A hybrid feature selection algorithm for microarray data
For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named K value maximum relevance minimum re...
Saved in:
| Published in | The Journal of supercomputing Vol. 76; no. 5; pp. 3494 - 3526 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 |
| DOI | 10.1007/s11227-018-2640-y |
Cover
| Abstract | For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named
K
value maximum relevance minimum redundancy improved grey wolf optimizer (KMR
2
IGWO). First, in the processing of KMR
2
, the
K
genes are selected. Second, the
K
genes are initialized by two ways according to random selection feature and different proportions of selection feature. Finally, the IGWO algorithm selects the optimal classification accuracy and the optimal combination of gene by adjusting the parameters of fitness function. The algorithm has a significant dimensionality reduction effect and is suitable for high-dimensional data sets. Experimental results show that the proposing KMR
2
IGWO strategy significantly reduces the dimension of microarray data and removes the redundant features. On the 14 microarray data sets, compared with the four algorithms mRMR + PSO, mRMR + GA, mRMR + BA, mRMR + CS, the proposed algorithm has higher performance in classification accuracy and feature subset length. In five data sets, the proposed algorithm average classification accuracy is 100%. On the 14 data sets, the proposed algorithm has a very significant dimensionality reduction effect, and the dimensionality reduction range is between 0.4% and 0.04%. |
|---|---|
| AbstractList | For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named K value maximum relevance minimum redundancy improved grey wolf optimizer (KMR2IGWO). First, in the processing of KMR2, the K genes are selected. Second, the K genes are initialized by two ways according to random selection feature and different proportions of selection feature. Finally, the IGWO algorithm selects the optimal classification accuracy and the optimal combination of gene by adjusting the parameters of fitness function. The algorithm has a significant dimensionality reduction effect and is suitable for high-dimensional data sets. Experimental results show that the proposing KMR2IGWO strategy significantly reduces the dimension of microarray data and removes the redundant features. On the 14 microarray data sets, compared with the four algorithms mRMR + PSO, mRMR + GA, mRMR + BA, mRMR + CS, the proposed algorithm has higher performance in classification accuracy and feature subset length. In five data sets, the proposed algorithm average classification accuracy is 100%. On the 14 data sets, the proposed algorithm has a very significant dimensionality reduction effect, and the dimensionality reduction range is between 0.4% and 0.04%. For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a challenge. In order to solve the high-dimensional problem, we propose a dimensionality reduction algorithm named K value maximum relevance minimum redundancy improved grey wolf optimizer (KMR 2 IGWO). First, in the processing of KMR 2 , the K genes are selected. Second, the K genes are initialized by two ways according to random selection feature and different proportions of selection feature. Finally, the IGWO algorithm selects the optimal classification accuracy and the optimal combination of gene by adjusting the parameters of fitness function. The algorithm has a significant dimensionality reduction effect and is suitable for high-dimensional data sets. Experimental results show that the proposing KMR 2 IGWO strategy significantly reduces the dimension of microarray data and removes the redundant features. On the 14 microarray data sets, compared with the four algorithms mRMR + PSO, mRMR + GA, mRMR + BA, mRMR + CS, the proposed algorithm has higher performance in classification accuracy and feature subset length. In five data sets, the proposed algorithm average classification accuracy is 100%. On the 14 data sets, the proposed algorithm has a very significant dimensionality reduction effect, and the dimensionality reduction range is between 0.4% and 0.04%. |
| Author | Fan, Jiahao Li, Ying Cui, Xueting Zheng, Yuefeng Xu, Qian Wang, Gang Chen, Yupeng |
| Author_xml | – sequence: 1 givenname: Yuefeng surname: Zheng fullname: Zheng, Yuefeng organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, BODA College of Jilin Normal University – sequence: 2 givenname: Ying surname: Li fullname: Li, Ying organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 3 givenname: Gang surname: Wang fullname: Wang, Gang email: wanggang.jlu@gmail.com organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 4 givenname: Yupeng surname: Chen fullname: Chen, Yupeng organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 5 givenname: Qian surname: Xu fullname: Xu, Qian organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 6 givenname: Jiahao surname: Fan fullname: Fan, Jiahao organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 7 givenname: Xueting surname: Cui fullname: Cui, Xueting organization: College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University |
| BookMark | eNp9kE1Lw0AQhhepYFv9Ad4Cnldn9iubYyl-QcGLnpfNZtOmpEnd3R7y702JIAh6msv7zDvzLMis6ztPyC3CPQLkDxGRsZwCasqUADpckDnKnFMQWszIHAoGVEvBrsgixj0ACJ7zOdGrbDeUoamy2tt0Cj6LvvUuNX2X2XbbhybtDlndh-zQuNDbEOyQVTbZa3JZ2zb6m--5JB9Pj-_rF7p5e35drzbUcVSJIviSF4VSdqxkmtcl8iqXFr0unCyl8wVydGXlPYJQqmbCMRA1Ku25liVfkrtp7zH0nycfk9n3p9CNlYYJAJkroeSYyqfUeGOMwdfGNcmev0jBNq1BMGdNZtJkRk3mrMkMI4m_yGNoDjYM_zJsYuKY7bY-_Nz0N_QFqDR7cw |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04614_0 crossref_primary_10_1109_ACCESS_2024_3437738 |
| Cites_doi | 10.1109/TPAMI.2015.2478471 10.1016/j.ins.2017.05.013 10.1016/j.ins.2014.09.064 10.1016/j.neucom.2016.07.080 10.1109/72.991427 10.1016/j.ins.2010.05.037 10.1016/j.eswa.2015.11.009 10.1016/j.asoc.2007.10.012 10.1016/j.compeleceng.2015.08.011 10.1155/2015/604910 10.1016/j.patcog.2013.01.023 10.1016/j.swevo.2015.05.003 10.1007/s00521-013-1402-2 10.1016/j.asoc.2013.03.021 10.1016/j.eswa.2013.09.023 10.1016/j.advengsoft.2013.12.007 10.1109/TCBB.2009.8 10.1007/s10115-010-0288-x 10.1016/j.patcog.2014.11.010 10.1016/j.jbi.2017.01.016 10.1371/journal.pgen.1002728 10.1109/TKDE.2015.2426703 10.1016/S0031-3203(01)00084-X 10.1016/j.eswa.2017.04.019 10.1016/j.neucom.2015.06.083 10.1093/bioinformatics/btg419 10.1023/A:1018628609742 10.1109/TNB.2009.2035284 10.1016/j.knosys.2012.11.005 10.1186/1471-2164-9-S2-S27 10.1109/TPAMI.2005.159 10.1504/IJBIC.2013.055093 10.1016/j.eswa.2005.09.024 10.1109/PECON.2014.7062431 10.1109/NABIC.2009.5393690 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-018-2640-y |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 3526 |
| ExternalDocumentID | 10_1007_s11227_018_2640_y |
| GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61602206 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c316t-10eb39966a000283fb13d75a1e89c5b5ce9131cbdee10466f24c204f168e385b3 |
| IEDL.DBID | U2A |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:39:18 EDT 2025 Wed Oct 01 03:43:47 EDT 2025 Thu Apr 24 23:06:12 EDT 2025 Fri Feb 21 02:27:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Feature selection Minimum redundancy maximum relevance Support vector machine Grey wolf optimizer Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-10eb39966a000283fb13d75a1e89c5b5ce9131cbdee10466f24c204f168e385b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2400576465 |
| PQPubID | 2043774 |
| PageCount | 33 |
| ParticipantIDs | proquest_journals_2400576465 crossref_citationtrail_10_1007_s11227_018_2640_y crossref_primary_10_1007_s11227_018_2640_y springer_journals_10_1007_s11227_018_2640_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Zhao, Li, Yang (CR7) 2015; 47 Hsu, Lin (CR23) 2002; 13 Braga-Neto, Dougherty (CR24) 2004; 20 Sebban, Nock (CR5) 2002; 35 Suykens, Vandewalle (CR22) 1999; 9 Armanfard, Reilly, Komeili (CR3) 2016; 38 CR31 Zhang, Ding, Li (CR17) 2008; 9 Wang, Shao, Wu (CR28) 2013; 46 Rodrigues, Pereira, Nakamura (CR30) 2014; 41 Vieira, Mendonça, Farinha, Sousa (CR26) 2013; 13 Wang, Nie, Huang (CR4) 2015; 27 Che, Yang, Li, Bai, Zhang, Dheng (CR11) 2017; 407 Mundra, Rajapakse (CR16) 2010; 9 Ouaarab, Ahiod, Yang (CR36) 2014; 24 Freeman, Kulic, Basir (CR6) 2015; 48 Emary, Zawbaa, Hassanien (CR21) 2016; 172 Yang, He (CR29) 2013; 5 Cheng (CR1) 2010; 7 Huang, Wang (CR34) 2006; 31 Elyasigomari, Lee, Screen, Shaheen (CR14) 2017; 67 Alshamlan, Badr, Alohali (CR10) 2015; 2015 Heisig (CR2) 2013; 8 Peng, Long, Ding (CR18) 2005; 27 Pourpanah, Lim, Saleh (CR8) 2016; 49 CR25 Tsai, Eberle, Chu (CR27) 2013; 39 Mohapatra, Chakravarty, Dash (CR32) 2015; 24 Unler, Murat, Chinnam (CR33) 2011; 181 Akadi, Amine, Ouardighi, Aboutajdine (CR9) 2011; 26 Lin, Lee, Chen, Tseng (CR35) 2008; 8 García, Sánchez (CR13) 2015; 294 CR20 Mirjalili, Mirjalili, Lewis (CR19) 2014; 69 Chen, Li, Wang (CR37) 2017; 83 Lu, Chen, Yan, Qun, Yu, Zhigang (CR12) 2017; 256 Yang, Ho, Yang, Zhou (CR15) 2011; 12 Z Wang (2640_CR28) 2013; 46 XS Yang (2640_CR29) 2013; 5 A Unler (2640_CR33) 2011; 181 CL Huang (2640_CR34) 2006; 31 F Pourpanah (2640_CR8) 2016; 49 2640_CR31 S-W Lin (2640_CR35) 2008; 8 J Heisig (2640_CR2) 2013; 8 N Armanfard (2640_CR3) 2016; 38 Y Zhang (2640_CR17) 2008; 9 Qiang Cheng (2640_CR1) 2010; 7 P Yang (2640_CR15) 2011; 12 AE Akadi (2640_CR9) 2011; 26 C Freeman (2640_CR6) 2015; 48 SM Vieira (2640_CR26) 2013; 13 JAK Suykens (2640_CR22) 1999; 9 J Che (2640_CR11) 2017; 407 H Peng (2640_CR18) 2005; 27 C-F Tsai (2640_CR27) 2013; 39 H Lu (2640_CR12) 2017; 256 D Rodrigues (2640_CR30) 2014; 41 D Wang (2640_CR4) 2015; 27 S Mirjalili (2640_CR19) 2014; 69 H Alshamlan (2640_CR10) 2015; 2015 2640_CR20 CW Hsu (2640_CR23) 2002; 13 X Zhao (2640_CR7) 2015; 47 V Elyasigomari (2640_CR14) 2017; 67 E Emary (2640_CR21) 2016; 172 PA Mundra (2640_CR16) 2010; 9 2640_CR25 M Sebban (2640_CR5) 2002; 35 A Ouaarab (2640_CR36) 2014; 24 UM Braga-Neto (2640_CR24) 2004; 20 P Mohapatra (2640_CR32) 2015; 24 V García (2640_CR13) 2015; 294 Y-P Chen (2640_CR37) 2017; 83 |
| References_xml | – volume: 38 start-page: 1217 issue: 6 year: 2016 end-page: 1227 ident: CR3 article-title: Local feature selection for data classification publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2478471 – volume: 407 start-page: 68 year: 2017 end-page: 86 ident: CR11 article-title: Maximum relevance minimum common redundancy feature selection for nonlinear data publication-title: Inform Sci doi: 10.1016/j.ins.2017.05.013 – volume: 294 start-page: 362 year: 2015 end-page: 375 ident: CR13 article-title: Mapping microarray gene expression data into dissimilarity spaces for tumor classification publication-title: Inform Sci doi: 10.1016/j.ins.2014.09.064 – volume: 256 start-page: 56 issue: C year: 2017 end-page: 62 ident: CR12 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – volume: 13 start-page: 415 issue: 2 year: 2002 end-page: 425 ident: CR23 article-title: A comparison of methods for multi-class support vector machines publication-title: IEEE Trans Neural Netw doi: 10.1109/72.991427 – volume: 181 start-page: 4625 issue: 20 year: 2011 end-page: 4641 ident: CR33 article-title: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification publication-title: Inf Sci doi: 10.1016/j.ins.2010.05.037 – volume: 49 start-page: 74 year: 2016 end-page: 85 ident: CR8 article-title: A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.11.009 – volume: 8 start-page: 1505 issue: 4 year: 2008 end-page: 1512 ident: CR35 article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.10.012 – volume: 47 start-page: 114 year: 2015 end-page: 125 ident: CR7 article-title: A two-stage feature selection method with its application publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2015.08.011 – volume: 2015 start-page: 1 issue: 4 year: 2015 end-page: 15 ident: CR10 article-title: mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling publication-title: Biomed Res Int doi: 10.1155/2015/604910 – volume: 46 start-page: 2267 issue: 8 year: 2013 end-page: 2277 ident: CR28 article-title: A GA-based model selection for smooth twin parametric-margin support vector machine publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.01.023 – volume: 24 start-page: 25 year: 2015 end-page: 49 ident: CR32 article-title: An improved cuckoo search based extreme learning machine for medical data classification publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2015.05.003 – volume: 24 start-page: 1659 issue: 7–8 year: 2014 end-page: 1669 ident: CR36 article-title: Discrete cuckoo search algorithm for the travelling salesman problem publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1402-2 – volume: 13 start-page: 3494 issue: 8 year: 2013 end-page: 3504 ident: CR26 article-title: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.03.021 – volume: 41 start-page: 2250 issue: 5 year: 2014 end-page: 2258 ident: CR30 article-title: A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.023 – volume: 69 start-page: 46 issue: 3 year: 2014 end-page: 61 ident: CR19 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 7 start-page: 636 issue: 4 year: 2010 end-page: 646 ident: CR1 article-title: A sparse learning machine for high-dimensional data with application to microarray gene analysis publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2009.8 – volume: 26 start-page: 487 issue: 3 year: 2011 end-page: 500 ident: CR9 article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper publication-title: Knowl Inf Syst doi: 10.1007/s10115-010-0288-x – ident: CR25 – volume: 48 start-page: 1812 issue: 5 year: 2015 end-page: 1826 ident: CR6 article-title: An evaluation of classifier-specific filter measure performance for feature selection publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.11.010 – volume: 67 start-page: 11 year: 2017 end-page: 20 ident: CR14 article-title: Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification publication-title: J Biomed Inform doi: 10.1016/j.jbi.2017.01.016 – volume: 8 start-page: e1002728 issue: 5 year: 2013 ident: CR2 article-title: Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002728 – volume: 27 start-page: 2743 issue: 10 year: 2015 end-page: 2755 ident: CR4 article-title: Feature selection via global redundancy minimization publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2426703 – volume: 35 start-page: 835 issue: 4 year: 2002 end-page: 846 ident: CR5 article-title: A hybrid filter/wrapper approach of feature selection using information theory publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00084-X – volume: 83 start-page: 1 issue: C year: 2017 end-page: 17 ident: CR37 article-title: A novel bacterial foraging optimization algorithm for feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.019 – volume: 12 start-page: 2901 year: 2011 end-page: 2917 ident: CR15 article-title: Gene–gene interaction filtering with ensemble of filters publication-title: BMC Bioinform – volume: 172 start-page: 371 issue: C year: 2016 end-page: 381 ident: CR21 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 20 start-page: 374 issue: 3 year: 2004 end-page: 380 ident: CR24 article-title: Is cross-validation valid for small-sample microarray classification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg419 – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 ident: CR22 article-title: Least squares support vector machine classifiers publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – ident: CR31 – volume: 9 start-page: 31 issue: 1 year: 2010 end-page: 37 ident: CR16 article-title: SVM-RFE with MRMR filter for gene selection publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2009.2035284 – volume: 39 start-page: 240 year: 2013 end-page: 247 ident: CR27 article-title: Genetic algorithms in feature and instance selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.11.005 – volume: 9 start-page: S27 issue: Suppl 2 year: 2008 ident: CR17 article-title: Gene selection algorithm by combining reliefF and mRMR publication-title: BMC Genom doi: 10.1186/1471-2164-9-S2-S27 – volume: 27 start-page: 1226 issue: 8 year: 2005 end-page: 1238 ident: CR18 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 5 start-page: 141 issue: 3 year: 2013 end-page: 149 ident: CR29 article-title: Bat algorithm: literature review and applications publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2013.055093 – ident: CR20 – volume: 31 start-page: 231 issue: 2 year: 2006 end-page: 240 ident: CR34 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.09.024 – volume: 2015 start-page: 1 issue: 4 year: 2015 ident: 2640_CR10 publication-title: Biomed Res Int doi: 10.1155/2015/604910 – volume: 31 start-page: 231 issue: 2 year: 2006 ident: 2640_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.09.024 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 2640_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – ident: 2640_CR25 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 2640_CR22 publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – volume: 407 start-page: 68 year: 2017 ident: 2640_CR11 publication-title: Inform Sci doi: 10.1016/j.ins.2017.05.013 – volume: 172 start-page: 371 issue: C year: 2016 ident: 2640_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 294 start-page: 362 year: 2015 ident: 2640_CR13 publication-title: Inform Sci doi: 10.1016/j.ins.2014.09.064 – volume: 8 start-page: e1002728 issue: 5 year: 2013 ident: 2640_CR2 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002728 – volume: 69 start-page: 46 issue: 3 year: 2014 ident: 2640_CR19 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 9 start-page: 31 issue: 1 year: 2010 ident: 2640_CR16 publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2009.2035284 – volume: 24 start-page: 25 year: 2015 ident: 2640_CR32 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2015.05.003 – volume: 49 start-page: 74 year: 2016 ident: 2640_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.11.009 – volume: 47 start-page: 114 year: 2015 ident: 2640_CR7 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2015.08.011 – ident: 2640_CR20 doi: 10.1109/PECON.2014.7062431 – volume: 26 start-page: 487 issue: 3 year: 2011 ident: 2640_CR9 publication-title: Knowl Inf Syst doi: 10.1007/s10115-010-0288-x – volume: 12 start-page: 2901 year: 2011 ident: 2640_CR15 publication-title: BMC Bioinform – volume: 46 start-page: 2267 issue: 8 year: 2013 ident: 2640_CR28 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.01.023 – volume: 9 start-page: S27 issue: Suppl 2 year: 2008 ident: 2640_CR17 publication-title: BMC Genom doi: 10.1186/1471-2164-9-S2-S27 – volume: 83 start-page: 1 issue: C year: 2017 ident: 2640_CR37 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.019 – volume: 20 start-page: 374 issue: 3 year: 2004 ident: 2640_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg419 – volume: 181 start-page: 4625 issue: 20 year: 2011 ident: 2640_CR33 publication-title: Inf Sci doi: 10.1016/j.ins.2010.05.037 – volume: 24 start-page: 1659 issue: 7–8 year: 2014 ident: 2640_CR36 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1402-2 – volume: 5 start-page: 141 issue: 3 year: 2013 ident: 2640_CR29 publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2013.055093 – volume: 7 start-page: 636 issue: 4 year: 2010 ident: 2640_CR1 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2009.8 – volume: 13 start-page: 3494 issue: 8 year: 2013 ident: 2640_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.03.021 – volume: 27 start-page: 2743 issue: 10 year: 2015 ident: 2640_CR4 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2426703 – volume: 13 start-page: 415 issue: 2 year: 2002 ident: 2640_CR23 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.991427 – volume: 41 start-page: 2250 issue: 5 year: 2014 ident: 2640_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.023 – ident: 2640_CR31 doi: 10.1109/NABIC.2009.5393690 – volume: 38 start-page: 1217 issue: 6 year: 2016 ident: 2640_CR3 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2478471 – volume: 48 start-page: 1812 issue: 5 year: 2015 ident: 2640_CR6 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.11.010 – volume: 35 start-page: 835 issue: 4 year: 2002 ident: 2640_CR5 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00084-X – volume: 67 start-page: 11 year: 2017 ident: 2640_CR14 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2017.01.016 – volume: 256 start-page: 56 issue: C year: 2017 ident: 2640_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – volume: 8 start-page: 1505 issue: 4 year: 2008 ident: 2640_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.10.012 – volume: 39 start-page: 240 year: 2013 ident: 2640_CR27 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.11.005 |
| SSID | ssj0004373 |
| Score | 2.2156644 |
| Snippet | For each microarray data set, only a small number of genes are beneficial. Due to the high-dimensional problem, gene selection research work remains a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3494 |
| SubjectTerms | Accuracy Algorithms Classification Compilers Computer Science Datasets Genes Interpreters Processor Architectures Programming Languages Reduction Redundancy |
| Title | A hybrid feature selection algorithm for microarray data |
| URI | https://link.springer.com/article/10.1007/s11227-018-2640-y https://www.proquest.com/docview/2400576465 |
| Volume | 76 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7DwRhRK5YEJFMnxI4nHFLVUIDpRqUyRnTp06AO1Zci_x5cmRCBAYvIQ28Pn13257-4ArvUkE8Yq44lJlnnCGRieCmnohYq6IUHEtcJo5KdhMBiJh7Ecl3Hc60rtXrkki5u6DnbzGUOZZISqLOrlu9CUmM3LbeIRi-tgSL51KyvHiyIpWOXK_GmKr49RbWF-c4oWb03_EPZLI5HE21U9gh27OIaDqgADKc_jCUQxmeYYckUyWyToJOuirI3DmujZ69IR_-mcOLOUzFF3p1crnRPUhJ7CqN97vht4ZSkEL-V-sHGXpSO9SE108T-MZ8bnk1Bq30YqlUamVvncT83EWnTaBhkTKaMi84PI8kgafgaNxXJhz4FQKTGLm-JaUKGN1lw5jqEzpmVKjaAtoBUmSVrmCcdyFbOkznCMMCYOxgRhTPIW3HwOedsmyfirc7sCOinPyzpBJatjPiKQLbitwK8__zrZxb96X8IeQ7pc6BXb0Nis3u2Vsyk2pgPNuN_tDrG9f3nsdYo99QHbV8Tk |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROOhF_Iwoag-eNCPd2m7rkRgQ5eMECZ6WdnRi5MPAOOBfbzs2F4macF7bbK9f77f3e78HcCuGEZWKS4sOo8ii2sGwuIc9y-NYd3F9IrjJRu503WafPg_YIM3jXmRs9ywkmZzUebKb7TiGJukbVha2VrtQpBqfOAUo1h5fWvU8HZKsA8tcIyOfUScLZv42yM_rKPcxN8KiyW3TKEEve881yeS9uoxlNfzckHDc8kMO4SD1PlFtvVyOYEdNj6GUVXZA6UY_Ab-GRiuTy4UilSh_okVSL0dPIhLj19n8LR5NkPZ30cQQ-sR8LlbIkE1Pod-o9x6aVlpjwQqJ7cb6FNZo2mAekfxoI5G0ydBjwlY-D5lkoeI2sUM5VMpEg93IoaGDaWS7viI-k-QMCtPZVJ0DwowZeThOBMVUSCEI1-BFRI5gIZYUlwFnpg7CVIDc1MEYB7l0srFMoC0TGMsEqzLcfXf5WKtv_Ne4ks1fkG7ERWAoshpSUZeV4T6bjvzxn4NdbNX6BvaavU47aD91W5ew7xhMnpAiK1CI50t1pR2XWF6nC_ULrMrhwg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwFLSgSIgLO6JQwAdOoKiOlyQ-VkDFWnGgUm-WndgUqZvScMjfY2chAgES59g-TOz4Td68eQCcy8RQpbnyaGKMR22A4fEQhV7IkZ0SRERyV438NAhuh_R-xEZVn9NlrXavU5JlTYNzaZpl3UViuk3hm4-xk0xGTqGFvHwVrFHnk2A39BD3msJIUqaYueVIEaO4Tmv-tMTXi6mJNr8lSIt7p78NNquAEfbKN7wDVvRsF2zVzRhgdTb3QNSD49yVX0GjC7NOuCxa3FjcoZy8ztO3bDyFNkSFU6fBk2kqc-j0oftg2L95ubr1qrYIXkz8ILMfTkuAHU2Rxb8xYpRPkpBJX0c8ZorFmvvEj1WitUvgBgbTGCNq_CDSJGKKHIDWbD7ThwAixpyjGyeSIiqVlIRbviENlixGiqI2QDUmIq48w13riolo3I4djMLCKByMIm-Di88pi9Iw46_BnRpoUZ2dpXCqVsuCaMDa4LIGv3n862JH_xp9Btafr_vi8W7wcAw2sGPRhYyxA1pZ-q5PbKiRqdNiO30AmO_I_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+feature+selection+algorithm+for+microarray+data&rft.jtitle=The+Journal+of+supercomputing&rft.au=Zheng+Yuefeng&rft.au=Li%2C+Ying&rft.au=Wang%2C+Gang&rft.au=Chen%2C+Yupeng&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=5&rft.spage=3494&rft.epage=3526&rft_id=info:doi/10.1007%2Fs11227-018-2640-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |