals
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110838376
– volume: 8
  start-page: 1
  year: 2010
  end-page: 25
  ident: CR8
  article-title: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2010.v8.n1.a2
– volume: 22
  start-page: 315
  issue: 2
  year: 2009
  end-page: 426
  ident: CR19
  article-title: Navier–Stokes/Darcy coupling: modeling, analysis and numerical approximation
  publication-title: Rev. Mat. Complut.
  doi: 10.5209/rev_REMA.2009.v22.n2.16263
– volume: 43
  start-page: 57
  year: 2002
  end-page: 74
  ident: CR16
  article-title: Mathematical and numerical models for coupling surface and groundwater flows
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(02)00125-3
– volume: 219
  start-page: 453
  issue: 2
  year: 2012
  end-page: 463
  ident: CR21
  article-title: Non-iterative domain decomposition methods for a non-stationary Stokes–Darcy model with Beavers–Joseph interface condition
  publication-title: Appl. Math. Comput.
– volume: 51
  start-page: 248
  issue: 1
  year: 2013
  end-page: 272
  ident: CR29
  article-title: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110834494
– year: 2004
  ident: CR25
  publication-title: Exploring the Secrets of Wakulla Springs
– ident: CR27
– volume: 73
  start-page: 231
  year: 1973
  end-page: 238
  ident: CR24
  article-title: Low Reynolds number flow past a porous spherical shell
  publication-title: Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100047642
– volume: 49
  start-page: 1064
  year: 2011
  end-page: 1084
  ident: CR14
  article-title: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080740556
– volume: 79
  start-page: 707
  year: 2010
  end-page: 731
  ident: CR35
  article-title: Decoupled schemes for a non-stationary mixed Stokes–Darcy model
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02302-3
– volume: 29
  start-page: 549
  issue: 2
  year: 2013
  end-page: 583
  ident: CR37
  article-title: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21720
– volume: 117
  start-page: 601
  year: 2011
  end-page: 629
  ident: CR10
  article-title: Robin–Robin Domain decomposition method for Stokes-Darcy model with Beaver–Joseph interface condition
  publication-title: Numer. Math.
  doi: 10.1007/s00211-011-0361-8
– volume: 57
  start-page: 174
  issue: 1
  year: 2013
  end-page: 192
  ident: CR33
  article-title: A decoupled preconditioning technique for a mixed Stokes–Darcy model
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9700-5
– volume: 45
  start-page: 1246
  year: 2007
  end-page: 1268
  ident: CR18
  article-title: Robin-Robin domain decomposition methods for the Stokes–Darcy coupling
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/06065091X
– volume: 62
  start-page: 112
  year: 2012
  end-page: 120
  ident: CR31
  article-title: Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2011.10.006
– volume: 47
  start-page: 4239
  year: 2010
  end-page: 4256
  ident: CR9
  article-title: Finite element approximation of the Stokes–Darcy flow with Beavers–Joseph interface boundary condition
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080731542
– volume: 82
  start-page: 521
  year: 1999
  end-page: 541
  ident: CR2
  article-title: Implicit–explicit multistep methods for quasilinear parabolic equations
  publication-title: Numer. Math.
  doi: 10.1007/s002110050429
– volume: 60
  start-page: 1111
  year: 2000
  end-page: 1127
  ident: CR23
  article-title: On the interface boundary condition of Beavers, Joseph and Saffman
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S003613999833678X
– volume: 51
  start-page: 2563
  issue: 5
  year: 2013
  end-page: 2584
  ident: CR15
  article-title: Efficient and long-time accurate second order methods for Stokes–Darcy system
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120897705
– volume: 33
  start-page: 1605
  year: 2010
  end-page: 1617
  ident: CR13
  article-title: Superconvergence analysis of FEMs for the Stokes–Darcy system
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1292
– volume: 40
  start-page: 2195
  year: 2003
  end-page: 2218
  ident: CR28
  article-title: Coupling fluid flow with porous media flow
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901392766
– volume: 67
  start-page: 457
  year: 1998
  end-page: 477
  ident: CR1
  article-title: Implicit–explicit multistep finite element methods for nonlinear parabolic problems
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-98-00930-2
– volume: 83
  start-page: 1617
  year: 2014
  end-page: 1644
  ident: CR11
  article-title: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2014-02779-8
– volume: 26
  start-page: 350
  year: 2007
  end-page: 384
  ident: CR22
  article-title: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations
  publication-title: Electron. Trans. Numer. Anal.
– volume: 236
  start-page: 3198
  year: 2012
  end-page: 3217
  ident: CR30
  article-title: Long time stability of four methods for splitting the evolutionary Stokes–Darcy problem into Stokes and Darcy subproblems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.02.019
– start-page: 3
  year: 2003
  end-page: 20
  ident: CR17
  article-title: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations
  publication-title: Numerical Mathematics and Advanced Applications-ENUMATH 2001
  doi: 10.1007/978-88-470-2089-4_1
– volume: 67
  start-page: 1806
  issue: 10
  year: 2014
  end-page: 1815
  ident: CR32
  article-title: Least squares approach for the time-dependent nonlinear Stokes–Darcy flow
  publication-title: Math. Method Appl. Sci.
– volume: 1
  start-page: 77
  year: 1971
  end-page: 84
  ident: CR36
  article-title: On the boundary condition at the interface of a porous medium
  publication-title: Studies Appl. Math.
– volume: 30
  start-page: 1066
  issue: 3
  year: 2014
  end-page: 1082
  ident: CR40
  article-title: A decoupling two-grid algorithm for the mixed Stokes–Darcy model with the Beavers–Joseph interface condition
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21860
– volume: 59
  start-page: 775
  issue: 3
  year: 2014
  end-page: 794
  ident: CR20
  article-title: Approximation of the Stokes–Darcy system by optimization
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9779-8
– volume: 45
  start-page: 1801
  year: 2007
  end-page: 1813
  ident: CR34
  article-title: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050637820
– volume: 37
  start-page: 1392
  issue: 9
  year: 2014
  end-page: 1404
  ident: CR39
  article-title: Decoupled modified characteristics finite element method for the time dependent Navier–Stokes/Darcy problem
  publication-title: Math. Methods Appl. Sci.
– volume: 117
  start-page: 601
  year: 2011
  ident: 789_CR10
  publication-title: Numer. Math.
  doi: 10.1007/s00211-011-0361-8
– volume: 83
  start-page: 1617
  year: 2014
  ident: 789_CR11
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2014-02779-8
– volume: 45
  start-page: 1801
  year: 2007
  ident: 789_CR34
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050637820
– volume: 33
  start-page: 1605
  year: 2010
  ident: 789_CR13
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1292
– volume: 8
  start-page: 1
  year: 2010
  ident: 789_CR8
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2010.v8.n1.a2
– volume: 45
  start-page: 1246
  year: 2007
  ident: 789_CR18
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/06065091X
– volume: 26
  start-page: 350
  year: 2007
  ident: 789_CR22
  publication-title: Electron. Trans. Numer. Anal.
– volume: 49
  start-page: 1064
  year: 2011
  ident: 789_CR14
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080740556
– volume: 236
  start-page: 3198
  year: 2012
  ident: 789_CR30
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.02.019
– volume: 73
  start-page: 231
  year: 1973
  ident: 789_CR24
  publication-title: Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100047642
– volume: 30
  start-page: 197
  year: 1967
  ident: 789_CR6
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112067001375
– volume: 40
  start-page: 2195
  year: 2003
  ident: 789_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901392766
– volume: 22
  start-page: 315
  issue: 2
  year: 2009
  ident: 789_CR19
  publication-title: Rev. Mat. Complut.
  doi: 10.5209/rev_REMA.2009.v22.n2.16263
– volume: 1
  start-page: 77
  year: 1971
  ident: 789_CR36
  publication-title: Studies Appl. Math.
– volume: 29
  start-page: 549
  issue: 2
  year: 2013
  ident: 789_CR37
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21720
– volume: 51
  start-page: 248
  issue: 1
  year: 2013
  ident: 789_CR29
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110834494
– volume: 57
  start-page: 174
  issue: 1
  year: 2013
  ident: 789_CR33
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9700-5
– volume: 67
  start-page: 457
  year: 1998
  ident: 789_CR1
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-98-00930-2
– volume: 37
  start-page: 1392
  issue: 9
  year: 2014
  ident: 789_CR39
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.2901
– volume: 79
  start-page: 707
  year: 2010
  ident: 789_CR35
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02302-3
– volume: 51
  start-page: 813
  issue: 2
  year: 2013
  ident: 789_CR38
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110828095
– volume: 43
  start-page: 57
  year: 2002
  ident: 789_CR16
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(02)00125-3
– ident: 789_CR12
  doi: 10.1051/m2an/2012034
– volume: 18
  start-page: 174
  year: 2004
  ident: 789_CR4
  publication-title: Electron. Trans. Numer. Anal.
– volume: 59
  start-page: 775
  issue: 3
  year: 2014
  ident: 789_CR20
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9779-8
– volume: 67
  start-page: 1806
  issue: 10
  year: 2014
  ident: 789_CR32
  publication-title: Math. Method Appl. Sci.
– volume: 51
  start-page: 151
  year: 2004
  ident: 789_CR3
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.03.002
– volume: 219
  start-page: 453
  issue: 2
  year: 2012
  ident: 789_CR21
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.05.012
– ident: 789_CR27
  doi: 10.3133/sir20085023
– volume: 62
  start-page: 112
  year: 2012
  ident: 789_CR31
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2011.10.006
– volume: 29
  start-page: 1192
  issue: 4
  year: 2013
  ident: 789_CR26
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21751
– volume: 47
  start-page: 4239
  year: 2010
  ident: 789_CR9
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080731542
– volume-title: Exploring the Secrets of Wakulla Springs
  year: 2004
  ident: 789_CR25
– volume: 82
  start-page: 521
  year: 1999
  ident: 789_CR2
  publication-title: Numer. Math.
  doi: 10.1007/s002110050429
– volume: 51
  start-page: 2563
  issue: 5
  year: 2013
  ident: 789_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120897705
– volume: 35
  start-page: B82
  issue: 1
  year: 2013
  ident: 789_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110838376
– volume: 30
  start-page: 1066
  issue: 3
  year: 2014
  ident: 789_CR40
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21860
– volume: 32
  start-page: 797
  year: 1995
  ident: 789_CR5
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0732037
– volume: 60
  start-page: 1111
  year: 2000
  ident: 789_CR23
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S003613999833678X
– start-page: 3
  volume-title: Numerical Mathematics and Advanced Applications-ENUMATH 2001
  year: 2003
  ident: 789_CR17
  doi: 10.1007/978-88-470-2089-4_1
SSID ssj0017641
Score 2.3446522
Snippet A third-order in time numerical IMEX-type algorithm for the Stokes–Darcy system for flows in fluid saturated karst aquifers is proposed and analyzed. A novel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 857
SubjectTerms Algorithms
Aquifers
Computational fluid dynamics
Couples
Discretization
Dissipation
Error detection
Karst
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Solvers
Stokes law (fluid mechanics)
Theoretical
Title An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system
URI https://link.springer.com/article/10.1007/s00211-015-0789-3
https://www.proquest.com/docview/1880848420
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: AFBBN
  dateStart: 19591201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSgveWACWXIS24nHCigIVBaoKFNkOw5UlBS16cDGf-Af8kuw0yQ8BEjMfgx3Pt93urvvAPbtb2hSTxscamEDFC9S1uZkglNpgxEeJMIv-tY6l_ysS897rFf2cY-ravcqJVn81HWzm3NHLvRl2FGk42AW5phj87KPuOu36tRByKlX1XUwIXpVKvOnK746ow-E-S0pWvia9jIsliARtaZaXYEZk63CUjWAAZX2uAoLnZp0dbwGN60MmYIRwjoSJLMEDYbZHXbT45HUeuJIIVB-3x8luCDcRHJwNxz18_tHZJGrXTHoKh8-mPHby-uxff_PaErzvA7d9sn10Rku5yZgHXg8xzbKYDSlnBKtPBNwxbjUvq-kT6gRLFLaV4JIEaYhVYzJUClljPSUxXo-T2SwAY1smJlNQNa9eSYhRFGR0IinIonCwAjjaOOIJKwJpBJgrEtScTfbYhDXdMiFzGMr89jJPA6acFAfeZoyavy1eafSSlwa1zh2FHIRjahPmnBYaerT8m-Xbf1r9zbMW3DEp6UrO9DIRxOzawFIrvZgrnV6e3GyVzy8dyjc0sk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4H2wLOIbSn1oScqIyexnfi44tFtYbl0UbenyHYcQGyz1W72ACf-Q_8hvwQ7icNDpRJnOyPHM-OZ0cx8A_DZvoYmD7TBsRY2QAkSZXVOZjiXNhjhUSbCqm9tcML7p_T7iI2aPu6Zr3b3KcnqpW6b3Zw5cqEvww4iHUevYcHSpmEHFnpffx0dtMmDmNPAV3YwIUY-mfkvIo_N0b2P-SQtWlmbw2UY-nPWRSaXu_NS7errJxCOL_yRFVhqvE_Uq8VlFV6ZYg2W_WQH1Cj6GrwdtGius3X42SuQqaAmrIVCssjQeFKcYTeWHkmt5w5tApXnF9MMV0ieSI7PJtOL8vw3si6xXTHoRzm5NLPbm7_7VrGuUI0f_Q5ODw-Ge33cDGTAOgp4iW34wmhOOSVaBSbiinGpw1DJkFAjWKJ0qASRIs5jqhiTsVLKGBko60SGPJPRBnSKSWE2AVm7GZiMEEVFRhOeiyyJIyOMw6MjkrAuEM-XVDdo5W5oxjhtcZara0ztNabuGtOoCzvtJ39qqI7_bd7yzE4brZ2lDpsuoVakSBe-eN49WH6O2PsX7f4Ei_3h4Dg9_nZy9AHeWA-M1_UxW9App3Pz0Xo5pdpupPoOg_Tw3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEIBHsEgIDhRaKrYt1AdOIKtOYjvxcdV2VSitkGDF3iz_ZbdiSard7KE33qFv2Cepnb8CKkic7VjK2OOZ0Xi-AXjrb0OXR8bh1AgfoESZ9jqnLM6VD0Z4YkVc162dnfOTCf04ZdO2z-mqe-3epSSbmoZAaSqqg0ubH_SFb8E0hTCY4YBLx8lDeEQDJ8Ef6Ek86tMIKadR98aDCTHt0pr3LfG7YbrzNv9IkNZ2Z_wcnrUOIxo1O_wCHrhiEza6Zgyo1c1NeHrWA1hXW_BtVCBX0yH8TyFVWLQoixkOneSRMmYdABGoml8sLa7hm0gtZuXyopr_QN6L9SMOfanK72518_P6yOvCFWqQzy9hMj7-eniC2x4K2CQRr7CPOBjNKafE6MglXDOuTBxrFRPqBMu0ibUgSqR5SjVjKtVaO6ci7f2-mFuVbMOgKAv3CpA3dZGzhGgqLM14LmyWJk64gJAjirAhkE6A0rSA8dDnYiF7NHItc-llLoPMZTKEd_0nlw1d41-T97pdka2irWTAyWU0ozEZwvtup34Z_ttiO_81ex8efz4ay08fzk934Yn3mXjzomUPBtVy7V57v6TSb-qzdwv9Gdhd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+and+long-time+accurate+third-order+algorithm+for+the+Stokes%E2%80%93Darcy+system&rft.jtitle=Numerische+Mathematik&rft.au=Chen%2C+Wenbin&rft.au=Gunzburger%2C+Max&rft.au=Sun%2C+Dong&rft.au=Wang%2C+Xiaoming&rft.date=2016-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=134&rft.issue=4&rft.spage=857&rft.epage=879&rft_id=info:doi/10.1007%2Fs00211-015-0789-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon