A genetic-fuzzy mining approach for items with multiple minimum supports

Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support th...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 13; no. 5; pp. 521 - 533
Main Authors Chen, Chun-Hao, Hong, Tzung-Pei, Tseng, Vincent S., Lee, Chang-Shing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2009
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-008-0366-0

Cover

Abstract Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the k -means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach.
AbstractList Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the k-means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach.
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the k -means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach.
Author Tseng, Vincent S.
Chen, Chun-Hao
Lee, Chang-Shing
Hong, Tzung-Pei
Author_xml – sequence: 1
  givenname: Chun-Hao
  surname: Chen
  fullname: Chen, Chun-Hao
  organization: Department of Computer Science and Information Engineering, National Cheng-Kung University
– sequence: 2
  givenname: Tzung-Pei
  surname: Hong
  fullname: Hong, Tzung-Pei
  email: tphong@nuk.edu.tw
  organization: Department of Computer Science and Information Engineering, National University of Kaohsiung, Department of Computer Science and Engineering, National Sun Yat-sen University
– sequence: 3
  givenname: Vincent S.
  surname: Tseng
  fullname: Tseng, Vincent S.
  organization: Department of Computer Science and Information Engineering, National Cheng-Kung University
– sequence: 4
  givenname: Chang-Shing
  surname: Lee
  fullname: Lee, Chang-Shing
  organization: Department of Computer Science and Information Engineering, National University of Tainan
BookMark eNp9kEFLwzAUx4NMcJt-AG8Bz9GXpmua4xjqhIEXPYe0S7aMNq1Jimyf3nYVBEFP7x1-v_f-_Gdo4hqnEbqlcE8B-EMAWAAQgJwAyzICF2hKU8YIT7mYnPeE8CxlV2gWwgEgoXzBpmi9xDvtdLQlMd3pdMS1ddbtsGpb36hyj03jsY26DvjTxj2uuyrattJnru5qHLq2bXwM1-jSqCrom-85R-9Pj2-rNdm8Pr-slhtSMppFklAKSZEVQinBaG4MY2YLqTa5EaZg1DBYFDpJBWxZXuq8EAbSFHKhWU-VnM3R3Xi3z_fR6RDloem861_KRFAucppR6Ck-UqVvQvDayNJGFW3jole2khTkUJsca5N9bXKoTQ4m_WW23tbKH_91ktEJPet22v9k-lv6ApDmgTA
CitedBy_id crossref_primary_10_1016_j_eswa_2009_01_067
crossref_primary_10_1016_j_ins_2020_02_073
crossref_primary_10_1007_s00500_010_0664_1
crossref_primary_10_1007_s00500_010_0670_3
crossref_primary_10_1109_TFUZZ_2010_2060200
crossref_primary_10_1080_18756891_2012_685314
crossref_primary_10_1007_s00500_012_0861_1
crossref_primary_10_1109_TETCI_2017_2782800
Cites_doi 10.1109/TFUZZ.2004.839670
10.1016/S0165-0114(96)00179-0
10.1145/273244.273257
10.1109/91.873575
10.1109/TITB.2005.855567
10.1007/s00500-006-0046-x
10.1142/S0218488501001071
10.1002/0471698504
10.1007/978-3-540-30133-2_171
10.1109/TFUZZ.2004.841738
10.1109/WCICA.2002.1019987
10.1007/s10489-006-6925-0
10.1007/s00500-005-0014-x
10.1109/91.940965
10.1109/91.940977
10.1145/266714.266898
10.1016/S0165-0114(97)00385-0
10.1109/FOCI.2007.371526
ContentType Journal Article
Copyright Springer-Verlag 2008
Springer-Verlag 2008.
Copyright_xml – notice: Springer-Verlag 2008
– notice: Springer-Verlag 2008.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-008-0366-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 533
ExternalDocumentID 10_1007_s00500_008_0366_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-21102b6b9aa9318ff33fd04ef8f9fb31f305be2490d38ce8b9f044089e304ec73
IEDL.DBID BENPR
ISSN 1432-7643
IngestDate Sat Jul 26 02:21:32 EDT 2025
Wed Oct 01 02:45:10 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Multiple minimum supports
means
Data mining
Clustering
Genetic-fuzzy algorithm
Requirement satisfaction
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-21102b6b9aa9318ff33fd04ef8f9fb31f305be2490d38ce8b9f044089e304ec73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917981610
PQPubID 2043697
PageCount 13
ParticipantIDs proquest_journals_2917981610
crossref_citationtrail_10_1007_s00500_008_0366_0
crossref_primary_10_1007_s00500_008_0366_0
springer_journals_10_1007_s00500_008_0366_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2009
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References ChenJMikulcicAKraftDHPonsOVilaMAKacprzykJAn integrated approach to information retrieval with fuzzy clustering and fuzzy inferencingKnowledge management in fuzzy databases2000HeidelbergPhysica-Verlag
Zhang H, Liu D (2006) Fuzzy modeling and fuzzy control, Springer, Heidelberg
RasmaniKAShenQModifying weighted fuzzy subsethood-based rule models with fuzzy quantifiersIEEE Int Conf Fuzzy Syst2004316791684
LiangHWuZWuQA fuzzy based supply chain management decision support systemWorld Congr Intell Control Autom2002426172621
HengPAWongTTRongYChuiYPXieYMLeungKSLeungPCIntelligent inferencing and haptic simulation for Chinese acupuncture learning and trainingIEEE Trans Inf Technol Biomed2006101284110.1109/TITB.2005.855567
Hong TP, Chen CH, Lee YC, Wu YL (2008) Genetic-fuzzy data mining with divide-and-conquer strategy. IEEE Trans Evol Comput (Accepted and to appear)
KayaMAlhajjRUtilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules miningAppl Intell200624171510.1007/s10489-006-6925-0
KuokCFuAWongMMining fuzzy association rules in databasesSIGMOD Record1998271414610.1145/273244.273257
Chan CC, Au WH (1997) Mining fuzzy association rules. In: The conference on information and knowledge management, pp 209–215
HongTPChenCHWuYLLeeYCA GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functionsSoft Comput200610111091110110.1007/s00500-006-0046-x
Siler W, James J (2004) Fuzzy expert systems and fuzzy reasoning. Wiley, New York
Chen CH, Hong TP, Tseng VS (2007) A comparison of different fitness functions for extracting membership functions used in fuzzy data mining. In: IEEE symposium on foundations of computational intelligence, pp 550–555
CordónOHerreraFVillarPGenerating the knowledge base of a fuzzy rule-based system by the genetic learning of the data baseIEEE Trans Fuzzy Syst20019466767410.1109/91.940977
Parodi A, Bonelli P (1993) A new approach of fuzzy classifier systems. In: The fifth international conference on genetic algorithms, Morgan Kaufmann, Los Altos, pp 223–230
HerreraFLozanoMVerdegayJLFuzzy connectives based crossover operators to model genetic algorithms population diversityFuzzy Sets Syst1997921213010.1016/S0165-0114(96)00179-0
RoubosHSetnesMCompact and transparent fuzzy models and classifiers through iterative complexity reductionIEEE Trans Fuzzy Syst20019451652410.1109/91.940965
WangCHHongTPTsengSSIntegrating membership functions and fuzzy rule sets from multiple knowledge sourcesFuzzy Sets Syst200011214115410.1016/S0165-0114(97)00385-0
HongTPKuoCSChiSCTrade-off between time complexity and number of rules for fuzzy mining from quantitative dataInt J Uncertain Fuzziness Knowl Based Syst2001955876041113.68438
SetnesMRoubosHGA-fuzzy modeling and classification: complexity and performanceIEEE Trans Fuzzy Syst20008550952210.1109/91.873575
Yue S, Tsang E, Yeung D, Shi D (2000) Mining fuzzy association rules with weighted items. In: The IEEE international conference on systems, man and cybernetics, pp 1906–1911
HongTPKuoCSChiSCMining association rules from quantitative dataIntell Data Anal1999353633761059.6856810.1016/S1088-467X(99)00028-1
CasillasJCordónOdel JesusMJHerreraFGenetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reductionIEEE Trans Fuzzy Syst2005131132910.1109/TFUZZ.2004.839670
Agrawal R, Srikant R (1994) Fast algorithm for mining association rules. In: The international conference on very large databases, pp 487–499
IshibuchiHYamamotoTRule weight specification in fuzzy rule-based classification systemsIEEE Trans Fuzzy Syst200513442843510.1109/TFUZZ.2004.841738
LeeYCHongTPLinWYMining fuzzy association rules with multiple minimum supports using maximum constraintsLect Notes Comput Sci2004321412831290
MucientesMMorenoDLBugarinABarroSEvolutionary learning of a fuzzy controller for wallfollowing behavior in mobile roboticsSoft Comput2006101088188910.1007/s00500-005-0014-x
TP Hong (366_CR8) 2006; 10
CH Wang (366_CR25) 2000; 112
H Liang (366_CR18) 2002; 4
PA Heng (366_CR13) 2006; 10
366_CR23
366_CR26
366_CR20
F Herrera (366_CR7) 1997; 92
TP Hong (366_CR11) 1999; 3
H Ishibuchi (366_CR14) 2005; 13
M Setnes (366_CR24) 2000; 8
KA Rasmani (366_CR22) 2004; 3
M Mucientes (366_CR19) 2006; 10
J Chen (366_CR4) 2000
YC Lee (366_CR17) 2004; 3214
M Kaya (366_CR15) 2006; 24
366_CR27
366_CR5
O Cordón (366_CR6) 2001; 9
366_CR9
TP Hong (366_CR12) 2001; 9
J Casillas (366_CR3) 2005; 13
C Kuok (366_CR16) 1998; 27
H Roubos (366_CR21) 2001; 9
366_CR1
366_CR2
References_xml – reference: Chen CH, Hong TP, Tseng VS (2007) A comparison of different fitness functions for extracting membership functions used in fuzzy data mining. In: IEEE symposium on foundations of computational intelligence, pp 550–555
– reference: Parodi A, Bonelli P (1993) A new approach of fuzzy classifier systems. In: The fifth international conference on genetic algorithms, Morgan Kaufmann, Los Altos, pp 223–230
– reference: MucientesMMorenoDLBugarinABarroSEvolutionary learning of a fuzzy controller for wallfollowing behavior in mobile roboticsSoft Comput2006101088188910.1007/s00500-005-0014-x
– reference: WangCHHongTPTsengSSIntegrating membership functions and fuzzy rule sets from multiple knowledge sourcesFuzzy Sets Syst200011214115410.1016/S0165-0114(97)00385-0
– reference: HengPAWongTTRongYChuiYPXieYMLeungKSLeungPCIntelligent inferencing and haptic simulation for Chinese acupuncture learning and trainingIEEE Trans Inf Technol Biomed2006101284110.1109/TITB.2005.855567
– reference: KayaMAlhajjRUtilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules miningAppl Intell200624171510.1007/s10489-006-6925-0
– reference: Siler W, James J (2004) Fuzzy expert systems and fuzzy reasoning. Wiley, New York
– reference: HongTPKuoCSChiSCMining association rules from quantitative dataIntell Data Anal1999353633761059.6856810.1016/S1088-467X(99)00028-1
– reference: Zhang H, Liu D (2006) Fuzzy modeling and fuzzy control, Springer, Heidelberg
– reference: HongTPChenCHWuYLLeeYCA GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functionsSoft Comput200610111091110110.1007/s00500-006-0046-x
– reference: RoubosHSetnesMCompact and transparent fuzzy models and classifiers through iterative complexity reductionIEEE Trans Fuzzy Syst20019451652410.1109/91.940965
– reference: KuokCFuAWongMMining fuzzy association rules in databasesSIGMOD Record1998271414610.1145/273244.273257
– reference: Yue S, Tsang E, Yeung D, Shi D (2000) Mining fuzzy association rules with weighted items. In: The IEEE international conference on systems, man and cybernetics, pp 1906–1911
– reference: SetnesMRoubosHGA-fuzzy modeling and classification: complexity and performanceIEEE Trans Fuzzy Syst20008550952210.1109/91.873575
– reference: HongTPKuoCSChiSCTrade-off between time complexity and number of rules for fuzzy mining from quantitative dataInt J Uncertain Fuzziness Knowl Based Syst2001955876041113.68438
– reference: CordónOHerreraFVillarPGenerating the knowledge base of a fuzzy rule-based system by the genetic learning of the data baseIEEE Trans Fuzzy Syst20019466767410.1109/91.940977
– reference: Agrawal R, Srikant R (1994) Fast algorithm for mining association rules. In: The international conference on very large databases, pp 487–499
– reference: LeeYCHongTPLinWYMining fuzzy association rules with multiple minimum supports using maximum constraintsLect Notes Comput Sci2004321412831290
– reference: HerreraFLozanoMVerdegayJLFuzzy connectives based crossover operators to model genetic algorithms population diversityFuzzy Sets Syst1997921213010.1016/S0165-0114(96)00179-0
– reference: RasmaniKAShenQModifying weighted fuzzy subsethood-based rule models with fuzzy quantifiersIEEE Int Conf Fuzzy Syst2004316791684
– reference: LiangHWuZWuQA fuzzy based supply chain management decision support systemWorld Congr Intell Control Autom2002426172621
– reference: Chan CC, Au WH (1997) Mining fuzzy association rules. In: The conference on information and knowledge management, pp 209–215
– reference: ChenJMikulcicAKraftDHPonsOVilaMAKacprzykJAn integrated approach to information retrieval with fuzzy clustering and fuzzy inferencingKnowledge management in fuzzy databases2000HeidelbergPhysica-Verlag
– reference: CasillasJCordónOdel JesusMJHerreraFGenetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reductionIEEE Trans Fuzzy Syst2005131132910.1109/TFUZZ.2004.839670
– reference: IshibuchiHYamamotoTRule weight specification in fuzzy rule-based classification systemsIEEE Trans Fuzzy Syst200513442843510.1109/TFUZZ.2004.841738
– reference: Hong TP, Chen CH, Lee YC, Wu YL (2008) Genetic-fuzzy data mining with divide-and-conquer strategy. IEEE Trans Evol Comput (Accepted and to appear)
– volume-title: Knowledge management in fuzzy databases
  year: 2000
  ident: 366_CR4
– volume: 13
  start-page: 13
  issue: 1
  year: 2005
  ident: 366_CR3
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2004.839670
– volume: 92
  start-page: 21
  issue: 1
  year: 1997
  ident: 366_CR7
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(96)00179-0
– volume: 27
  start-page: 41
  issue: 1
  year: 1998
  ident: 366_CR16
  publication-title: SIGMOD Record
  doi: 10.1145/273244.273257
– volume: 8
  start-page: 509
  issue: 5
  year: 2000
  ident: 366_CR24
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.873575
– ident: 366_CR20
– volume: 10
  start-page: 28
  issue: 1
  year: 2006
  ident: 366_CR13
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2005.855567
– volume: 10
  start-page: 1091
  issue: 11
  year: 2006
  ident: 366_CR8
  publication-title: Soft Comput
  doi: 10.1007/s00500-006-0046-x
– ident: 366_CR1
– volume: 9
  start-page: 587
  issue: 5
  year: 2001
  ident: 366_CR12
  publication-title: Int J Uncertain Fuzziness Knowl Based Syst
  doi: 10.1142/S0218488501001071
– ident: 366_CR27
– ident: 366_CR23
  doi: 10.1002/0471698504
– ident: 366_CR9
– ident: 366_CR26
– volume: 3214
  start-page: 1283
  year: 2004
  ident: 366_CR17
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-540-30133-2_171
– volume: 13
  start-page: 428
  issue: 4
  year: 2005
  ident: 366_CR14
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2004.841738
– volume: 3
  start-page: 1679
  year: 2004
  ident: 366_CR22
  publication-title: IEEE Int Conf Fuzzy Syst
– volume: 4
  start-page: 2617
  year: 2002
  ident: 366_CR18
  publication-title: World Congr Intell Control Autom
  doi: 10.1109/WCICA.2002.1019987
– volume: 24
  start-page: 7
  issue: 1
  year: 2006
  ident: 366_CR15
  publication-title: Appl Intell
  doi: 10.1007/s10489-006-6925-0
– volume: 10
  start-page: 881
  issue: 10
  year: 2006
  ident: 366_CR19
  publication-title: Soft Comput
  doi: 10.1007/s00500-005-0014-x
– volume: 3
  start-page: 363
  issue: 5
  year: 1999
  ident: 366_CR11
  publication-title: Intell Data Anal
– volume: 9
  start-page: 516
  issue: 4
  year: 2001
  ident: 366_CR21
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.940965
– volume: 9
  start-page: 667
  issue: 4
  year: 2001
  ident: 366_CR6
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.940977
– ident: 366_CR2
  doi: 10.1145/266714.266898
– volume: 112
  start-page: 141
  year: 2000
  ident: 366_CR25
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(97)00385-0
– ident: 366_CR5
  doi: 10.1109/FOCI.2007.371526
SSID ssj0021753
Score 1.9383333
Snippet Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 521
SubjectTerms Artificial Intelligence
Associations
By products
Chromosomes
Cluster analysis
Clustering
Computational Intelligence
Control
Criteria
Data mining
Engineering
Focus
Fuzzy logic
Fuzzy sets
Genetic algorithms
Linguistics
Mathematical Logic and Foundations
Mechatronics
Robotics
Vector quantization
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWDgo4AoFOSBCRQpteMkHitEVSHBRKVuURzbEy0VbQb66zk7dgoIkJh99uDzxXc5v_cArjVGgSw1jygvkyihmY6EA7uLgZZccJXFFu_8-JSOJ8nDlE89jnsZXruHlqT7UrdgN0tVYlHQFhKWYhm8DTvcsnnhIZ7QYVtleepJzAMwdcT7NrQyf1ri62W0yTC_NUXdXTM6hH2fJJJh49Uj2NLzLhwEAQbi47ELe5_YBI9hPCR4GiwoMTL1ev1OZk78gQTacIL5KXHKa8T-fSXhLaGzm9UzsqwXroFwApPR_fPdOPJCCVHFBukqskUclakUZSkwRo1hzKg40SY3wkg2MBjUUmOhFSuWVzqXwjilaaEZWlUZO4XO_HWuz4BwqhSVNMV5KilpmqMvGdMq57zkQmQ9iMOOFZVnEbdiFi9Fy3_sNrlw6pa4yUXcg5t2yqKh0PjLuB_cUPhoWhZUWFo1zE1x-Da4ZjP862Ln_7K-gN2mVWQfmPWhs3qr9SVmHCt55U7YB0YWyuc
  priority: 102
  providerName: Springer Nature
Title A genetic-fuzzy mining approach for items with multiple minimum supports
URI https://link.springer.com/article/10.1007/s00500-008-0366-0
https://www.proquest.com/docview/2917981610
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXLz4NqJIevCk2bi022V7MAYMj2gkxkiCp812254EUeEgv95p2UI0kdMe-jhMO-03O53vA7jQ6AUy0zygPIuCiDZ1IFyxu2hoyQVXzdDWOz8O4v4wuh_xUQkGvhbGPqv0Z6I7qNV7bv-RX1NhqbUQn4S304_AqkbZ7KqX0MgKaQV14yjGtqBCLTNWGSrtzuDpeRWCFbyUCBIQV-Jl7POcoaMV5a7K2pacxRhm_76p1vDzT8bUXUTdPdgpECRpLZd8H0p6cgC7Xp2BFM56CP0Wwc1haxQDM18svsnYaUEQzyJOEK4SJ8RG7M9Y4p8Wun7j-Zh8zacun3AEw27n5a4fFLoJQc4a8SywMR2VsRRZJtBljWHMqDDSJjHCSNYw6ONSY9wVKpbkOpHCOOFpoRn2ypvsGMqT94k-AcKpUlTSGMepKKNxgkvLmFYJ5xkXolmF0NsozQtScatt8Zau6JCdWVMndolmTcMqXK6GTJeMGps617zh08K5vtL1VqjClV-MdfO_k51unuwMtpepIvvArAbl2edcnyPimMk6bCXdXh0qrW67PbDf3utDp15sLmwd0tYP-9jVYQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xFNBwI8LpAhrQio293qwLhDgVrgghkOiW9dquyAFJhODj-DbGjp0IJOiofRTjZ3vG43kPYFvjLpCF5hHlRRIltKYj4YrdRVVLLriqxbbe-aaR1h-Sy0f-OAafoRbGfqsMZ6I7qFW7tG_k-1RYai30T-LDzktkVaNsdjVIaBReWkEdOIoxX9hxpd_fMITrHlyc4nrvUHp-dn9Sj7zKQFSyatqLbAREZSpFUQgEuDGMGRUn2mRGGMmqBneE1BilxIplpc6kME6mWWiGvcoaw3nHYTJhicDgb_L4rHF7Nwz5PA8mOiXox-LlH_KqsaMx5a6q25a4pRjWf78ZR-7ujwytu_jO52DGe6zkaACxeRjTrQWYDWoQxB8Oi1A_IghGWxMZmf7HxztpOu0JEljLCbrHxAm_Efv4S8JXRtev2W-Sbr_j8hdL8PAvFlyGiVa7pVeAcKoUlTTFcSopaJohlBjTKuO84ELUKhAHG-WlJzG3WhrP-ZB-2Zk1d-KaaNY8rsDucEhnwODxV-f1YPjcb-ZuPoJeBfbCYoyaf51s9e_JtmCqfn9znV9fNK7WYHqQprKf29Zhovfa1xvo7fTkpocUgaf_RvEXacsNTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGPgqIQgEPTKCoqR0n8VgBVfmqGKjULYpre6KhoslAfz1nJ04BARKzzx58PvnO5_ceQucKokCkinmEpYEXkEh53ILdeVcJxpmMfIN3fhyGg1FwN2bjSud07n67u5ZkiWkwLE1Z3plJ3amBb4a2xCCiDTwshJJ4Fa0FhicBDvSI9OqKq6KhhJwA0ki4e11b86clvl5My2zzW4PU3jv9HbRVJYy4V3p4F62orIm2nRgDrmKziTY_MQvuoUEPw8kwAEVPF4vFO55aIQjsKMQx5KrYqrBh8xKL3b9CazctpnhezGwzYR-N-jfPVwOvEk3wJrQb5p4p6IgIBU9TDvGqNaVa-oHSseZa0K6GABcKii5f0niiYsG1VZ3mioLVJKIHqJG9ZuoQYUakJIKEME8GKQlj8CulSsaMpYzzqIV8t2PJpGIUN8IWL0nNhWw3ObFKl7DJid9CF_WUWUmn8Zdx27khqSJrnhBuKNYgT4XhS-ea5fCvix39y_oMrT9d95OH2-H9MdooO0jm31kbNfK3Qp1AIpKLU3vYPgAf_9IP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic-fuzzy+mining+approach+for+items+with+multiple+minimum+supports&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chen%2C+Chun-Hao&rft.au=Hong%2C+Tzung-Pei&rft.au=Tseng%2C+Vincent+S&rft.au=Lee%2C+Chang-Shing&rft.date=2009-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=13&rft.issue=5&rft.spage=521&rft.epage=533&rft_id=info:doi/10.1007%2Fs00500-008-0366-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon