A genetic-fuzzy mining approach for items with multiple minimum supports
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support th...
        Saved in:
      
    
          | Published in | Soft computing (Berlin, Germany) Vol. 13; no. 5; pp. 521 - 533 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer-Verlag
    
        01.03.2009
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1432-7643 1433-7479  | 
| DOI | 10.1007/s00500-008-0366-0 | 
Cover
| Abstract | Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the
k
-means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach. | 
    
|---|---|
| AbstractList | Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the k-means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach. Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the k -means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach.  | 
    
| Author | Tseng, Vincent S. Chen, Chun-Hao Lee, Chang-Shing Hong, Tzung-Pei  | 
    
| Author_xml | – sequence: 1 givenname: Chun-Hao surname: Chen fullname: Chen, Chun-Hao organization: Department of Computer Science and Information Engineering, National Cheng-Kung University – sequence: 2 givenname: Tzung-Pei surname: Hong fullname: Hong, Tzung-Pei email: tphong@nuk.edu.tw organization: Department of Computer Science and Information Engineering, National University of Kaohsiung, Department of Computer Science and Engineering, National Sun Yat-sen University – sequence: 3 givenname: Vincent S. surname: Tseng fullname: Tseng, Vincent S. organization: Department of Computer Science and Information Engineering, National Cheng-Kung University – sequence: 4 givenname: Chang-Shing surname: Lee fullname: Lee, Chang-Shing organization: Department of Computer Science and Information Engineering, National University of Tainan  | 
    
| BookMark | eNp9kEFLwzAUx4NMcJt-AG8Bz9GXpmua4xjqhIEXPYe0S7aMNq1Jimyf3nYVBEFP7x1-v_f-_Gdo4hqnEbqlcE8B-EMAWAAQgJwAyzICF2hKU8YIT7mYnPeE8CxlV2gWwgEgoXzBpmi9xDvtdLQlMd3pdMS1ddbtsGpb36hyj03jsY26DvjTxj2uuyrattJnru5qHLq2bXwM1-jSqCrom-85R-9Pj2-rNdm8Pr-slhtSMppFklAKSZEVQinBaG4MY2YLqTa5EaZg1DBYFDpJBWxZXuq8EAbSFHKhWU-VnM3R3Xi3z_fR6RDloem861_KRFAucppR6Ck-UqVvQvDayNJGFW3jole2khTkUJsca5N9bXKoTQ4m_WW23tbKH_91ktEJPet22v9k-lv6ApDmgTA | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2009_01_067 crossref_primary_10_1016_j_ins_2020_02_073 crossref_primary_10_1007_s00500_010_0664_1 crossref_primary_10_1007_s00500_010_0670_3 crossref_primary_10_1109_TFUZZ_2010_2060200 crossref_primary_10_1080_18756891_2012_685314 crossref_primary_10_1007_s00500_012_0861_1 crossref_primary_10_1109_TETCI_2017_2782800  | 
    
| Cites_doi | 10.1109/TFUZZ.2004.839670 10.1016/S0165-0114(96)00179-0 10.1145/273244.273257 10.1109/91.873575 10.1109/TITB.2005.855567 10.1007/s00500-006-0046-x 10.1142/S0218488501001071 10.1002/0471698504 10.1007/978-3-540-30133-2_171 10.1109/TFUZZ.2004.841738 10.1109/WCICA.2002.1019987 10.1007/s10489-006-6925-0 10.1007/s00500-005-0014-x 10.1109/91.940965 10.1109/91.940977 10.1145/266714.266898 10.1016/S0165-0114(97)00385-0 10.1109/FOCI.2007.371526  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag 2008 Springer-Verlag 2008.  | 
    
| Copyright_xml | – notice: Springer-Verlag 2008 – notice: Springer-Verlag 2008.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.1007/s00500-008-0366-0 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1433-7479 | 
    
| EndPage | 533 | 
    
| ExternalDocumentID | 10_1007_s00500_008_0366_0 | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c316t-21102b6b9aa9318ff33fd04ef8f9fb31f305be2490d38ce8b9f044089e304ec73 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1432-7643 | 
    
| IngestDate | Sat Jul 26 02:21:32 EDT 2025 Wed Oct 01 02:45:10 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Fri Feb 21 02:40:08 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Multiple minimum supports means Data mining Clustering Genetic-fuzzy algorithm Requirement satisfaction  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c316t-21102b6b9aa9318ff33fd04ef8f9fb31f305be2490d38ce8b9f044089e304ec73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2917981610 | 
    
| PQPubID | 2043697 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_2917981610 crossref_citationtrail_10_1007_s00500_008_0366_0 crossref_primary_10_1007_s00500_008_0366_0 springer_journals_10_1007_s00500_008_0366_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-03-01 | 
    
| PublicationDateYYYYMMDD | 2009-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications | 
    
| PublicationTitle | Soft computing (Berlin, Germany) | 
    
| PublicationTitleAbbrev | Soft Comput | 
    
| PublicationYear | 2009 | 
    
| Publisher | Springer-Verlag Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V  | 
    
| References | ChenJMikulcicAKraftDHPonsOVilaMAKacprzykJAn integrated approach to information retrieval with fuzzy clustering and fuzzy inferencingKnowledge management in fuzzy databases2000HeidelbergPhysica-Verlag Zhang H, Liu D (2006) Fuzzy modeling and fuzzy control, Springer, Heidelberg RasmaniKAShenQModifying weighted fuzzy subsethood-based rule models with fuzzy quantifiersIEEE Int Conf Fuzzy Syst2004316791684 LiangHWuZWuQA fuzzy based supply chain management decision support systemWorld Congr Intell Control Autom2002426172621 HengPAWongTTRongYChuiYPXieYMLeungKSLeungPCIntelligent inferencing and haptic simulation for Chinese acupuncture learning and trainingIEEE Trans Inf Technol Biomed2006101284110.1109/TITB.2005.855567 Hong TP, Chen CH, Lee YC, Wu YL (2008) Genetic-fuzzy data mining with divide-and-conquer strategy. IEEE Trans Evol Comput (Accepted and to appear) KayaMAlhajjRUtilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules miningAppl Intell200624171510.1007/s10489-006-6925-0 KuokCFuAWongMMining fuzzy association rules in databasesSIGMOD Record1998271414610.1145/273244.273257 Chan CC, Au WH (1997) Mining fuzzy association rules. In: The conference on information and knowledge management, pp 209–215 HongTPChenCHWuYLLeeYCA GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functionsSoft Comput200610111091110110.1007/s00500-006-0046-x Siler W, James J (2004) Fuzzy expert systems and fuzzy reasoning. Wiley, New York Chen CH, Hong TP, Tseng VS (2007) A comparison of different fitness functions for extracting membership functions used in fuzzy data mining. In: IEEE symposium on foundations of computational intelligence, pp 550–555 CordónOHerreraFVillarPGenerating the knowledge base of a fuzzy rule-based system by the genetic learning of the data baseIEEE Trans Fuzzy Syst20019466767410.1109/91.940977 Parodi A, Bonelli P (1993) A new approach of fuzzy classifier systems. In: The fifth international conference on genetic algorithms, Morgan Kaufmann, Los Altos, pp 223–230 HerreraFLozanoMVerdegayJLFuzzy connectives based crossover operators to model genetic algorithms population diversityFuzzy Sets Syst1997921213010.1016/S0165-0114(96)00179-0 RoubosHSetnesMCompact and transparent fuzzy models and classifiers through iterative complexity reductionIEEE Trans Fuzzy Syst20019451652410.1109/91.940965 WangCHHongTPTsengSSIntegrating membership functions and fuzzy rule sets from multiple knowledge sourcesFuzzy Sets Syst200011214115410.1016/S0165-0114(97)00385-0 HongTPKuoCSChiSCTrade-off between time complexity and number of rules for fuzzy mining from quantitative dataInt J Uncertain Fuzziness Knowl Based Syst2001955876041113.68438 SetnesMRoubosHGA-fuzzy modeling and classification: complexity and performanceIEEE Trans Fuzzy Syst20008550952210.1109/91.873575 Yue S, Tsang E, Yeung D, Shi D (2000) Mining fuzzy association rules with weighted items. In: The IEEE international conference on systems, man and cybernetics, pp 1906–1911 HongTPKuoCSChiSCMining association rules from quantitative dataIntell Data Anal1999353633761059.6856810.1016/S1088-467X(99)00028-1 CasillasJCordónOdel JesusMJHerreraFGenetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reductionIEEE Trans Fuzzy Syst2005131132910.1109/TFUZZ.2004.839670 Agrawal R, Srikant R (1994) Fast algorithm for mining association rules. In: The international conference on very large databases, pp 487–499 IshibuchiHYamamotoTRule weight specification in fuzzy rule-based classification systemsIEEE Trans Fuzzy Syst200513442843510.1109/TFUZZ.2004.841738 LeeYCHongTPLinWYMining fuzzy association rules with multiple minimum supports using maximum constraintsLect Notes Comput Sci2004321412831290 MucientesMMorenoDLBugarinABarroSEvolutionary learning of a fuzzy controller for wallfollowing behavior in mobile roboticsSoft Comput2006101088188910.1007/s00500-005-0014-x TP Hong (366_CR8) 2006; 10 CH Wang (366_CR25) 2000; 112 H Liang (366_CR18) 2002; 4 PA Heng (366_CR13) 2006; 10 366_CR23 366_CR26 366_CR20 F Herrera (366_CR7) 1997; 92 TP Hong (366_CR11) 1999; 3 H Ishibuchi (366_CR14) 2005; 13 M Setnes (366_CR24) 2000; 8 KA Rasmani (366_CR22) 2004; 3 M Mucientes (366_CR19) 2006; 10 J Chen (366_CR4) 2000 YC Lee (366_CR17) 2004; 3214 M Kaya (366_CR15) 2006; 24 366_CR27 366_CR5 O Cordón (366_CR6) 2001; 9 366_CR9 TP Hong (366_CR12) 2001; 9 J Casillas (366_CR3) 2005; 13 C Kuok (366_CR16) 1998; 27 H Roubos (366_CR21) 2001; 9 366_CR1 366_CR2  | 
    
| References_xml | – reference: Chen CH, Hong TP, Tseng VS (2007) A comparison of different fitness functions for extracting membership functions used in fuzzy data mining. In: IEEE symposium on foundations of computational intelligence, pp 550–555 – reference: Parodi A, Bonelli P (1993) A new approach of fuzzy classifier systems. In: The fifth international conference on genetic algorithms, Morgan Kaufmann, Los Altos, pp 223–230 – reference: MucientesMMorenoDLBugarinABarroSEvolutionary learning of a fuzzy controller for wallfollowing behavior in mobile roboticsSoft Comput2006101088188910.1007/s00500-005-0014-x – reference: WangCHHongTPTsengSSIntegrating membership functions and fuzzy rule sets from multiple knowledge sourcesFuzzy Sets Syst200011214115410.1016/S0165-0114(97)00385-0 – reference: HengPAWongTTRongYChuiYPXieYMLeungKSLeungPCIntelligent inferencing and haptic simulation for Chinese acupuncture learning and trainingIEEE Trans Inf Technol Biomed2006101284110.1109/TITB.2005.855567 – reference: KayaMAlhajjRUtilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules miningAppl Intell200624171510.1007/s10489-006-6925-0 – reference: Siler W, James J (2004) Fuzzy expert systems and fuzzy reasoning. Wiley, New York – reference: HongTPKuoCSChiSCMining association rules from quantitative dataIntell Data Anal1999353633761059.6856810.1016/S1088-467X(99)00028-1 – reference: Zhang H, Liu D (2006) Fuzzy modeling and fuzzy control, Springer, Heidelberg – reference: HongTPChenCHWuYLLeeYCA GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functionsSoft Comput200610111091110110.1007/s00500-006-0046-x – reference: RoubosHSetnesMCompact and transparent fuzzy models and classifiers through iterative complexity reductionIEEE Trans Fuzzy Syst20019451652410.1109/91.940965 – reference: KuokCFuAWongMMining fuzzy association rules in databasesSIGMOD Record1998271414610.1145/273244.273257 – reference: Yue S, Tsang E, Yeung D, Shi D (2000) Mining fuzzy association rules with weighted items. In: The IEEE international conference on systems, man and cybernetics, pp 1906–1911 – reference: SetnesMRoubosHGA-fuzzy modeling and classification: complexity and performanceIEEE Trans Fuzzy Syst20008550952210.1109/91.873575 – reference: HongTPKuoCSChiSCTrade-off between time complexity and number of rules for fuzzy mining from quantitative dataInt J Uncertain Fuzziness Knowl Based Syst2001955876041113.68438 – reference: CordónOHerreraFVillarPGenerating the knowledge base of a fuzzy rule-based system by the genetic learning of the data baseIEEE Trans Fuzzy Syst20019466767410.1109/91.940977 – reference: Agrawal R, Srikant R (1994) Fast algorithm for mining association rules. In: The international conference on very large databases, pp 487–499 – reference: LeeYCHongTPLinWYMining fuzzy association rules with multiple minimum supports using maximum constraintsLect Notes Comput Sci2004321412831290 – reference: HerreraFLozanoMVerdegayJLFuzzy connectives based crossover operators to model genetic algorithms population diversityFuzzy Sets Syst1997921213010.1016/S0165-0114(96)00179-0 – reference: RasmaniKAShenQModifying weighted fuzzy subsethood-based rule models with fuzzy quantifiersIEEE Int Conf Fuzzy Syst2004316791684 – reference: LiangHWuZWuQA fuzzy based supply chain management decision support systemWorld Congr Intell Control Autom2002426172621 – reference: Chan CC, Au WH (1997) Mining fuzzy association rules. In: The conference on information and knowledge management, pp 209–215 – reference: ChenJMikulcicAKraftDHPonsOVilaMAKacprzykJAn integrated approach to information retrieval with fuzzy clustering and fuzzy inferencingKnowledge management in fuzzy databases2000HeidelbergPhysica-Verlag – reference: CasillasJCordónOdel JesusMJHerreraFGenetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reductionIEEE Trans Fuzzy Syst2005131132910.1109/TFUZZ.2004.839670 – reference: IshibuchiHYamamotoTRule weight specification in fuzzy rule-based classification systemsIEEE Trans Fuzzy Syst200513442843510.1109/TFUZZ.2004.841738 – reference: Hong TP, Chen CH, Lee YC, Wu YL (2008) Genetic-fuzzy data mining with divide-and-conquer strategy. IEEE Trans Evol Comput (Accepted and to appear) – volume-title: Knowledge management in fuzzy databases year: 2000 ident: 366_CR4 – volume: 13 start-page: 13 issue: 1 year: 2005 ident: 366_CR3 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2004.839670 – volume: 92 start-page: 21 issue: 1 year: 1997 ident: 366_CR7 publication-title: Fuzzy Sets Syst doi: 10.1016/S0165-0114(96)00179-0 – volume: 27 start-page: 41 issue: 1 year: 1998 ident: 366_CR16 publication-title: SIGMOD Record doi: 10.1145/273244.273257 – volume: 8 start-page: 509 issue: 5 year: 2000 ident: 366_CR24 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.873575 – ident: 366_CR20 – volume: 10 start-page: 28 issue: 1 year: 2006 ident: 366_CR13 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2005.855567 – volume: 10 start-page: 1091 issue: 11 year: 2006 ident: 366_CR8 publication-title: Soft Comput doi: 10.1007/s00500-006-0046-x – ident: 366_CR1 – volume: 9 start-page: 587 issue: 5 year: 2001 ident: 366_CR12 publication-title: Int J Uncertain Fuzziness Knowl Based Syst doi: 10.1142/S0218488501001071 – ident: 366_CR27 – ident: 366_CR23 doi: 10.1002/0471698504 – ident: 366_CR9 – ident: 366_CR26 – volume: 3214 start-page: 1283 year: 2004 ident: 366_CR17 publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-540-30133-2_171 – volume: 13 start-page: 428 issue: 4 year: 2005 ident: 366_CR14 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2004.841738 – volume: 3 start-page: 1679 year: 2004 ident: 366_CR22 publication-title: IEEE Int Conf Fuzzy Syst – volume: 4 start-page: 2617 year: 2002 ident: 366_CR18 publication-title: World Congr Intell Control Autom doi: 10.1109/WCICA.2002.1019987 – volume: 24 start-page: 7 issue: 1 year: 2006 ident: 366_CR15 publication-title: Appl Intell doi: 10.1007/s10489-006-6925-0 – volume: 10 start-page: 881 issue: 10 year: 2006 ident: 366_CR19 publication-title: Soft Comput doi: 10.1007/s00500-005-0014-x – volume: 3 start-page: 363 issue: 5 year: 1999 ident: 366_CR11 publication-title: Intell Data Anal – volume: 9 start-page: 516 issue: 4 year: 2001 ident: 366_CR21 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.940965 – volume: 9 start-page: 667 issue: 4 year: 2001 ident: 366_CR6 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.940977 – ident: 366_CR2 doi: 10.1145/266714.266898 – volume: 112 start-page: 141 year: 2000 ident: 366_CR25 publication-title: Fuzzy Sets Syst doi: 10.1016/S0165-0114(97)00385-0 – ident: 366_CR5 doi: 10.1109/FOCI.2007.371526  | 
    
| SSID | ssj0021753 | 
    
| Score | 1.9383333 | 
    
| Snippet | Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 521 | 
    
| SubjectTerms | Artificial Intelligence Associations By products Chromosomes Cluster analysis Clustering Computational Intelligence Control Criteria Data mining Engineering Focus Fuzzy logic Fuzzy sets Genetic algorithms Linguistics Mathematical Logic and Foundations Mechatronics Robotics Vector quantization  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWDgo4AoFOSBCRQpteMkHitEVSHBRKVuURzbEy0VbQb66zk7dgoIkJh99uDzxXc5v_cArjVGgSw1jygvkyihmY6EA7uLgZZccJXFFu_8-JSOJ8nDlE89jnsZXruHlqT7UrdgN0tVYlHQFhKWYhm8DTvcsnnhIZ7QYVtleepJzAMwdcT7NrQyf1ri62W0yTC_NUXdXTM6hH2fJJJh49Uj2NLzLhwEAQbi47ELe5_YBI9hPCR4GiwoMTL1ev1OZk78gQTacIL5KXHKa8T-fSXhLaGzm9UzsqwXroFwApPR_fPdOPJCCVHFBukqskUclakUZSkwRo1hzKg40SY3wkg2MBjUUmOhFSuWVzqXwjilaaEZWlUZO4XO_HWuz4BwqhSVNMV5KilpmqMvGdMq57zkQmQ9iMOOFZVnEbdiFi9Fy3_sNrlw6pa4yUXcg5t2yqKh0PjLuB_cUPhoWhZUWFo1zE1x-Da4ZjP862Ln_7K-gN2mVWQfmPWhs3qr9SVmHCt55U7YB0YWyuc priority: 102 providerName: Springer Nature  | 
    
| Title | A genetic-fuzzy mining approach for items with multiple minimum supports | 
    
| URI | https://link.springer.com/article/10.1007/s00500-008-0366-0 https://www.proquest.com/docview/2917981610  | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXLz4NqJIevCk2bi022V7MAYMj2gkxkiCp812254EUeEgv95p2UI0kdMe-jhMO-03O53vA7jQ6AUy0zygPIuCiDZ1IFyxu2hoyQVXzdDWOz8O4v4wuh_xUQkGvhbGPqv0Z6I7qNV7bv-RX1NhqbUQn4S304_AqkbZ7KqX0MgKaQV14yjGtqBCLTNWGSrtzuDpeRWCFbyUCBIQV-Jl7POcoaMV5a7K2pacxRhm_76p1vDzT8bUXUTdPdgpECRpLZd8H0p6cgC7Xp2BFM56CP0Wwc1haxQDM18svsnYaUEQzyJOEK4SJ8RG7M9Y4p8Wun7j-Zh8zacun3AEw27n5a4fFLoJQc4a8SywMR2VsRRZJtBljWHMqDDSJjHCSNYw6ONSY9wVKpbkOpHCOOFpoRn2ypvsGMqT94k-AcKpUlTSGMepKKNxgkvLmFYJ5xkXolmF0NsozQtScatt8Zau6JCdWVMndolmTcMqXK6GTJeMGps617zh08K5vtL1VqjClV-MdfO_k51unuwMtpepIvvArAbl2edcnyPimMk6bCXdXh0qrW67PbDf3utDp15sLmwd0tYP-9jVYQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xFNBwI8LpAhrQio293qwLhDgVrgghkOiW9dquyAFJhODj-DbGjp0IJOiofRTjZ3vG43kPYFvjLpCF5hHlRRIltKYj4YrdRVVLLriqxbbe-aaR1h-Sy0f-OAafoRbGfqsMZ6I7qFW7tG_k-1RYai30T-LDzktkVaNsdjVIaBReWkEdOIoxX9hxpd_fMITrHlyc4nrvUHp-dn9Sj7zKQFSyatqLbAREZSpFUQgEuDGMGRUn2mRGGMmqBneE1BilxIplpc6kME6mWWiGvcoaw3nHYTJhicDgb_L4rHF7Nwz5PA8mOiXox-LlH_KqsaMx5a6q25a4pRjWf78ZR-7ujwytu_jO52DGe6zkaACxeRjTrQWYDWoQxB8Oi1A_IghGWxMZmf7HxztpOu0JEljLCbrHxAm_Efv4S8JXRtev2W-Sbr_j8hdL8PAvFlyGiVa7pVeAcKoUlTTFcSopaJohlBjTKuO84ELUKhAHG-WlJzG3WhrP-ZB-2Zk1d-KaaNY8rsDucEhnwODxV-f1YPjcb-ZuPoJeBfbCYoyaf51s9e_JtmCqfn9znV9fNK7WYHqQprKf29Zhovfa1xvo7fTkpocUgaf_RvEXacsNTQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGPgqIQgEPTKCoqR0n8VgBVfmqGKjULYpre6KhoslAfz1nJ04BARKzzx58PvnO5_ceQucKokCkinmEpYEXkEh53ILdeVcJxpmMfIN3fhyGg1FwN2bjSud07n67u5ZkiWkwLE1Z3plJ3amBb4a2xCCiDTwshJJ4Fa0FhicBDvSI9OqKq6KhhJwA0ki4e11b86clvl5My2zzW4PU3jv9HbRVJYy4V3p4F62orIm2nRgDrmKziTY_MQvuoUEPw8kwAEVPF4vFO55aIQjsKMQx5KrYqrBh8xKL3b9CazctpnhezGwzYR-N-jfPVwOvEk3wJrQb5p4p6IgIBU9TDvGqNaVa-oHSseZa0K6GABcKii5f0niiYsG1VZ3mioLVJKIHqJG9ZuoQYUakJIKEME8GKQlj8CulSsaMpYzzqIV8t2PJpGIUN8IWL0nNhWw3ObFKl7DJid9CF_WUWUmn8Zdx27khqSJrnhBuKNYgT4XhS-ea5fCvix39y_oMrT9d95OH2-H9MdooO0jm31kbNfK3Qp1AIpKLU3vYPgAf_9IP | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic-fuzzy+mining+approach+for+items+with+multiple+minimum+supports&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chen%2C+Chun-Hao&rft.au=Hong%2C+Tzung-Pei&rft.au=Tseng%2C+Vincent+S&rft.au=Lee%2C+Chang-Shing&rft.date=2009-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=13&rft.issue=5&rft.spage=521&rft.epage=533&rft_id=info:doi/10.1007%2Fs00500-008-0366-0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |