A hybrid feature selection algorithm for microarray data

For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named K value maximum relevance minimum re...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 76; no. 5; pp. 3494 - 3526
Main Authors Zheng, Yuefeng, Li, Ying, Wang, Gang, Chen, Yupeng, Xu, Qian, Fan, Jiahao, Cui, Xueting
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-018-2640-y

Cover

Abstract For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named K value maximum relevance minimum redundancy improved grey wolf optimizer (KMR 2 IGWO). First, in the processing of KMR 2 , the K genes are selected. Second, the K genes are initialized by two ways according to random selection feature and different proportions of selection feature. Finally, the IGWO algorithm selects the optimal classification accuracy and the optimal combination of gene by adjusting the parameters of fitness function. The algorithm has a significant dimensionality reduction effect and is suitable for high-dimensional data sets. Experimental results show that the proposing KMR 2 IGWO strategy significantly reduces the dimension of microarray data and removes the redundant features. On the 14 microarray data sets, compared with the four algorithms mRMR + PSO, mRMR + GA, mRMR + BA, mRMR + CS, the proposed algorithm has higher performance in classification accuracy and feature subset length. In five data sets, the proposed algorithm average classification accuracy is 100%. On the 14 data sets, the proposed algorithm has a very significant dimensionality reduction effect, and the dimensionality reduction range is between 0.4% and 0.04%.
AbstractList For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named K value maximum relevance minimum redundancy improved grey wolf optimizer (KMR2IGWO). First, in the processing of KMR2, the K genes are selected. Second, the K genes are initialized by two ways according to random selection feature and different proportions of selection feature. Finally, the IGWO algorithm selects the optimal classification accuracy and the optimal combination of gene by adjusting the parameters of fitness function. The algorithm has a significant dimensionality reduction effect and is suitable for high-dimensional data sets. Experimental results show that the proposing KMR2IGWO strategy significantly reduces the dimension of microarray data and removes the redundant features. On the 14 microarray data sets, compared with the four algorithms mRMR + PSO, mRMR + GA, mRMR + BA, mRMR + CS, the proposed algorithm has higher performance in classification accuracy and feature subset length. In five data sets, the proposed algorithm average classification accuracy is 100%. On the 14 data sets, the proposed algorithm has a very significant dimensionality reduction effect, and the dimensionality reduction range is between 0.4% and 0.04%.
For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named K value maximum relevance minimum redundancy improved grey wolf optimizer (KMR 2 IGWO). First, in the processing of KMR 2 , the K genes are selected. Second, the K genes are initialized by two ways according to random selection feature and different proportions of selection feature. Finally, the IGWO algorithm selects the optimal classification accuracy and the optimal combination of gene by adjusting the parameters of fitness function. The algorithm has a significant dimensionality reduction effect and is suitable for high-dimensional data sets. Experimental results show that the proposing KMR 2 IGWO strategy significantly reduces the dimension of microarray data and removes the redundant features. On the 14 microarray data sets, compared with the four algorithms mRMR + PSO, mRMR + GA, mRMR + BA, mRMR + CS, the proposed algorithm has higher performance in classification accuracy and feature subset length. In five data sets, the proposed algorithm average classification accuracy is 100%. On the 14 data sets, the proposed algorithm has a very significant dimensionality reduction effect, and the dimensionality reduction range is between 0.4% and 0.04%.
Author Fan, Jiahao
Li, Ying
Cui, Xueting
Zheng, Yuefeng
Xu, Qian
Wang, Gang
Chen, Yupeng
Author_xml – sequence: 1
  givenname: Yuefeng
  surname: Zheng
  fullname: Zheng, Yuefeng
  organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, BODA College of Jilin Normal University
– sequence: 2
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 3
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  email: wanggang.jlu@gmail.com
  organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 4
  givenname: Yupeng
  surname: Chen
  fullname: Chen, Yupeng
  organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 5
  givenname: Qian
  surname: Xu
  fullname: Xu, Qian
  organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 6
  givenname: Jiahao
  surname: Fan
  fullname: Fan, Jiahao
  organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 7
  givenname: Xueting
  surname: Cui
  fullname: Cui, Xueting
  organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
BookMark eNp9kE1Lw0AQhhepYFv9Ad4Cnldn9iubYyl-QcGLnpfNZtOmpEnd3R7y702JIAh6msv7zDvzLMis6ztPyC3CPQLkDxGRsZwCasqUADpckDnKnFMQWszIHAoGVEvBrsgixj0ACJ7zOdGrbDeUoamy2tt0Cj6LvvUuNX2X2XbbhybtDlndh-zQuNDbEOyQVTbZa3JZ2zb6m--5JB9Pj-_rF7p5e35drzbUcVSJIviSF4VSdqxkmtcl8iqXFr0unCyl8wVydGXlPYJQqmbCMRA1Ku25liVfkrtp7zH0nycfk9n3p9CNlYYJAJkroeSYyqfUeGOMwdfGNcmev0jBNq1BMGdNZtJkRk3mrMkMI4m_yGNoDjYM_zJsYuKY7bY-_Nz0N_QFqDR7cw
CitedBy_id crossref_primary_10_1007_s10586_024_04614_0
crossref_primary_10_1109_ACCESS_2024_3437738
Cites_doi 10.1109/TPAMI.2015.2478471
10.1016/j.ins.2017.05.013
10.1016/j.ins.2014.09.064
10.1016/j.neucom.2016.07.080
10.1109/72.991427
10.1016/j.ins.2010.05.037
10.1016/j.eswa.2015.11.009
10.1016/j.asoc.2007.10.012
10.1016/j.compeleceng.2015.08.011
10.1155/2015/604910
10.1016/j.patcog.2013.01.023
10.1016/j.swevo.2015.05.003
10.1007/s00521-013-1402-2
10.1016/j.asoc.2013.03.021
10.1016/j.eswa.2013.09.023
10.1016/j.advengsoft.2013.12.007
10.1109/TCBB.2009.8
10.1007/s10115-010-0288-x
10.1016/j.patcog.2014.11.010
10.1016/j.jbi.2017.01.016
10.1371/journal.pgen.1002728
10.1109/TKDE.2015.2426703
10.1016/S0031-3203(01)00084-X
10.1016/j.eswa.2017.04.019
10.1016/j.neucom.2015.06.083
10.1093/bioinformatics/btg419
10.1023/A:1018628609742
10.1109/TNB.2009.2035284
10.1016/j.knosys.2012.11.005
10.1186/1471-2164-9-S2-S27
10.1109/TPAMI.2005.159
10.1504/IJBIC.2013.055093
10.1016/j.eswa.2005.09.024
10.1109/PECON.2014.7062431
10.1109/NABIC.2009.5393690
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-018-2640-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 3526
ExternalDocumentID 10_1007_s11227_018_2640_y
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61602206
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c316t-10eb39966a000283fb13d75a1e89c5b5ce9131cbdee10466f24c204f168e385b3
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Thu Sep 25 00:39:18 EDT 2025
Wed Oct 01 03:43:47 EDT 2025
Thu Apr 24 23:06:12 EDT 2025
Fri Feb 21 02:27:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Feature selection
Minimum redundancy maximum relevance
Support vector machine
Grey wolf optimizer
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-10eb39966a000283fb13d75a1e89c5b5ce9131cbdee10466f24c204f168e385b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2400576465
PQPubID 2043774
PageCount 33
ParticipantIDs proquest_journals_2400576465
crossref_citationtrail_10_1007_s11227_018_2640_y
crossref_primary_10_1007_s11227_018_2640_y
springer_journals_10_1007_s11227_018_2640_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhao, Li, Yang (CR7) 2015; 47
Hsu, Lin (CR23) 2002; 13
Braga-Neto, Dougherty (CR24) 2004; 20
Sebban, Nock (CR5) 2002; 35
Suykens, Vandewalle (CR22) 1999; 9
Armanfard, Reilly, Komeili (CR3) 2016; 38
CR31
Zhang, Ding, Li (CR17) 2008; 9
Wang, Shao, Wu (CR28) 2013; 46
Rodrigues, Pereira, Nakamura (CR30) 2014; 41
Vieira, Mendonça, Farinha, Sousa (CR26) 2013; 13
Wang, Nie, Huang (CR4) 2015; 27
Che, Yang, Li, Bai, Zhang, Dheng (CR11) 2017; 407
Mundra, Rajapakse (CR16) 2010; 9
Ouaarab, Ahiod, Yang (CR36) 2014; 24
Freeman, Kulic, Basir (CR6) 2015; 48
Emary, Zawbaa, Hassanien (CR21) 2016; 172
Yang, He (CR29) 2013; 5
Cheng (CR1) 2010; 7
Huang, Wang (CR34) 2006; 31
Elyasigomari, Lee, Screen, Shaheen (CR14) 2017; 67
Alshamlan, Badr, Alohali (CR10) 2015; 2015
Heisig (CR2) 2013; 8
Peng, Long, Ding (CR18) 2005; 27
Pourpanah, Lim, Saleh (CR8) 2016; 49
CR25
Tsai, Eberle, Chu (CR27) 2013; 39
Mohapatra, Chakravarty, Dash (CR32) 2015; 24
Unler, Murat, Chinnam (CR33) 2011; 181
Akadi, Amine, Ouardighi, Aboutajdine (CR9) 2011; 26
Lin, Lee, Chen, Tseng (CR35) 2008; 8
García, Sánchez (CR13) 2015; 294
CR20
Mirjalili, Mirjalili, Lewis (CR19) 2014; 69
Chen, Li, Wang (CR37) 2017; 83
Lu, Chen, Yan, Qun, Yu, Zhigang (CR12) 2017; 256
Yang, Ho, Yang, Zhou (CR15) 2011; 12
Z Wang (2640_CR28) 2013; 46
XS Yang (2640_CR29) 2013; 5
A Unler (2640_CR33) 2011; 181
CL Huang (2640_CR34) 2006; 31
F Pourpanah (2640_CR8) 2016; 49
2640_CR31
S-W Lin (2640_CR35) 2008; 8
J Heisig (2640_CR2) 2013; 8
N Armanfard (2640_CR3) 2016; 38
Y Zhang (2640_CR17) 2008; 9
Qiang Cheng (2640_CR1) 2010; 7
P Yang (2640_CR15) 2011; 12
AE Akadi (2640_CR9) 2011; 26
C Freeman (2640_CR6) 2015; 48
SM Vieira (2640_CR26) 2013; 13
JAK Suykens (2640_CR22) 1999; 9
J Che (2640_CR11) 2017; 407
H Peng (2640_CR18) 2005; 27
C-F Tsai (2640_CR27) 2013; 39
H Lu (2640_CR12) 2017; 256
D Rodrigues (2640_CR30) 2014; 41
D Wang (2640_CR4) 2015; 27
S Mirjalili (2640_CR19) 2014; 69
H Alshamlan (2640_CR10) 2015; 2015
2640_CR20
CW Hsu (2640_CR23) 2002; 13
X Zhao (2640_CR7) 2015; 47
V Elyasigomari (2640_CR14) 2017; 67
E Emary (2640_CR21) 2016; 172
PA Mundra (2640_CR16) 2010; 9
2640_CR25
M Sebban (2640_CR5) 2002; 35
A Ouaarab (2640_CR36) 2014; 24
UM Braga-Neto (2640_CR24) 2004; 20
P Mohapatra (2640_CR32) 2015; 24
V García (2640_CR13) 2015; 294
Y-P Chen (2640_CR37) 2017; 83
References_xml – volume: 38
  start-page: 1217
  issue: 6
  year: 2016
  end-page: 1227
  ident: CR3
  article-title: Local feature selection for data classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2478471
– volume: 407
  start-page: 68
  year: 2017
  end-page: 86
  ident: CR11
  article-title: Maximum relevance minimum common redundancy feature selection for nonlinear data
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2017.05.013
– volume: 294
  start-page: 362
  year: 2015
  end-page: 375
  ident: CR13
  article-title: Mapping microarray gene expression data into dissimilarity spaces for tumor classification
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2014.09.064
– volume: 256
  start-page: 56
  issue: C
  year: 2017
  end-page: 62
  ident: CR12
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  ident: CR23
  article-title: A comparison of methods for multi-class support vector machines
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.991427
– volume: 181
  start-page: 4625
  issue: 20
  year: 2011
  end-page: 4641
  ident: CR33
  article-title: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.05.037
– volume: 49
  start-page: 74
  year: 2016
  end-page: 85
  ident: CR8
  article-title: A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.11.009
– volume: 8
  start-page: 1505
  issue: 4
  year: 2008
  end-page: 1512
  ident: CR35
  article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.012
– volume: 47
  start-page: 114
  year: 2015
  end-page: 125
  ident: CR7
  article-title: A two-stage feature selection method with its application
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2015.08.011
– volume: 2015
  start-page: 1
  issue: 4
  year: 2015
  end-page: 15
  ident: CR10
  article-title: mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling
  publication-title: Biomed Res Int
  doi: 10.1155/2015/604910
– volume: 46
  start-page: 2267
  issue: 8
  year: 2013
  end-page: 2277
  ident: CR28
  article-title: A GA-based model selection for smooth twin parametric-margin support vector machine
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.01.023
– volume: 24
  start-page: 25
  year: 2015
  end-page: 49
  ident: CR32
  article-title: An improved cuckoo search based extreme learning machine for medical data classification
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2015.05.003
– volume: 24
  start-page: 1659
  issue: 7–8
  year: 2014
  end-page: 1669
  ident: CR36
  article-title: Discrete cuckoo search algorithm for the travelling salesman problem
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1402-2
– volume: 13
  start-page: 3494
  issue: 8
  year: 2013
  end-page: 3504
  ident: CR26
  article-title: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.03.021
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  end-page: 2258
  ident: CR30
  article-title: A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
– volume: 69
  start-page: 46
  issue: 3
  year: 2014
  end-page: 61
  ident: CR19
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 7
  start-page: 636
  issue: 4
  year: 2010
  end-page: 646
  ident: CR1
  article-title: A sparse learning machine for high-dimensional data with application to microarray gene analysis
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2009.8
– volume: 26
  start-page: 487
  issue: 3
  year: 2011
  end-page: 500
  ident: CR9
  article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-010-0288-x
– ident: CR25
– volume: 48
  start-page: 1812
  issue: 5
  year: 2015
  end-page: 1826
  ident: CR6
  article-title: An evaluation of classifier-specific filter measure performance for feature selection
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.11.010
– volume: 67
  start-page: 11
  year: 2017
  end-page: 20
  ident: CR14
  article-title: Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.01.016
– volume: 8
  start-page: e1002728
  issue: 5
  year: 2013
  ident: CR2
  article-title: Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002728
– volume: 27
  start-page: 2743
  issue: 10
  year: 2015
  end-page: 2755
  ident: CR4
  article-title: Feature selection via global redundancy minimization
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2426703
– volume: 35
  start-page: 835
  issue: 4
  year: 2002
  end-page: 846
  ident: CR5
  article-title: A hybrid filter/wrapper approach of feature selection using information theory
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00084-X
– volume: 83
  start-page: 1
  issue: C
  year: 2017
  end-page: 17
  ident: CR37
  article-title: A novel bacterial foraging optimization algorithm for feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.019
– volume: 12
  start-page: 2901
  year: 2011
  end-page: 2917
  ident: CR15
  article-title: Gene–gene interaction filtering with ensemble of filters
  publication-title: BMC Bioinform
– volume: 172
  start-page: 371
  issue: C
  year: 2016
  end-page: 381
  ident: CR21
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 20
  start-page: 374
  issue: 3
  year: 2004
  end-page: 380
  ident: CR24
  article-title: Is cross-validation valid for small-sample microarray classification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg419
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: CR22
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– ident: CR31
– volume: 9
  start-page: 31
  issue: 1
  year: 2010
  end-page: 37
  ident: CR16
  article-title: SVM-RFE with MRMR filter for gene selection
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2009.2035284
– volume: 39
  start-page: 240
  year: 2013
  end-page: 247
  ident: CR27
  article-title: Genetic algorithms in feature and instance selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.11.005
– volume: 9
  start-page: S27
  issue: Suppl 2
  year: 2008
  ident: CR17
  article-title: Gene selection algorithm by combining reliefF and mRMR
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-9-S2-S27
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  end-page: 1238
  ident: CR18
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 5
  start-page: 141
  issue: 3
  year: 2013
  end-page: 149
  ident: CR29
  article-title: Bat algorithm: literature review and applications
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.055093
– ident: CR20
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  end-page: 240
  ident: CR34
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.09.024
– volume: 2015
  start-page: 1
  issue: 4
  year: 2015
  ident: 2640_CR10
  publication-title: Biomed Res Int
  doi: 10.1155/2015/604910
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  ident: 2640_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.09.024
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 2640_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– ident: 2640_CR25
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 2640_CR22
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 407
  start-page: 68
  year: 2017
  ident: 2640_CR11
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2017.05.013
– volume: 172
  start-page: 371
  issue: C
  year: 2016
  ident: 2640_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 294
  start-page: 362
  year: 2015
  ident: 2640_CR13
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2014.09.064
– volume: 8
  start-page: e1002728
  issue: 5
  year: 2013
  ident: 2640_CR2
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002728
– volume: 69
  start-page: 46
  issue: 3
  year: 2014
  ident: 2640_CR19
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 9
  start-page: 31
  issue: 1
  year: 2010
  ident: 2640_CR16
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2009.2035284
– volume: 24
  start-page: 25
  year: 2015
  ident: 2640_CR32
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2015.05.003
– volume: 49
  start-page: 74
  year: 2016
  ident: 2640_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.11.009
– volume: 47
  start-page: 114
  year: 2015
  ident: 2640_CR7
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2015.08.011
– ident: 2640_CR20
  doi: 10.1109/PECON.2014.7062431
– volume: 26
  start-page: 487
  issue: 3
  year: 2011
  ident: 2640_CR9
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-010-0288-x
– volume: 12
  start-page: 2901
  year: 2011
  ident: 2640_CR15
  publication-title: BMC Bioinform
– volume: 46
  start-page: 2267
  issue: 8
  year: 2013
  ident: 2640_CR28
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.01.023
– volume: 9
  start-page: S27
  issue: Suppl 2
  year: 2008
  ident: 2640_CR17
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-9-S2-S27
– volume: 83
  start-page: 1
  issue: C
  year: 2017
  ident: 2640_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.019
– volume: 20
  start-page: 374
  issue: 3
  year: 2004
  ident: 2640_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg419
– volume: 181
  start-page: 4625
  issue: 20
  year: 2011
  ident: 2640_CR33
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.05.037
– volume: 24
  start-page: 1659
  issue: 7–8
  year: 2014
  ident: 2640_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1402-2
– volume: 5
  start-page: 141
  issue: 3
  year: 2013
  ident: 2640_CR29
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.055093
– volume: 7
  start-page: 636
  issue: 4
  year: 2010
  ident: 2640_CR1
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2009.8
– volume: 13
  start-page: 3494
  issue: 8
  year: 2013
  ident: 2640_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.03.021
– volume: 27
  start-page: 2743
  issue: 10
  year: 2015
  ident: 2640_CR4
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2426703
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 2640_CR23
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.991427
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  ident: 2640_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
– ident: 2640_CR31
  doi: 10.1109/NABIC.2009.5393690
– volume: 38
  start-page: 1217
  issue: 6
  year: 2016
  ident: 2640_CR3
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2478471
– volume: 48
  start-page: 1812
  issue: 5
  year: 2015
  ident: 2640_CR6
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.11.010
– volume: 35
  start-page: 835
  issue: 4
  year: 2002
  ident: 2640_CR5
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00084-X
– volume: 67
  start-page: 11
  year: 2017
  ident: 2640_CR14
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.01.016
– volume: 256
  start-page: 56
  issue: C
  year: 2017
  ident: 2640_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– volume: 8
  start-page: 1505
  issue: 4
  year: 2008
  ident: 2640_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.012
– volume: 39
  start-page: 240
  year: 2013
  ident: 2640_CR27
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.11.005
SSID ssj0004373
Score 2.2156644
Snippet For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3494
SubjectTerms Accuracy
Algorithms
Classification
Compilers
Computer Science
Datasets
Genes
Interpreters
Processor Architectures
Programming Languages
Reduction
Redundancy
Title A hybrid feature selection algorithm for microarray data
URI https://link.springer.com/article/10.1007/s11227-018-2640-y
https://www.proquest.com/docview/2400576465
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7DwRhRK5YEJFMnxI4nHFLVUIDpRqUyRnTp06AO1Zci_x5cmRCBAYvIQ28Pn13257-4ArvUkE8Yq44lJlnnCGRieCmnohYq6IUHEtcJo5KdhMBiJh7Ecl3Hc60rtXrkki5u6DnbzGUOZZISqLOrlu9CUmM3LbeIRi-tgSL51KyvHiyIpWOXK_GmKr49RbWF-c4oWb03_EPZLI5HE21U9gh27OIaDqgADKc_jCUQxmeYYckUyWyToJOuirI3DmujZ69IR_-mcOLOUzFF3p1crnRPUhJ7CqN97vht4ZSkEL-V-sHGXpSO9SE108T-MZ8bnk1Bq30YqlUamVvncT83EWnTaBhkTKaMi84PI8kgafgaNxXJhz4FQKTGLm-JaUKGN1lw5jqEzpmVKjaAtoBUmSVrmCcdyFbOkznCMMCYOxgRhTPIW3HwOedsmyfirc7sCOinPyzpBJatjPiKQLbitwK8__zrZxb96X8IeQ7pc6BXb0Nis3u2Vsyk2pgPNuN_tDrG9f3nsdYo99QHbV8Tk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROOhF_Iwoag-eNCPd2m7rkRgQ5eMECZ6WdnRi5MPAOOBfbzs2F4macF7bbK9f77f3e78HcCuGEZWKS4sOo8ii2sGwuIc9y-NYd3F9IrjJRu503WafPg_YIM3jXmRs9ywkmZzUebKb7TiGJukbVha2VrtQpBqfOAUo1h5fWvU8HZKsA8tcIyOfUScLZv42yM_rKPcxN8KiyW3TKEEve881yeS9uoxlNfzckHDc8kMO4SD1PlFtvVyOYEdNj6GUVXZA6UY_Ab-GRiuTy4UilSh_okVSL0dPIhLj19n8LR5NkPZ30cQQ-sR8LlbIkE1Pod-o9x6aVlpjwQqJ7cb6FNZo2mAekfxoI5G0ydBjwlY-D5lkoeI2sUM5VMpEg93IoaGDaWS7viI-k-QMCtPZVJ0DwowZeThOBMVUSCEI1-BFRI5gIZYUlwFnpg7CVIDc1MEYB7l0srFMoC0TGMsEqzLcfXf5WKtv_Ne4ks1fkG7ERWAoshpSUZeV4T6bjvzxn4NdbNX6BvaavU47aD91W5ew7xhMnpAiK1CI50t1pR2XWF6nC_ULrMrhwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwFLSgSIgLO6JQwAdOoKiOlyQ-VkDFWnGgUm-WndgUqZvScMjfY2chAgES59g-TOz4Td68eQCcy8RQpbnyaGKMR22A4fEQhV7IkZ0SRERyV438NAhuh_R-xEZVn9NlrXavU5JlTYNzaZpl3UViuk3hm4-xk0xGTqGFvHwVrFHnk2A39BD3msJIUqaYueVIEaO4Tmv-tMTXi6mJNr8lSIt7p78NNquAEfbKN7wDVvRsF2zVzRhgdTb3QNSD49yVX0GjC7NOuCxa3FjcoZy8ztO3bDyFNkSFU6fBk2kqc-j0oftg2L95ubr1qrYIXkz8ILMfTkuAHU2Rxb8xYpRPkpBJX0c8ZorFmvvEj1WitUvgBgbTGCNq_CDSJGKKHIDWbD7ThwAixpyjGyeSIiqVlIRbviENlixGiqI2QDUmIq48w13riolo3I4djMLCKByMIm-Di88pi9Iw46_BnRpoUZ2dpXCqVsuCaMDa4LIGv3n862JH_xp9Btafr_vi8W7wcAw2sGPRhYyxA1pZ-q5PbKiRqdNiO30AmO_I_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+feature+selection+algorithm+for+microarray+data&rft.jtitle=The+Journal+of+supercomputing&rft.au=Zheng+Yuefeng&rft.au=Li%2C+Ying&rft.au=Wang%2C+Gang&rft.au=Chen%2C+Yupeng&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=5&rft.spage=3494&rft.epage=3526&rft_id=info:doi/10.1007%2Fs11227-018-2640-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon