Higher Order Algorithm for Solving Lambert’s Problem
This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiati...
Saved in:
| Published in | The Journal of the astronautical sciences Vol. 65; no. 4; pp. 400 - 422 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
15.12.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9142 2195-0571 |
| DOI | 10.1007/s40295-018-0137-9 |
Cover
| Abstract | This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method. |
|---|---|
| AbstractList | This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method. |
| Author | Younes, Ahmad Bani Alhulayil, Mohammad Turner, James D. |
| Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0001-8415-7264 surname: Alhulayil fullname: Alhulayil, Mohammad email: mohammad.alhulayil@hotmail.com organization: Aerospace Engineering Department, Khalifa University – sequence: 2 givenname: Ahmad Bani surname: Younes fullname: Younes, Ahmad Bani organization: Department of Aerospace Engineering, San Diego State University – sequence: 3 givenname: James D. surname: Turner fullname: Turner, James D. |
| BookMark | eNp9kM9Kw0AQhxepYK0-gLeA5-jObrJ_jqWoFQoV1POySSZpSpKtu6ngzdfw9XwSUyIIgh52FobfNzN8p2TSuQ4JuQB6BZTK65BQptOYghoel7E-IlMGh04qYUKmlDKINSTshJyGsKWUA9UwJWJZVxv00doXQ503lfN1v2mj0vno0TWvdVdFK9tm6PvP948QPXiXNdiekePSNgHPv_8Zeb69eVos49X67n4xX8U5B9HHwIuEWm0ZFsCFEGhTCiASVagUsyTLrOYSVS4VJgIzDqXKRa5lImhRolV8Ri7HuTvvXvYYerN1e98NKw0DrkXKAOSQkmMq9y4Ej6XJ6972tet6b-vGADUHSWaUZAZJ5iDJ6IGEX-TO1631b_8ybGTCkO0q9D83_Q19Af_betU |
| CitedBy_id | crossref_primary_10_1061__ASCE_AS_1943_5525_0001464 crossref_primary_10_2514_1_G003897 crossref_primary_10_2514_1_G004964 crossref_primary_10_1109_TAES_2023_3249148 crossref_primary_10_34133_space_0112 crossref_primary_10_2514_1_G006091 crossref_primary_10_2514_1_G006558 crossref_primary_10_2514_1_G007699 crossref_primary_10_2514_1_G006356 crossref_primary_10_3390_app9030591 |
| Cites_doi | 10.1115/1.4033886 10.1007/s40295-015-0071-z 10.2514/2.2112 10.1145/355586.364792 10.1115/IMECE2015-51412 10.2514/3.61420 10.1007/s40295-017-0116-6 10.1115/IMECE2015-51439 10.2172/93483 10.2514/6.2010-8274 10.2514/3.50619 10.2514/4.861543 10.15344/ijaem/2016/112 10.1007/BF00049511 10.2514/4.867231 |
| ContentType | Journal Article |
| Copyright | American Astronautical Society 2018 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: American Astronautical Society 2018 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40295-018-0137-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2195-0571 |
| EndPage | 422 |
| ExternalDocumentID | 10_1007_s40295_018_0137_9 |
| GroupedDBID | -EM -~X .DC 199 203 29L 29~ 2LR 30V 4.4 406 8UJ 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AECCQ AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AIDUJ AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HG6 HMJXF HRMNR IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9G O9J PF0 PT4 PZZ ROL RSV SC5 SHS SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TN5 TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7R Z83 ZCA ZMTXR ~A9 06D 0R~ 6TJ AARHV AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADQRH AEBTG AEZWR AFDZB AFHIU AFLOW AFOHR AHPBZ AHSBF AHWEU AI. AIAKS AIXLP AJBLW ATHPR AYFIA CITATION HF~ HZ~ O9- TUC VH1 |
| ID | FETCH-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83 |
| IEDL.DBID | AGYKE |
| ISSN | 0021-9142 |
| IngestDate | Thu Sep 25 00:55:19 EDT 2025 Thu Apr 24 22:56:01 EDT 2025 Wed Oct 01 02:31:43 EDT 2025 Fri Feb 21 02:26:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | p-iteration Lambert’s problem Computational differentiation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8415-7264 |
| PQID | 2139652117 |
| PQPubID | 2043592 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2139652117 crossref_citationtrail_10_1007_s40295_018_0137_9 crossref_primary_10_1007_s40295_018_0137_9 springer_journals_10_1007_s40295_018_0137_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20181215 |
| PublicationDateYYYYMMDD | 2018-12-15 |
| PublicationDate_xml | – month: 12 year: 2018 text: 20181215 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | The Journal of the astronautical sciences |
| PublicationTitleAbbrev | J of Astronaut Sci |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Eberhard, P.: C. Bischof. Automatic Differentiation of Numerical Integration Algorithms Technical Report ANL/MCS-P621-1196. Mathematics and Computer Science Division Argonne National Laboratory, Argonne (1996) WoollandsRMYounesABJunkinsJNew solutions for the perturbed lambert problem using regularization and picard iterationJGCD20153815481562 BischofCCarleACorlissGGriewankAHovlandPADIFOR: Generating Derivative codes from fortran programsSci. Program.19921129 Woollands, R.M., Read, J.L., Macomber, B., Probe, A., Younes, A.B., Junkins, J.L.: Method of Particular Solutions and Kustaanheimo-Stiefel Regularized Picard Iteration for Solving Two-Point Boundary Value Problems. Paper No. AAS 15-373 Presented at the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg (2015) Bani YounesATurnerJDerivative Enhanced Optimal Feedback Control Using Computational DifferentiationInt. J. Appl. Exper. Math.20161112https://doi.org/10.15344/ijaem/2016/112 WengertREA simple automatic derivative evaluation programComm. AGM1964784634640131.34602 Turner, J.D., Bani Younes, A.H.: On the Integration of m-Dimensional Expectation Operators. Presented to AIAA Houston Annual Technical Symposium, Gilruth Center, NASA/JSC (2012) Bani YounesATurnerJGeneralized algorithms for least squares optimization for nonlinear observation models and newton’s methodJ. Astron. Sci.201360351754010.1007/s40295-015-0071-z Woollands, R.M., Read, J.L., Probe, A.B., Junkins, J.L.: Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration, JAS, 1–18. ISSN: 0021-9142. (2017). https://doi.org/10.1007/s40295-017-0116-6 WilkinsRDInvestigation of a new analytical method for numerical derivative evaluationComm ACM19647,846547110.1145/355586.3647920131.34603 Lancaster, E.R., Blanchard, R.C.: A unified form of Lambert’s theorem. NASA technical note TN D-5368,1969 Bani Younes, A., Turner, J.: Feedback control sensitivity calculations using computational differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston Bischof, C., Carle, A., Khademi, P., Mauer, A., Hovland, P.: ADIFOR 2.0 User’s Guide (Revision CO, Technical Report ANL/MCS-TM-192. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne (1995) GoodingRHA procedure for the solution of Lambert’s orbital boundary-value problemCelest. Mech. Dyn. Astron.1990481451650704.70004 Griewank, A.: On Automatic Differentiation. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp 83–108. Kluwer Academic Publishers, Amsterdam (1989) TurnerJDAutomated generation of High-Order partial derivative modelsAIAA J.20034181590159910.2514/2.2112 AlhulayilMBani YounesATurnerJHigher-Order Differential Correction Solver for Perturbed Lambert’s Problem2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266 Bani Younes, A.H., Turner, J.D., Majji, M., Junkins, J.L.: An Investigation of State Feedback Gain Sensitivity Calculations. Presented to AIAA/AAS Astrodynamics Specialist Conference of Held 2-5, Toronto (2010) Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA Education Series, Editor-in-Chief Joheph A. Schetz (2009) Bani Younes, A., Turner, J.: High-order State Transition Tensors of Perturbed Orbital Motion using Computational Differentiation. 26th AAS/AIAA Space Flight Mechanics Meeting, AAS 16-342, Napa (2016) PinesSUniform Representation of the Gravitational Potential and its DerivativesAIAA J.197311150815110268.70009 Bani Younes, A., Turner, J.: Semi-Analytic Probability density function for system uncertainty, vol. 2 (2016) JunkinsJLInvestigation of Finite-Element representations of the geopotentialAIAA J.197614680380845950610.2514/3.614200344.65060 Bani YounesAAlhulayilMTurnerJEfficient Uncertainty Propagation of Perturbed Satellite Motion2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266 Woollands, R., Younes, A.B., Junkins, J.: A new Solution for the General Lambert’s Problem. 37th Annual AAS Guidance Control Conference (2014) Battin, R.: An introduction to the mathematics and methods of astrodynamics AIAA. Education Series (1999) Bani Younes, A., Turner, J.: System uncertainty propagation using automatic differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston (2015) JunkinsJLBani YounesAWoollandsRBaiXPicard iteration, chebyshev polynomials and chebyshev picard methods: Application in astrodynamicsJ. Astron. Sci.2015603623653 137_CR14 C Bischof (137_CR20) 1992; 1 137_CR15 137_CR16 137_CR11 RH Gooding (137_CR2) 1990; 48 RE Wengert (137_CR17) 1964; 7 A Bani Younes (137_CR12) 2017 S Pines (137_CR27) 1973; 11 JD Turner (137_CR23) 2003; 41 A Bani Younes (137_CR9) 2016; 1 RM Woollands (137_CR5) 2015; 38 137_CR19 A Bani Younes (137_CR10) 2013; 60 JL Junkins (137_CR28) 2015; 60 137_CR4 137_CR25 137_CR3 JL Junkins (137_CR26) 1976; 14 137_CR1 137_CR8 137_CR21 137_CR7 137_CR22 137_CR6 RD Wilkins (137_CR18) 1964; 7,8 137_CR24 M Alhulayil (137_CR13) 2017 |
| References_xml | – reference: WilkinsRDInvestigation of a new analytical method for numerical derivative evaluationComm ACM19647,846547110.1145/355586.3647920131.34603 – reference: Woollands, R.M., Read, J.L., Probe, A.B., Junkins, J.L.: Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration, JAS, 1–18. ISSN: 0021-9142. (2017). https://doi.org/10.1007/s40295-017-0116-6 – reference: Bani Younes, A., Turner, J.: High-order State Transition Tensors of Perturbed Orbital Motion using Computational Differentiation. 26th AAS/AIAA Space Flight Mechanics Meeting, AAS 16-342, Napa (2016) – reference: Turner, J.D., Bani Younes, A.H.: On the Integration of m-Dimensional Expectation Operators. Presented to AIAA Houston Annual Technical Symposium, Gilruth Center, NASA/JSC (2012) – reference: AlhulayilMBani YounesATurnerJHigher-Order Differential Correction Solver for Perturbed Lambert’s Problem2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266 – reference: Bani YounesATurnerJGeneralized algorithms for least squares optimization for nonlinear observation models and newton’s methodJ. Astron. Sci.201360351754010.1007/s40295-015-0071-z – reference: PinesSUniform Representation of the Gravitational Potential and its DerivativesAIAA J.197311150815110268.70009 – reference: Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA Education Series, Editor-in-Chief Joheph A. Schetz (2009) – reference: Bani Younes, A., Turner, J.: System uncertainty propagation using automatic differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston (2015) – reference: Battin, R.: An introduction to the mathematics and methods of astrodynamics AIAA. Education Series (1999) – reference: Bani YounesATurnerJDerivative Enhanced Optimal Feedback Control Using Computational DifferentiationInt. J. Appl. Exper. Math.20161112https://doi.org/10.15344/ijaem/2016/112 – reference: Bani Younes, A., Turner, J.: Feedback control sensitivity calculations using computational differentiation. Proceedings of the ASME 2015 International Mechanical Engineering Technical Congress and Exposition, IMECE2015-51439, Houston – reference: TurnerJDAutomated generation of High-Order partial derivative modelsAIAA J.20034181590159910.2514/2.2112 – reference: Bani Younes, A., Turner, J.: Semi-Analytic Probability density function for system uncertainty, vol. 2 (2016) – reference: JunkinsJLBani YounesAWoollandsRBaiXPicard iteration, chebyshev polynomials and chebyshev picard methods: Application in astrodynamicsJ. Astron. Sci.2015603623653 – reference: WoollandsRMYounesABJunkinsJNew solutions for the perturbed lambert problem using regularization and picard iterationJGCD20153815481562 – reference: Bani Younes, A.H., Turner, J.D., Majji, M., Junkins, J.L.: An Investigation of State Feedback Gain Sensitivity Calculations. Presented to AIAA/AAS Astrodynamics Specialist Conference of Held 2-5, Toronto (2010) – reference: BischofCCarleACorlissGGriewankAHovlandPADIFOR: Generating Derivative codes from fortran programsSci. Program.19921129 – reference: Lancaster, E.R., Blanchard, R.C.: A unified form of Lambert’s theorem. NASA technical note TN D-5368,1969 – reference: Griewank, A.: On Automatic Differentiation. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp 83–108. Kluwer Academic Publishers, Amsterdam (1989) – reference: JunkinsJLInvestigation of Finite-Element representations of the geopotentialAIAA J.197614680380845950610.2514/3.614200344.65060 – reference: Woollands, R.M., Read, J.L., Macomber, B., Probe, A., Younes, A.B., Junkins, J.L.: Method of Particular Solutions and Kustaanheimo-Stiefel Regularized Picard Iteration for Solving Two-Point Boundary Value Problems. Paper No. AAS 15-373 Presented at the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg (2015) – reference: Eberhard, P.: C. Bischof. Automatic Differentiation of Numerical Integration Algorithms Technical Report ANL/MCS-P621-1196. Mathematics and Computer Science Division Argonne National Laboratory, Argonne (1996) – reference: Woollands, R., Younes, A.B., Junkins, J.: A new Solution for the General Lambert’s Problem. 37th Annual AAS Guidance Control Conference (2014) – reference: Bani YounesAAlhulayilMTurnerJEfficient Uncertainty Propagation of Perturbed Satellite Motion2017San Antonio27th AAS/AIAA Space Flight Mechanics Meeting AAS 17–266 – reference: WengertREA simple automatic derivative evaluation programComm. AGM1964784634640131.34602 – reference: Bischof, C., Carle, A., Khademi, P., Mauer, A., Hovland, P.: ADIFOR 2.0 User’s Guide (Revision CO, Technical Report ANL/MCS-TM-192. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne (1995) – reference: GoodingRHA procedure for the solution of Lambert’s orbital boundary-value problemCelest. Mech. Dyn. Astron.1990481451650704.70004 – ident: 137_CR11 doi: 10.1115/1.4033886 – volume: 60 start-page: 517 issue: 3 year: 2013 ident: 137_CR10 publication-title: J. Astron. Sci. doi: 10.1007/s40295-015-0071-z – ident: 137_CR22 – ident: 137_CR4 – volume: 41 start-page: 1590 issue: 8 year: 2003 ident: 137_CR23 publication-title: AIAA J. doi: 10.2514/2.2112 – volume: 38 start-page: 1548 year: 2015 ident: 137_CR5 publication-title: JGCD – volume: 7,8 start-page: 465 year: 1964 ident: 137_CR18 publication-title: Comm ACM doi: 10.1145/355586.364792 – volume-title: Higher-Order Differential Correction Solver for Perturbed Lambert’s Problem year: 2017 ident: 137_CR13 – ident: 137_CR14 doi: 10.1115/IMECE2015-51412 – volume: 1 start-page: 1 year: 1992 ident: 137_CR20 publication-title: Sci. Program. – volume: 14 start-page: 803 issue: 6 year: 1976 ident: 137_CR26 publication-title: AIAA J. doi: 10.2514/3.61420 – ident: 137_CR6 doi: 10.1007/s40295-017-0116-6 – ident: 137_CR16 doi: 10.1115/IMECE2015-51439 – ident: 137_CR21 doi: 10.2172/93483 – ident: 137_CR1 – volume: 60 start-page: 623 issue: 3 year: 2015 ident: 137_CR28 publication-title: J. Astron. Sci. – ident: 137_CR24 doi: 10.2514/6.2010-8274 – ident: 137_CR25 – ident: 137_CR3 – volume: 7 start-page: 463 issue: 8 year: 1964 ident: 137_CR17 publication-title: Comm. AGM – volume: 11 start-page: 15081511 year: 1973 ident: 137_CR27 publication-title: AIAA J. doi: 10.2514/3.50619 – ident: 137_CR7 doi: 10.2514/4.861543 – volume: 1 start-page: 112 year: 2016 ident: 137_CR9 publication-title: Int. J. Appl. Exper. Math. doi: 10.15344/ijaem/2016/112 – volume: 48 start-page: 145 year: 1990 ident: 137_CR2 publication-title: Celest. Mech. Dyn. Astron. doi: 10.1007/BF00049511 – volume-title: Efficient Uncertainty Propagation of Perturbed Satellite Motion year: 2017 ident: 137_CR12 – ident: 137_CR8 doi: 10.2514/4.867231 – ident: 137_CR19 – ident: 137_CR15 |
| SSID | ssj0031091 |
| Score | 2.2259192 |
| Snippet | This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 400 |
| SubjectTerms | Aerospace Technology and Astronautics Algorithms Convergence Engineering Equations of motion Iterative methods Mathematical Applications in the Physical Sciences Mathematical models Newton methods Numerical integration Perturbation methods Software Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Taylor series Tensors Thermal expansion |
| Title | Higher Order Algorithm for Solving Lambert’s Problem |
| URI | https://link.springer.com/article/10.1007/s40295-018-0137-9 https://www.proquest.com/docview/2139652117 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2195-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031091 issn: 0021-9142 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2195-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031091 issn: 0021-9142 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8DAP6JQkAcmUKo4sR17rFBLxb8ElcoUOYkDiNKiNl2YeA1ejyfBTuIWECAxx7GSO_vuO9_5O4B9NxKpdqTCkb6iOkAh0pGBF5uyP1f6XKZCmaOB8wvW6ZKTHu2V97jHttrdpiRzSz297KYjHXObGJviKz9wxDxUc7qtClSbx7enLWuAc67LorID671MPJvM_GmSr-5ohjG_pUVzb9Nehhv7nUWRyWNjkkWN-OUbheM_f2QFlkr0iZrFclmFOTVYg8VPnITrwIrKD3RpODlRs383HD1k909Ig1t0Peyb8wd0Jk0bkez99W2MroqONBvQbbdujjpO2VzBiX3MTAv6hLhSSE8l2NcxjJLU5GQITzhVEYkiqYGL4nHAFWE64sYpj1msow_mJqmS3N-EymA4UFuAKFUk4swl2u4TPYhHiQpSyoXhGhTEr4FrZRzGJfO4aYDRD6ecyblIQi2S0IgkFDU4mL7yXNBu_DW4bhUXljtwHHoa2jKNTXBQg0Orh9njXyfb_tfoHVjwjCKx52Bah0o2mqhdjVKyaK9clR_nM9tv |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BOwAD_4hCgQxMoFRxYif2WKGWQn9AopXKFDmJA4jSojZdmHgNXo8nwW7iFipA6hzHSu7su-985-8ATq2AxdKRMpM7gsgABXOTe3aoyv4s7lAeM6GOBpott9bB113Sze5xj3S1u05JTiz19LKbjHTUbWKkiq8cz2TLkMcyPrFzkC9f3tcr2gBPuC7Tyg4k9zK2dTLzt0l-uqMZxpxLi068TXUD2vo70yKT59I4CUrh2xyF44I_sgnrGfo0yuly2YIl0d-GtW-chDvgppUfxo3i5DTKvYfB8Cl5fDEkuDXuBj11_mA0uGojkny-f4yM27QjzS50qpX2Rc3MmiuYoYNc1YI-whZn3BYRcmQMIzhRORlMI0pEgIOAS-AiaOhRgV0ZcaOYhm4oow_XimLBqbMHuf6gL_bBIETggLoWlnYfy0E0iIQXE8oU1yDDTgEsLWM_zJjHVQOMnj_lTJ6IxJci8ZVIfFaAs-krryntxn-Di1pxfrYDR74toa0rsQnyCnCu9TB7_OdkBwuNPoGVWrvZ8BtXrfohrNpKqcg2ESlCLhmOxZFELElwnK3QLzMO3k4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJEYPvo0o6h48aQp9bNvtkSiIgkiiJHiq23arRgQC5eLJv-Hf85c4S1tQoibGc6ebdvYx3-zMfANwqHpOiIbUUbghTHRQKFe4rfsy7U_lBuOhI-TVwGXDqrboRdtsJ31Oh2m2exqSjGsaJEtTNyr2g7A4KXxDr0dWFmsyEcuwFWcesuiZ2LjQs6Wz21o5PYzHvJdxloeG-5rqaWDzu0G-mqYp3pwJkY4tT2UF7tJvjhNOngqjyCv4LzN0jv_4qVVYTlApKcXLaA3mRHcdlj5xFW6AFWeEkCvJ1UlKnfve4DF6eCYIesl1ryPvJUidy_Yi0fvr25A04041m9CqlG9OqkrSdEHxDc2SrekDqnKH6yLQDPRtBDdlrIaygJnCo57HEdAI5ttMUAs9cS1kvuWjV2KpQSg4M7Yg0-11xTYQ0xTUY5ZK0R5QFGJeIOzQZI7kIHSokQM11bfrJ4zksjFGx51wKY9V4qJKXKkS18nB0eSVfkzH8ZtwPp1EN9mZQ1dHyGshZtHsHBynczJ9_ONgO3-SPoCF5mnFrZ83aruwqMs51XRFM_OQiQYjsYdAJvL2k8X6AXA35zI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+Order+Algorithm+for+Solving+Lambert%E2%80%99s+Problem&rft.jtitle=The+Journal+of+the+astronautical+sciences&rft.au=Alhulayil%2C+Mohammad&rft.au=Younes%2C+Ahmad+Bani&rft.au=Turner%2C+James+D.&rft.date=2018-12-15&rft.issn=0021-9142&rft.eissn=2195-0571&rft.volume=65&rft.issue=4&rft.spage=400&rft.epage=422&rft_id=info:doi/10.1007%2Fs40295-018-0137-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40295_018_0137_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9142&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9142&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9142&client=summon |