The v-algorithm for discovering software process lines

A software company can define a software process line (SPrL) to deal with projects with different characteristics. This entails defining a base process and its variation points; the SPrL is then tailored to each project. This approach avoids the co‐evolution problems but is expensive to set up. In c...

Full description

Saved in:
Bibliographic Details
Published inJournal of software : evolution and process Vol. 28; no. 9; pp. 783 - 799
Main Authors Rojas Blum, Fabian, Simmonds, Jocelyn, Bastarrica, María Cecilia
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN2047-7473
2047-7481
DOI10.1002/smr.1778

Cover

Abstract A software company can define a software process line (SPrL) to deal with projects with different characteristics. This entails defining a base process and its variation points; the SPrL is then tailored to each project. This approach avoids the co‐evolution problems but is expensive to set up. In companies that register project events, this information could be used to discover the SPrL. However, traditional discovery algorithms focus on extracting a single process, which can be overly complex and would not be useful for managing future projects. Filtering out less frequent behavior leads to the discovery of simpler models, but these may not include relevant behavior. To address these issues, we propose the v‐algorithm, which discovers a SPrL from process logs. Two thresholds split the log into three clusters based on relation frequency. The first one is used to generate the base process, the second one is used to identify variable elements, and the last one is discarded. We used the v‐algorithm to discover the SPrL of Mobius, a small Chilean software company. We also discuss how the values of the thresholds affect the process discovery quality dimensions, extending existing metrics to the SPrL case. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList A software company can define a software process line (SPrL) to deal with projects with different characteristics. This entails defining a base process and its variation points; the SPrL is then tailored to each project. This approach avoids the co-evolution problems but is expensive to set up. In companies that register project events, this information could be used to discover the SPrL. However, traditional discovery algorithms focus on extracting a single process, which can be overly complex and would not be useful for managing future projects. Filtering out less frequent behavior leads to the discovery of simpler models, but these may not include relevant behavior. To address these issues, we propose the v-algorithm, which discovers a SPrL from process logs. Two thresholds split the log into three clusters based on relation frequency. The first one is used to generate the base process, the second one is used to identify variable elements, and the last one is discarded. We used the v-algorithm to discover the SPrL of Mobius, a small Chilean software company. We also discuss how the values of the thresholds affect the process discovery quality dimensions, extending existing metrics to the SPrL case. Copyright © 2016 John Wiley & Sons, Ltd.
A software company can define a software process line (SPrL) to deal with projects with different characteristics. This entails defining a base process and its variation points; the SPrL is then tailored to each project. This approach avoids the co‐evolution problems but is expensive to set up. In companies that register project events, this information could be used to discover the SPrL. However, traditional discovery algorithms focus on extracting a single process, which can be overly complex and would not be useful for managing future projects. Filtering out less frequent behavior leads to the discovery of simpler models, but these may not include relevant behavior. To address these issues, we propose the v‐algorithm , which discovers a SPrL from process logs. Two thresholds split the log into three clusters based on relation frequency. The first one is used to generate the base process, the second one is used to identify variable elements, and the last one is discarded. We used the v‐algorithm to discover the SPrL of Mobius, a small Chilean software company. We also discuss how the values of the thresholds affect the process discovery quality dimensions, extending existing metrics to the SPrL case. Copyright © 2016 John Wiley & Sons, Ltd.
Author Bastarrica, María Cecilia
Rojas Blum, Fabian
Simmonds, Jocelyn
Author_xml – sequence: 1
  givenname: Fabian
  surname: Rojas Blum
  fullname: Rojas Blum, Fabian
  email: fblum@dcc.uchile.cl, Correspondence to: Fabian Rojas Blum, Computer Science Department (DCC), University of Chile, Santiago, Chile., fblum@dcc.uchile.cl
  organization: Computer Science Department (DCC), University of Chile, Santiago, Chile
– sequence: 2
  givenname: Jocelyn
  surname: Simmonds
  fullname: Simmonds, Jocelyn
  organization: Computer Science Department (DCC), University of Chile, Santiago, Chile
– sequence: 3
  givenname: María Cecilia
  surname: Bastarrica
  fullname: Bastarrica, María Cecilia
  organization: Computer Science Department (DCC), University of Chile, Santiago, Chile
BookMark eNp1kF9PwjAUxRuDiYgkfoQlvvgybNdt7R4NCpogJojhsSndLRTHiu349-0dwZBo9L6c-_A75yTnEjVKWwJC1wR3CMbRnV-6DmGMn6FmhGMWspiTxuln9AK1vV_g-tIIJ3HSROl4DsEmlMXMOlPNl4G2LsiNV3YDzpSzwFtdbaWDYOWsAu-DwpTgr9C5loWH9re20Hvvcdx9Cgev_efu_SBUlKQ8zClVEc5Bq4xOmcyVYgx4ohjV2TQlmdQ5jfKcAdUq4RnLoginMcXTlEGsqKItdHPMrds_1-ArsbBrV9aVgvCapZzgrKZuj5Ry1nsHWqycWUq3FwSLwzCiHkYchqnRzi9UmUpWxpaVk6b4yxAeDVtTwP7fYPH2MvrJG1_B7sRL9yFSRlkiJsO-GI547wFPYpHQLw-5hHk
CitedBy_id crossref_primary_10_3390_software2010003
Cites_doi 10.1007/978-3-319-07881-6_16
10.1109/TKDE.2004.47
10.1007/s00165-010-0161-4
10.1002/smr.1576
10.1145/2695664.2696046
10.1016/j.infsof.2014.09.004
10.1007/3-540-28901-1
10.1145/2785592.2785605
10.1109/5.24143
10.21236/ADA235785
10.1007/978-3-642-33606-5_19
10.1007/s10618-006-0061-7
10.1145/2745802.2745814
10.1007/978-3-642-39259-7_15
10.1145/2593770.2593773
10.1016/j.is.2007.07.001
10.1007/978-3-642-21640-4_21
10.1007/11908562_12
10.1007/978-3-642-24291-5
10.1007/978-3-319-13036-1_11
10.1007/978-3-642-19345-3
10.1145/2600821.2600851
10.1007/3-540-63139-9_48
10.1109/MODELS.2015.7338234
10.1145/1987875.1987920
10.1049/iet-sen.2010.0020
10.1016/j.compind.2003.10.001
10.1145/2597073.2597101
10.1109/PLEASE.2013.6608661
10.1016/S0169-023X(03)00066-1
10.1007/978-3-642-40176-3_5
10.1145/2785592.2785612
10.1007/978-3-540-75183-0_24
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/smr.1778
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2047-7481
EndPage 799
ExternalDocumentID 4186580591
10_1002_smr_1778
SMR1778
ark_67375_WNG_NR8FD0W4_5
Genre article
GroupedDBID .3N
.4S
.GA
.Y3
05W
0R~
10A
1OB
1OC
31~
33P
3SF
50Z
52O
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
G-S
G.N
GODZA
HGLYW
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
P2W
P2X
PQQKQ
Q.N
Q11
QB0
R.K
ROL
SUPJJ
TUS
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3168-d33c20defc93b7adcc77e85c73f9b619afd32dd7e3fc589792206430b67e4c3c3
IEDL.DBID DR2
ISSN 2047-7473
IngestDate Sun Jul 13 04:34:42 EDT 2025
Wed Oct 01 02:26:03 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Wed Jan 22 16:34:06 EST 2025
Sun Sep 21 06:21:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3168-d33c20defc93b7adcc77e85c73f9b619afd32dd7e3fc589792206430b67e4c3c3
Notes ark:/67375/WNG-NR8FD0W4-5
istex:B2D5D03E3E79B253A9AF2445BB01173D9148F272
ArticleID:SMR1778
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1820638109
PQPubID 2034650
PageCount 17
ParticipantIDs proquest_journals_1820638109
crossref_primary_10_1002_smr_1778
crossref_citationtrail_10_1002_smr_1778
wiley_primary_10_1002_smr_1778_SMR1778
istex_primary_ark_67375_WNG_NR8FD0W4_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09
September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of software : evolution and process
PublicationTitleAlternate J. Softw. Evol. and Proc
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hurtado Alegría JA, Bastarrica MC, Quispe A, Ochoa SF. MDE-based process tailoring strategy. Journal of Software: Evolution and Process 2014; 26(4):386-403.
van der Aalst W, van Dongen B, Herbst J, Maruster L, Schimm G, Weijters A. Workflow mining: a survey of issues and approaches. Data & Knowledge Engineering 2003; 47(2):237-267.
van der Aalst W, Weijters A. Process mining: a research agenda. Computers in Industry 2004; 53(3):231-244.
Pillat R, Oliveira T, Alencar P, Cowan D. BPMNt: A BPMN extension for specifying software process tailoring. Information and Software Technology 2015; 57:95-115.
Münch J, Armbrust O, Kowalczyk M, Soto M. Software Process Definition and Management. Springer: Berlin Heidelberg, 2012.
Rozinat A, van der Aalst WMP. Conformance checking of processes based on monitoring real behavior. Information Systems 2008; 33:64-95.
van der Aalst W. Process Mining. Springer: Berlin Heidelberg, 2011.
van der Aalst W, van Hee K, ter Hofstede A, Sidorova N, Verbeek H, Voorhoeve M, Wynn M. Soundness of workflow nets: classification, decidability, and analysis. Formal Aspects of Computing 2011; 23(3):333-363.
van der Aalst W, Weijters T, Maruster L. Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 2004; 16(9):1128-1142.
de Medeiros A, Weijters A, van der Aalst W. Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 2007; 14(2):245-304.
Pohl K, Böckle G, van der Linden FJ. Software Product Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc., 2005.
Martínez-Ruiz T, García F, Piattini M, Münch J. Modelling software process variability: an empirical study. IET Software 2011; 5(2):172-187.
Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 1989; 77(4):541-580.
Medeiros A, Weijters A, van der Aalst W. Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 2007; 14(2):245-304.
2015; 57
2004; 53
1989; 77
2012
1990
2011
2004; 16
2014; 26
1997
2003; 47
2007
2006
2005
2015
2011; 23
2008; 33
2014
2013
2011; 5
2007; 14
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
IEEE Task Force on Process Mining (e_1_2_9_31_1) 2012
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
Leemans SJJ (e_1_2_9_21_1) 2013
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 1989; 77(4):541-580.
– reference: Hurtado Alegría JA, Bastarrica MC, Quispe A, Ochoa SF. MDE-based process tailoring strategy. Journal of Software: Evolution and Process 2014; 26(4):386-403.
– reference: van der Aalst W. Process Mining. Springer: Berlin Heidelberg, 2011.
– reference: van der Aalst W, Weijters A. Process mining: a research agenda. Computers in Industry 2004; 53(3):231-244.
– reference: van der Aalst W, van Dongen B, Herbst J, Maruster L, Schimm G, Weijters A. Workflow mining: a survey of issues and approaches. Data & Knowledge Engineering 2003; 47(2):237-267.
– reference: Medeiros A, Weijters A, van der Aalst W. Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 2007; 14(2):245-304.
– reference: Rozinat A, van der Aalst WMP. Conformance checking of processes based on monitoring real behavior. Information Systems 2008; 33:64-95.
– reference: Pillat R, Oliveira T, Alencar P, Cowan D. BPMNt: A BPMN extension for specifying software process tailoring. Information and Software Technology 2015; 57:95-115.
– reference: Martínez-Ruiz T, García F, Piattini M, Münch J. Modelling software process variability: an empirical study. IET Software 2011; 5(2):172-187.
– reference: van der Aalst W, van Hee K, ter Hofstede A, Sidorova N, Verbeek H, Voorhoeve M, Wynn M. Soundness of workflow nets: classification, decidability, and analysis. Formal Aspects of Computing 2011; 23(3):333-363.
– reference: Pohl K, Böckle G, van der Linden FJ. Software Product Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc., 2005.
– reference: Münch J, Armbrust O, Kowalczyk M, Soto M. Software Process Definition and Management. Springer: Berlin Heidelberg, 2012.
– reference: de Medeiros A, Weijters A, van der Aalst W. Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 2007; 14(2):245-304.
– reference: van der Aalst W, Weijters T, Maruster L. Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 2004; 16(9):1128-1142.
– year: 2011
– volume: 5
  start-page: 172
  issue: 2
  year: 2011
  end-page: 187
  article-title: Modelling software process variability: an empirical study
  publication-title: IET Software
– volume: 47
  start-page: 237
  issue: 2
  year: 2003
  end-page: 267
  article-title: Workflow mining: a survey of issues and approaches
  publication-title: Data & Knowledge Engineering
– volume: 23
  start-page: 333
  issue: 3
  year: 2011
  end-page: 363
  article-title: Soundness of workflow nets: classification, decidability, and analysis
  publication-title: Formal Aspects of Computing
– volume: 53
  start-page: 231
  issue: 3
  year: 2004
  end-page: 244
  article-title: Process mining: a research agenda
  publication-title: Computers in Industry
– volume: 14
  start-page: 245
  issue: 2
  year: 2007
  end-page: 304
  article-title: Genetic process mining: an experimental evaluation
  publication-title: Data Mining and Knowledge Discovery
– volume: 26
  start-page: 386
  issue: 4
  year: 2014
  end-page: 403
  article-title: MDE‐based process tailoring strategy
  publication-title: Journal of Software: Evolution and Process
– year: 2005
– volume: 77
  start-page: 541
  issue: 4
  year: 1989
  end-page: 580
  article-title: Petri nets: Properties, analysis and applications
  publication-title: Proceedings of the IEEE
– year: 2007
– year: 2006
– year: 2013
  end-page: 78
– year: 1997
– start-page: 169
  year: 2012
  end-page: 194
– volume: 57
  start-page: 95
  year: 2015
  end-page: 115
  article-title: BPMNt: A BPMN extension for specifying software process tailoring
  publication-title: Information and Software Technology
– year: 1990
– volume: 16
  start-page: 1128
  issue: 9
  year: 2004
  end-page: 1142
  article-title: Workflow mining: discovering process models from event logs
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 33
  start-page: 64
  year: 2008
  end-page: 95
  article-title: Conformance checking of processes based on monitoring real behavior
  publication-title: Information Systems
– year: 2014
– year: 2015
– year: 2012
– year: 2013
– ident: e_1_2_9_15_1
  doi: 10.1007/978-3-319-07881-6_16
– ident: e_1_2_9_18_1
  doi: 10.1109/TKDE.2004.47
– ident: e_1_2_9_30_1
  doi: 10.1007/s00165-010-0161-4
– ident: e_1_2_9_14_1
  doi: 10.1002/smr.1576
– ident: e_1_2_9_38_1
  doi: 10.1145/2695664.2696046
– ident: e_1_2_9_7_1
  doi: 10.1016/j.infsof.2014.09.004
– ident: e_1_2_9_12_1
  doi: 10.1007/3-540-28901-1
– ident: e_1_2_9_22_1
  doi: 10.1145/2785592.2785605
– ident: e_1_2_9_27_1
  doi: 10.1109/5.24143
– ident: e_1_2_9_11_1
  doi: 10.21236/ADA235785
– ident: e_1_2_9_32_1
  doi: 10.1007/978-3-642-33606-5_19
– ident: e_1_2_9_29_1
  doi: 10.1007/s10618-006-0061-7
– ident: e_1_2_9_20_1
– ident: e_1_2_9_36_1
  doi: 10.1145/2745802.2745814
– ident: e_1_2_9_35_1
  doi: 10.1007/s10618-006-0061-7
– ident: e_1_2_9_10_1
  doi: 10.1007/978-3-642-39259-7_15
– ident: e_1_2_9_4_1
  doi: 10.1145/2593770.2593773
– ident: e_1_2_9_34_1
  doi: 10.1016/j.is.2007.07.001
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-642-21640-4_21
– ident: e_1_2_9_24_1
  doi: 10.1007/11908562_12
– ident: e_1_2_9_2_1
  doi: 10.1007/978-3-642-24291-5
– ident: e_1_2_9_8_1
  doi: 10.1007/978-3-319-13036-1_11
– ident: e_1_2_9_25_1
  doi: 10.1007/978-3-642-19345-3
– ident: e_1_2_9_5_1
  doi: 10.1145/2600821.2600851
– ident: e_1_2_9_26_1
  doi: 10.1007/3-540-63139-9_48
– ident: e_1_2_9_40_1
  doi: 10.1109/MODELS.2015.7338234
– ident: e_1_2_9_3_1
  doi: 10.1145/1987875.1987920
– ident: e_1_2_9_6_1
  doi: 10.1049/iet-sen.2010.0020
– ident: e_1_2_9_17_1
  doi: 10.1016/j.compind.2003.10.001
– start-page: 169
  volume-title: Business Process Management Workshops, volume 99 of Lecture Notes in Business Information Processing
  year: 2012
  ident: e_1_2_9_31_1
– ident: e_1_2_9_33_1
– ident: e_1_2_9_16_1
  doi: 10.1145/2597073.2597101
– ident: e_1_2_9_23_1
– ident: e_1_2_9_13_1
  doi: 10.1109/PLEASE.2013.6608661
– volume-title: Business Process Management Workshops
  year: 2013
  ident: e_1_2_9_21_1
– ident: e_1_2_9_28_1
  doi: 10.1016/S0169-023X(03)00066-1
– ident: e_1_2_9_37_1
  doi: 10.1007/978-3-642-40176-3_5
– ident: e_1_2_9_39_1
  doi: 10.1145/2785592.2785612
– ident: e_1_2_9_19_1
  doi: 10.1007/978-3-540-75183-0_24
SSID ssj0000620545
Score 1.9787611
Snippet A software company can define a software process line (SPrL) to deal with projects with different characteristics. This entails defining a base process and its...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 783
SubjectTerms noise in logs
process discovery
software process lines
variability
Title The v-algorithm for discovering software process lines
URI https://api.istex.fr/ark:/67375/WNG-NR8FD0W4-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.1778
https://www.proquest.com/docview/1820638109
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2047-7481
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0000620545
  issn: 2047-7473
  databaseCode: ADMLS
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 2047-7473
  databaseCode: DR2
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  eissn: 2047-7481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000620545
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYqeukFaCkqhVZGQuWUJdiJnRwr6BZV6h62RSBxsOKxXSpgWSW7gDj1EfqMPAkz-VkKKhLilMskdsYezzfWzDeMbbgsCIehRmQRvGOAUoTIxlpEEvKAb6RSQJ3lO1B7-8m3w_SwzaqkWpiGH2J24UaWUZ_XZOCFrbbuSEOrs7K3rTXV-W5LVUdTQzG7XomVQDBCCYyCuAgQNMuOejYWW92795zRS9Lr1T2k-S9erR1Of4EddVNt8kxOetOJ7cH1AxbH5_3LIptvcSj_3Gyc1-yFH71hC12PB96a_BLLcB_xi5s_f4vTX-fl78nxGUeYy6mYl5I_0fHxCk_yy6L0fNwUHXCaT_WW7fe__NzZi9puCxFQ86rISQkidj5ALq0uHIDWPktBy5BbDLOK4KRwTnsZIM1ynQtBcCa2SvsEJMhlNjc6H_l3jEOi0PEpBToOSY4QzFltgwQPNk28SlfYZqd2Ay0VOXXEODUNibIwqBBDCllh6zPJcUO_8R-ZT_XKzQSK8oTS1XRqDgZfzWCY9Xfjg8TgsGvd0prWUitTE9gTzVmO36nX6NGBzI_vQ3q-f6rgKnuF-Eo1KWlrbG5STv0HxDAT-7Herbdm6e67
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gCXlqcoFDASglO2wU7sRJwQsCzQ7mFp1R6QrHhsQ9V2W2W3gDjxE_iN_BJm8lgoAglxymX8yNjj-cYafwPwwBdRego1EkfgnQKUKiYuNTJRWEZqkSuJTZbvWI92s9f7-f4SPOnfwrT8EIsLN7aM5rxmA-cL6c2frKGz43rw2JjiAqxkmsIURkQTubhgSbUkOMIpjJLZCAg2q558NpWbfeNz7miFNfv5HNb8FbE2Lme4Bu_6ybaZJoeDs7kb4JffeBz_828uw2oHRcXTdu9cgaUwvQprfZkH0Vn9NShoK4mP379-q47en9QH8w_HgpCu4Pe8nP9Jvk_M6DD_VNVBnLbvDgRPaHYddocvdp6Nkq7gQoJcvyrxSqFMfYhYKmcqj2hMKHI0KpaOIq0qeiW9N0FFzIvSlFIyokmdNiFDheoGLE9PpuEmCMw0-T6t0aQxKwmFeWdcVBjQ5VnQ-To86vVusWMj56IYR7blUZaWFGJZIetwfyF52jJw_EHmYbN0C4GqPuSMNZPbvfFLO54Uw-fpXmZp2I1-bW1nrDPbcNgz01lJ_TSL9NeB7NvtCX9v_avgPbg42tnesluvxm9uwyWCW7rNUNuA5Xl9Fu4QpJm7u83W_QFZTPLc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3xISEuhZai0kLrShWcsgQ7iRP1hLrdAm1XaAHBoZIVj-22ApZVdmkRJ35CfyO_hHE-tlAVCXHKZRI7Y4_n2Xp-A_DOpI4b2moEmsA7bVByF-hQ8kBg5uiNWHAsWb7dZOsg2jmKjybgfXMXptKHGB-4-cgo12sf4HZg3Ppf1dDhadHakDKdhOkozlLP52v3-PiAJUw4wRFPYeRejYBgs2jEZ0O-3rx8Jx1Ne89e3MGatxFrmXI6c_Ct6WzFNDlunY90Cy__0XF85N_Mw5MairLNau48hQnbfwZzTZkHVkf9AqQ0ldiv66s_-cn3s-Ln6McpI6TL_H1ez_-k3MeGtJj_zgvLBtW9A-Y7NHwOB52P-x-2grrgQoC-flVghEAeGuswE1rmBlFKm8Yohcs07bRyZwQ3RlrhME4zmXHuEU2oE2kjFCgWYap_1rcvgGGUUO5LEpShizJCYUZL7QRa1HFkk3gJ1hq_K6zVyH1RjBNV6ShzRQ5R3iFL8HZsOagUOP5js1oO3dggL449Y03G6rD7SXV7aacdHkaKml1uxlbVwTpUpYa9VzrL6DvlIN3bkNr72vPPlw81fAMzu-2O-rLd_fwKZgltJRVBbRmmRsW5XSFEM9Kvy5l7AxR68mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+v-algorithm+for+discovering+software+process+lines&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Rojas+Blum%2C+Fabian&rft.au=Simmonds%2C+Jocelyn&rft.au=Bastarrica%2C+Mar%C3%ADa+Cecilia&rft.date=2016-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2047-7473&rft.eissn=2047-7481&rft.volume=28&rft.issue=9&rft.spage=783&rft.epage=799&rft_id=info:doi/10.1002%2Fsmr.1778&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NR8FD0W4_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon