Higher Order Algorithm for Solving Lambert’s Problem

This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiati...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the astronautical sciences Vol. 65; no. 4; pp. 400 - 422
Main Authors Alhulayil, Mohammad, Younes, Ahmad Bani, Turner, James D.
Format Journal Article
LanguageEnglish
Published New York Springer US 15.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0021-9142
2195-0571
DOI10.1007/s40295-018-0137-9

Cover

Abstract This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method.
AbstractList This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method.
Author Younes, Ahmad Bani
Alhulayil, Mohammad
Turner, James D.
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0001-8415-7264
  surname: Alhulayil
  fullname: Alhulayil, Mohammad
  email: mohammad.alhulayil@hotmail.com
  organization: Aerospace Engineering Department, Khalifa University
– sequence: 2
  givenname: Ahmad Bani
  surname: Younes
  fullname: Younes, Ahmad Bani
  organization: Department of Aerospace Engineering, San Diego State University
– sequence: 3
  givenname: James D.
  surname: Turner
  fullname: Turner, James D.
BookMark eNp9kM9Kw0AQhxepYK0-gLeA5-jObrJ_jqWoFQoV1POySSZpSpKtu6ngzdfw9XwSUyIIgh52FobfNzN8p2TSuQ4JuQB6BZTK65BQptOYghoel7E-IlMGh04qYUKmlDKINSTshJyGsKWUA9UwJWJZVxv00doXQ503lfN1v2mj0vno0TWvdVdFK9tm6PvP948QPXiXNdiekePSNgHPv_8Zeb69eVos49X67n4xX8U5B9HHwIuEWm0ZFsCFEGhTCiASVagUsyTLrOYSVS4VJgIzDqXKRa5lImhRolV8Ri7HuTvvXvYYerN1e98NKw0DrkXKAOSQkmMq9y4Ej6XJ6972tet6b-vGADUHSWaUZAZJ5iDJ6IGEX-TO1631b_8ybGTCkO0q9D83_Q19Af_betU
CitedBy_id crossref_primary_10_1061__ASCE_AS_1943_5525_0001464
crossref_primary_10_2514_1_G003897
crossref_primary_10_2514_1_G004964
crossref_primary_10_1109_TAES_2023_3249148
crossref_primary_10_34133_space_0112
crossref_primary_10_2514_1_G006091
crossref_primary_10_2514_1_G006558
crossref_primary_10_2514_1_G007699
crossref_primary_10_2514_1_G006356
crossref_primary_10_3390_app9030591
Cites_doi 10.1115/1.4033886
10.1007/s40295-015-0071-z
10.2514/2.2112
10.1145/355586.364792
10.1115/IMECE2015-51412
10.2514/3.61420
10.1007/s40295-017-0116-6
10.1115/IMECE2015-51439
10.2172/93483
10.2514/6.2010-8274
10.2514/3.50619
10.2514/4.861543
10.15344/ijaem/2016/112
10.1007/BF00049511
10.2514/4.867231
ContentType Journal Article
Copyright American Astronautical Society 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: American Astronautical Society 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s40295-018-0137-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2195-0571
EndPage 422
ExternalDocumentID 10_1007_s40295_018_0137_9
GroupedDBID -EM
-~X
.DC
199
203
29L
29~
2LR
30V
4.4
406
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AECCQ
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HG6
HMJXF
HRMNR
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9G
O9J
PF0
PT4
PZZ
ROL
RSV
SC5
SHS
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TN5
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7R
Z83
ZCA
ZMTXR
~A9
06D
0R~
6TJ
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADQRH
AEBTG
AEZWR
AFDZB
AFHIU
AFLOW
AFOHR
AHPBZ
AHSBF
AHWEU
AI.
AIAKS
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
HF~
HZ~
O9-
TUC
VH1
ID FETCH-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83
IEDL.DBID AGYKE
ISSN 0021-9142
IngestDate Thu Sep 25 00:55:19 EDT 2025
Thu Apr 24 22:56:01 EDT 2025
Wed Oct 01 02:31:43 EDT 2025
Fri Feb 21 02:26:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords p-iteration
Lambert’s problem
Computational differentiation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8415-7264
PQID 2139652117
PQPubID 2043592
PageCount 23
ParticipantIDs proquest_journals_2139652117
crossref_citationtrail_10_1007_s40295_018_0137_9
crossref_primary_10_1007_s40295_018_0137_9
springer_journals_10_1007_s40295_018_0137_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181215
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 20181215
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of the astronautical sciences
PublicationTitleAbbrev J of Astronaut Sci
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Eberhard, P.: C. Bischof. Automatic Differentiation of Numerical Integration Algorithms Technical Report ANL/MCS-P621-1196. Mathematics and Computer Science Division Argonne National Laboratory, Argonne (1996)
WoollandsRMYounesABJunkinsJNew solutions for the perturbed lambert problem using regularization and picard iterationJGCD20153815481562
BischofCCarleACorlissGGriewankAHovlandPADIFOR: Generating Derivative codes from fortran programsSci. Program.19921129
Woollands, R.M., Read, J.L., Macomber, B., Probe, A., Younes, A.B., Junkins, J.L.: Method of Particular Solutions and Kustaanheimo-Stiefel Regularized Picard Iteration for Solving Two-Point Boundary Value Problems. Paper No. AAS 15-373 Presented at the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg (2015)
Bani YounesATurnerJDerivative Enhanced Optimal Feedback Control Using Computational DifferentiationInt. J. Appl. Exper. Math.20161112https://doi.org/10.15344/ijaem/2016/112
WengertREA simple automatic derivative evaluation programComm. AGM1964784634640131.34602
Turner, J.D., Bani Younes, A.H.: On the Integration of m-Dimensional Expectation Operators. Presented to AIAA Houston Annual Technical Symposium, Gilruth Center, NASA/JSC (2012)
Bani YounesATurnerJGeneralized algorithms for least squares optimization for nonlinear observation models and newton’s methodJ. Astron. Sci.201360351754010.1007/s40295-015-0071-z
Woollands, R.M., Read, J.L., Probe, A.B., Junkins, J.L.: Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration, JAS, 1–18. ISSN: 0021-9142. (2017). https://doi.org/10.1007/s40295-017-0116-6
WilkinsRDInvestigation of a new analytical method for numerical derivative evaluationComm ACM19647,846547110.1145/355586.3647920131.34603
Lancaster, E.R., Blanchard, R.C.: A unified form of Lambert’s theorem. NASA technical note TN D-5368,1969
Bani Younes, A., Turner, J.: Feedback control sensitivity calculations using computational differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston
Bischof, C., Carle, A., Khademi, P., Mauer, A., Hovland, P.: ADIFOR 2.0 User’s Guide (Revision CO, Technical Report ANL/MCS-TM-192. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne (1995)
GoodingRHA procedure for the solution of Lambert’s orbital boundary-value problemCelest. Mech. Dyn. Astron.1990481451650704.70004
Griewank, A.: On Automatic Differentiation. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp 83–108. Kluwer Academic Publishers, Amsterdam (1989)
TurnerJDAutomated generation of High-Order partial derivative modelsAIAA J.20034181590159910.2514/2.2112
AlhulayilMBani YounesATurnerJHigher-Order Differential Correction Solver for Perturbed Lambert’s Problem2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266
Bani Younes, A.H., Turner, J.D., Majji, M., Junkins, J.L.: An Investigation of State Feedback Gain Sensitivity Calculations. Presented to AIAA/AAS Astrodynamics Specialist Conference of Held 2-5, Toronto (2010)
Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA Education Series, Editor-in-Chief Joheph A. Schetz (2009)
Bani Younes, A., Turner, J.: High-order State Transition Tensors of Perturbed Orbital Motion using Computational Differentiation. 26th AAS/AIAA Space Flight Mechanics Meeting, AAS 16-342, Napa (2016)
PinesSUniform Representation of the Gravitational Potential and its DerivativesAIAA J.197311150815110268.70009
Bani Younes, A., Turner, J.: Semi-Analytic Probability density function for system uncertainty, vol. 2 (2016)
JunkinsJLInvestigation of Finite-Element representations of the geopotentialAIAA J.197614680380845950610.2514/3.614200344.65060
Bani YounesAAlhulayilMTurnerJEfficient Uncertainty Propagation of Perturbed Satellite Motion2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266
Woollands, R., Younes, A.B., Junkins, J.: A new Solution for the General Lambert’s Problem. 37th Annual AAS Guidance Control Conference (2014)
Battin, R.: An introduction to the mathematics and methods of astrodynamics AIAA. Education Series (1999)
Bani Younes, A., Turner, J.: System uncertainty propagation using automatic differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston (2015)
JunkinsJLBani YounesAWoollandsRBaiXPicard iteration, chebyshev polynomials and chebyshev picard methods: Application in astrodynamicsJ. Astron. Sci.2015603623653
137_CR14
C Bischof (137_CR20) 1992; 1
137_CR15
137_CR16
137_CR11
RH Gooding (137_CR2) 1990; 48
RE Wengert (137_CR17) 1964; 7
A Bani Younes (137_CR12) 2017
S Pines (137_CR27) 1973; 11
JD Turner (137_CR23) 2003; 41
A Bani Younes (137_CR9) 2016; 1
RM Woollands (137_CR5) 2015; 38
137_CR19
A Bani Younes (137_CR10) 2013; 60
JL Junkins (137_CR28) 2015; 60
137_CR4
137_CR25
137_CR3
JL Junkins (137_CR26) 1976; 14
137_CR1
137_CR8
137_CR21
137_CR7
137_CR22
137_CR6
RD Wilkins (137_CR18) 1964; 7,8
137_CR24
M Alhulayil (137_CR13) 2017
References_xml – reference: WilkinsRDInvestigation of a new analytical method for numerical derivative evaluationComm ACM19647,846547110.1145/355586.3647920131.34603
– reference: Woollands, R.M., Read, J.L., Probe, A.B., Junkins, J.L.: Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration, JAS, 1–18. ISSN: 0021-9142. (2017). https://doi.org/10.1007/s40295-017-0116-6
– reference: Bani Younes, A., Turner, J.: High-order State Transition Tensors of Perturbed Orbital Motion using Computational Differentiation. 26th AAS/AIAA Space Flight Mechanics Meeting, AAS 16-342, Napa (2016)
– reference: Turner, J.D., Bani Younes, A.H.: On the Integration of m-Dimensional Expectation Operators. Presented to AIAA Houston Annual Technical Symposium, Gilruth Center, NASA/JSC (2012)
– reference: AlhulayilMBani YounesATurnerJHigher-Order Differential Correction Solver for Perturbed Lambert’s Problem2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266
– reference: Bani YounesATurnerJGeneralized algorithms for least squares optimization for nonlinear observation models and newton’s methodJ. Astron. Sci.201360351754010.1007/s40295-015-0071-z
– reference: PinesSUniform Representation of the Gravitational Potential and its DerivativesAIAA J.197311150815110268.70009
– reference: Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA Education Series, Editor-in-Chief Joheph A. Schetz (2009)
– reference: Bani Younes, A., Turner, J.: System uncertainty propagation using automatic differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston (2015)
– reference: Battin, R.: An introduction to the mathematics and methods of astrodynamics AIAA. Education Series (1999)
– reference: Bani YounesATurnerJDerivative Enhanced Optimal Feedback Control Using Computational DifferentiationInt. J. Appl. Exper. Math.20161112https://doi.org/10.15344/ijaem/2016/112
– reference: Bani Younes, A., Turner, J.: Feedback control sensitivity calculations using computational differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston
– reference: TurnerJDAutomated generation of High-Order partial derivative modelsAIAA J.20034181590159910.2514/2.2112
– reference: Bani Younes, A., Turner, J.: Semi-Analytic Probability density function for system uncertainty, vol. 2 (2016)
– reference: JunkinsJLBani YounesAWoollandsRBaiXPicard iteration, chebyshev polynomials and chebyshev picard methods: Application in astrodynamicsJ. Astron. Sci.2015603623653
– reference: WoollandsRMYounesABJunkinsJNew solutions for the perturbed lambert problem using regularization and picard iterationJGCD20153815481562
– reference: Bani Younes, A.H., Turner, J.D., Majji, M., Junkins, J.L.: An Investigation of State Feedback Gain Sensitivity Calculations. Presented to AIAA/AAS Astrodynamics Specialist Conference of Held 2-5, Toronto (2010)
– reference: BischofCCarleACorlissGGriewankAHovlandPADIFOR: Generating Derivative codes from fortran programsSci. Program.19921129
– reference: Lancaster, E.R., Blanchard, R.C.: A unified form of Lambert’s theorem. NASA technical note TN D-5368,1969
– reference: Griewank, A.: On Automatic Differentiation. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp 83–108. Kluwer Academic Publishers, Amsterdam (1989)
– reference: JunkinsJLInvestigation of Finite-Element representations of the geopotentialAIAA J.197614680380845950610.2514/3.614200344.65060
– reference: Woollands, R.M., Read, J.L., Macomber, B., Probe, A., Younes, A.B., Junkins, J.L.: Method of Particular Solutions and Kustaanheimo-Stiefel Regularized Picard Iteration for Solving Two-Point Boundary Value Problems. Paper No. AAS 15-373 Presented at the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg (2015)
– reference: Eberhard, P.: C. Bischof. Automatic Differentiation of Numerical Integration Algorithms Technical Report ANL/MCS-P621-1196. Mathematics and Computer Science Division Argonne National Laboratory, Argonne (1996)
– reference: Woollands, R., Younes, A.B., Junkins, J.: A new Solution for the General Lambert’s Problem. 37th Annual AAS Guidance Control Conference (2014)
– reference: Bani YounesAAlhulayilMTurnerJEfficient Uncertainty Propagation of Perturbed Satellite Motion2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266
– reference: WengertREA simple automatic derivative evaluation programComm. AGM1964784634640131.34602
– reference: Bischof, C., Carle, A., Khademi, P., Mauer, A., Hovland, P.: ADIFOR 2.0 User’s Guide (Revision CO, Technical Report ANL/MCS-TM-192. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne (1995)
– reference: GoodingRHA procedure for the solution of Lambert’s orbital boundary-value problemCelest. Mech. Dyn. Astron.1990481451650704.70004
– ident: 137_CR11
  doi: 10.1115/1.4033886
– volume: 60
  start-page: 517
  issue: 3
  year: 2013
  ident: 137_CR10
  publication-title: J. Astron. Sci.
  doi: 10.1007/s40295-015-0071-z
– ident: 137_CR22
– ident: 137_CR4
– volume: 41
  start-page: 1590
  issue: 8
  year: 2003
  ident: 137_CR23
  publication-title: AIAA J.
  doi: 10.2514/2.2112
– volume: 38
  start-page: 1548
  year: 2015
  ident: 137_CR5
  publication-title: JGCD
– volume: 7,8
  start-page: 465
  year: 1964
  ident: 137_CR18
  publication-title: Comm ACM
  doi: 10.1145/355586.364792
– volume-title: Higher-Order Differential Correction Solver for Perturbed Lambert’s Problem
  year: 2017
  ident: 137_CR13
– ident: 137_CR14
  doi: 10.1115/IMECE2015-51412
– volume: 1
  start-page: 1
  year: 1992
  ident: 137_CR20
  publication-title: Sci. Program.
– volume: 14
  start-page: 803
  issue: 6
  year: 1976
  ident: 137_CR26
  publication-title: AIAA J.
  doi: 10.2514/3.61420
– ident: 137_CR6
  doi: 10.1007/s40295-017-0116-6
– ident: 137_CR16
  doi: 10.1115/IMECE2015-51439
– ident: 137_CR21
  doi: 10.2172/93483
– ident: 137_CR1
– volume: 60
  start-page: 623
  issue: 3
  year: 2015
  ident: 137_CR28
  publication-title: J. Astron. Sci.
– ident: 137_CR24
  doi: 10.2514/6.2010-8274
– ident: 137_CR25
– ident: 137_CR3
– volume: 7
  start-page: 463
  issue: 8
  year: 1964
  ident: 137_CR17
  publication-title: Comm. AGM
– volume: 11
  start-page: 15081511
  year: 1973
  ident: 137_CR27
  publication-title: AIAA J.
  doi: 10.2514/3.50619
– ident: 137_CR7
  doi: 10.2514/4.861543
– volume: 1
  start-page: 112
  year: 2016
  ident: 137_CR9
  publication-title: Int. J. Appl. Exper. Math.
  doi: 10.15344/ijaem/2016/112
– volume: 48
  start-page: 145
  year: 1990
  ident: 137_CR2
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF00049511
– volume-title: Efficient Uncertainty Propagation of Perturbed Satellite Motion
  year: 2017
  ident: 137_CR12
– ident: 137_CR8
  doi: 10.2514/4.867231
– ident: 137_CR19
– ident: 137_CR15
SSID ssj0031091
Score 2.2259192
Snippet This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 400
SubjectTerms Aerospace Technology and Astronautics
Algorithms
Convergence
Engineering
Equations of motion
Iterative methods
Mathematical Applications in the Physical Sciences
Mathematical models
Newton methods
Numerical integration
Perturbation methods
Software
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Taylor series
Tensors
Thermal expansion
Title Higher Order Algorithm for Solving Lambert’s Problem
URI https://link.springer.com/article/10.1007/s40295-018-0137-9
https://www.proquest.com/docview/2139652117
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2195-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031091
  issn: 0021-9142
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2195-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031091
  issn: 0021-9142
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8DAP6JQkAcmUKo4sR17rFBLxb8ElcoUOYkDiNKiNl2YeA1ejyfBTuIWECAxx7GSO_vuO9_5O4B9NxKpdqTCkb6iOkAh0pGBF5uyP1f6XKZCmaOB8wvW6ZKTHu2V97jHttrdpiRzSz297KYjHXObGJviKz9wxDxUc7qtClSbx7enLWuAc67LorID671MPJvM_GmSr-5ohjG_pUVzb9Nehhv7nUWRyWNjkkWN-OUbheM_f2QFlkr0iZrFclmFOTVYg8VPnITrwIrKD3RpODlRs383HD1k909Ig1t0Peyb8wd0Jk0bkez99W2MroqONBvQbbdujjpO2VzBiX3MTAv6hLhSSE8l2NcxjJLU5GQITzhVEYkiqYGL4nHAFWE64sYpj1msow_mJqmS3N-EymA4UFuAKFUk4swl2u4TPYhHiQpSyoXhGhTEr4FrZRzGJfO4aYDRD6ecyblIQi2S0IgkFDU4mL7yXNBu_DW4bhUXljtwHHoa2jKNTXBQg0Orh9njXyfb_tfoHVjwjCKx52Bah0o2mqhdjVKyaK9clR_nM9tv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BOwAD_4hCgQxMoFRxYif2WKGWQn9AopXKFDmJA4jSojZdmHgNXo8nwW7iFipA6hzHSu7su-985-8ATq2AxdKRMpM7gsgABXOTe3aoyv4s7lAeM6GOBpott9bB113Sze5xj3S1u05JTiz19LKbjHTUbWKkiq8cz2TLkMcyPrFzkC9f3tcr2gBPuC7Tyg4k9zK2dTLzt0l-uqMZxpxLi068TXUD2vo70yKT59I4CUrh2xyF44I_sgnrGfo0yuly2YIl0d-GtW-chDvgppUfxo3i5DTKvYfB8Cl5fDEkuDXuBj11_mA0uGojkny-f4yM27QjzS50qpX2Rc3MmiuYoYNc1YI-whZn3BYRcmQMIzhRORlMI0pEgIOAS-AiaOhRgV0ZcaOYhm4oow_XimLBqbMHuf6gL_bBIETggLoWlnYfy0E0iIQXE8oU1yDDTgEsLWM_zJjHVQOMnj_lTJ6IxJci8ZVIfFaAs-krryntxn-Di1pxfrYDR74toa0rsQnyCnCu9TB7_OdkBwuNPoGVWrvZ8BtXrfohrNpKqcg2ESlCLhmOxZFELElwnK3QLzMO3k4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJEYPvo0o6h48aQp9bNvtkSiIgkiiJHiq23arRgQC5eLJv-Hf85c4S1tQoibGc6ebdvYx3-zMfANwqHpOiIbUUbghTHRQKFe4rfsy7U_lBuOhI-TVwGXDqrboRdtsJ31Oh2m2exqSjGsaJEtTNyr2g7A4KXxDr0dWFmsyEcuwFWcesuiZ2LjQs6Wz21o5PYzHvJdxloeG-5rqaWDzu0G-mqYp3pwJkY4tT2UF7tJvjhNOngqjyCv4LzN0jv_4qVVYTlApKcXLaA3mRHcdlj5xFW6AFWeEkCvJ1UlKnfve4DF6eCYIesl1ryPvJUidy_Yi0fvr25A04041m9CqlG9OqkrSdEHxDc2SrekDqnKH6yLQDPRtBDdlrIaygJnCo57HEdAI5ttMUAs9cS1kvuWjV2KpQSg4M7Yg0-11xTYQ0xTUY5ZK0R5QFGJeIOzQZI7kIHSokQM11bfrJ4zksjFGx51wKY9V4qJKXKkS18nB0eSVfkzH8ZtwPp1EN9mZQ1dHyGshZtHsHBynczJ9_ONgO3-SPoCF5mnFrZ83aruwqMs51XRFM_OQiQYjsYdAJvL2k8X6AXA35zI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+Order+Algorithm+for+Solving+Lambert%E2%80%99s+Problem&rft.jtitle=The+Journal+of+the+astronautical+sciences&rft.au=Alhulayil%2C+Mohammad&rft.au=Younes%2C+Ahmad+Bani&rft.au=Turner%2C+James+D.&rft.date=2018-12-15&rft.issn=0021-9142&rft.eissn=2195-0571&rft.volume=65&rft.issue=4&rft.spage=400&rft.epage=422&rft_id=info:doi/10.1007%2Fs40295-018-0137-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40295_018_0137_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9142&client=summon