Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models

Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, whi...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution Vol. 9; no. 4; pp. 834 - 848
Main Authors Nieto‐Lugilde, Diego, Maguire, Kaitlin C., Blois, Jessica L., Williams, John W., Fitzpatrick, Matthew C., Peres‐Neto, Pedro
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.04.2018
Subjects
Online AccessGet full text
ISSN2041-210X
2041-210X
DOI10.1111/2041-210X.12936

Cover

Abstract Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in r to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs. We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research. We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data. Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space.
AbstractList Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in r to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs. We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research. We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data. Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space.
Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in r to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs.We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research.We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data.Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space.
Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in r to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs. We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research. We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data. Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space.
Author Maguire, Kaitlin C.
Fitzpatrick, Matthew C.
Peres‐Neto, Pedro
Nieto‐Lugilde, Diego
Blois, Jessica L.
Williams, John W.
Author_xml – sequence: 1
  givenname: Diego
  orcidid: 0000-0003-4135-2881
  surname: Nieto‐Lugilde
  fullname: Nieto‐Lugilde, Diego
  email: dnietolugilde@gmail.com
  organization: Universidad de Córdoba
– sequence: 2
  givenname: Kaitlin C.
  surname: Maguire
  fullname: Maguire, Kaitlin C.
  organization: University of California
– sequence: 3
  givenname: Jessica L.
  surname: Blois
  fullname: Blois, Jessica L.
  organization: University of California
– sequence: 4
  givenname: John W.
  surname: Williams
  fullname: Williams, John W.
  organization: University of Wisconsin
– sequence: 5
  givenname: Matthew C.
  surname: Fitzpatrick
  fullname: Fitzpatrick, Matthew C.
  organization: University of Maryland Center for Environmental Science
– sequence: 6
  givenname: Pedro
  surname: Peres‐Neto
  fullname: Peres‐Neto, Pedro
BookMark eNqFkDtLBDEUhYMo-KxtA7au5jUvO5H1ASuCKNiFbOaORjKTMcko29nZ-hv9Jc7siIiFnia54XznkrOJVhvXAEK7lBzQXoeMCDphlNwdUFbwdAVtfL-s_rivo50QHkkvnheEiQ30dtnZaDyE1jUBsLL3zpv4UAdcOY-1q-uuMXHx8fpu4Rksrl0J1prm_ghfw7OBF-wqHB_A-cU-Vm1rjVbR9Fn91JRDQKu8Ca7B0eHQgjYQcGlC9GbeDcYxMWyjtUrZADtf5xa6PZ3enJxPZldnFyfHs4nmNE0niYJEZCzLacK40lwLUSaQQ0XTJJ1nVZ6nldZpmQHwIptzNRecKUJLJXiRUMG30N6Y23r31EGI8tF1vulXSkYYKwQpaNK7ktGlvQvBQyW1ict_Ra-MlZTIoXY5FCuHYuWy9p47_MW13tTKL_4g0pF4MRYW_9nl5XTKR_ATfh6ZIQ
CitedBy_id crossref_primary_10_1002_eap_2379
crossref_primary_10_1038_s41598_024_70827_3
crossref_primary_10_1111_ecog_04728
crossref_primary_10_1016_j_tree_2019_12_010
crossref_primary_10_1016_j_ecolind_2022_109500
crossref_primary_10_1098_rstb_2023_0169
crossref_primary_10_1016_j_baae_2019_06_002
crossref_primary_10_1016_j_tree_2021_01_002
crossref_primary_10_1093_biolinnean_blac134
crossref_primary_10_1016_j_ecolind_2020_106649
crossref_primary_10_3897_VCS_2020_48518
crossref_primary_10_1016_j_quascirev_2021_107005
crossref_primary_10_1111_ecog_04327
crossref_primary_10_7717_peerj_4890
crossref_primary_10_1007_s10584_021_03097_x
crossref_primary_10_1016_j_ecolind_2021_107606
crossref_primary_10_1002_ecm_1370
crossref_primary_10_1038_s41598_020_69157_x
crossref_primary_10_1111_1749_4877_12946
crossref_primary_10_1016_j_scitotenv_2025_178601
crossref_primary_10_1111_1365_2745_13280
crossref_primary_10_1016_j_foreco_2023_121352
crossref_primary_10_1002_ecs2_3864
crossref_primary_10_1007_s10531_020_02024_3
crossref_primary_10_1111_oik_09873
crossref_primary_10_1111_geb_12759
crossref_primary_10_1002_eap_2546
crossref_primary_10_1080_0269249X_2022_2078429
crossref_primary_10_1139_cjfas_2023_0385
crossref_primary_10_1002_fee_2673
crossref_primary_10_1098_rstb_2023_0335
crossref_primary_10_1016_j_ecoinf_2024_102644
crossref_primary_10_3389_fmars_2022_887346
crossref_primary_10_1016_j_tree_2018_10_012
crossref_primary_10_1111_ecog_07522
crossref_primary_10_1002_ece3_4948
crossref_primary_10_1093_icesjms_fsaa068
crossref_primary_10_3390_d11010005
crossref_primary_10_1111_ecog_06272
crossref_primary_10_1111_ecog_07340
crossref_primary_10_1111_jbi_13491
crossref_primary_10_1002_ecs2_4028
crossref_primary_10_1080_17550874_2019_1646831
crossref_primary_10_1111_brv_13004
Cites_doi 10.1111/ele.12376
10.1111/ecog.01388
10.1890/10-1251.1
10.1111/j.1472-4642.2011.00813.x
10.1111/geb.12300
10.1111/j.1600-0587.2009.05856.x
10.1111/j.1365-2427.2010.02414.x
10.1111/j.1461-0248.2005.00792.x
10.1371/journal.pone.0077191
10.1111/j.2041-210X.2011.00172.x
10.1111/gcb.13251
10.1111/jbi.12628
10.1111/j.1600-0587.2013.00127.x
10.1186/1471-2148-13-75
10.1111/ecog.00819
10.1016/j.tree.2015.03.014
10.1111/brv.12222
10.1038/nmeth.1975
10.1002/ecy.1605
10.1111/j.2006.0906-7590.04596.x
10.1016/j.tree.2017.05.003
10.1007/s11295-010-0341-7
10.1111/2041-210X.12180
10.1016/j.soilbio.2014.05.025
10.1007/s13253-013-0146-x
10.1111/j.1600-0587.2011.07085.x
10.1111/j.1469-185X.2012.00235.x
10.1111/2041-210X.12501
10.1111/j.1472-4642.2008.00532.x
10.1111/j.1472-4642.2007.00341.x
10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
10.1111/ddi.12021
10.1111/j.1600-0587.2011.06653.x
10.1098/rspb.2013.1201
10.1111/2041-210X.12332
10.1890/14-2384.1
10.1890/11-0252.1
10.1016/j.biocon.2005.12.030
10.1126/science.1179504
10.1016/j.ecolmodel.2005.03.026
10.1111/2041-210X.12502
10.1038/ismej.2011.159
10.1073/pnas.071034898
10.1111/j.1365-2486.2012.02760.x
10.1016/j.dsr.2009.01.009
10.1111/j.1365-2699.2011.02517.x
10.1890/12-1322.1
10.1073/pnas.0914089107
10.1191/1471082X03st045oa
10.1890/1051-0761(2006)016[1449:RTSICP]2.0.CO;2
10.1111/j.1600-0587.2013.00466.x
10.1111/j.1600-0587.2012.07852.x
10.1111/j.1365-2664.2006.01149.x
10.1111/1365-2656.12287
10.1016/j.ecoinf.2009.12.002
10.1111/j.1365-2699.2010.02341.x
10.1111/nyas.12226
10.1111/j.1461-0248.2008.01270.x
10.1111/j.1365-2656.2010.01771.x
10.1146/annurev.ecolsys.110308.120159
10.1111/1365-2745.12239
10.1111/j.1472-4642.2007.00340.x
10.1890/13-1015.1
10.1371/journal.pone.0054179
10.1016/j.ecolmodel.2006.05.022
10.1111/j.1365-2699.2010.02418.x
10.1890/05-0283
10.1111/ecog.01892
10.1890/12-1549.1
10.1111/geb.12102
10.1016/j.tree.2015.09.007
10.1046/j.1523-1739.2003.01280.x
10.1890/10-0173.1
10.1111/j.1752-4571.2010.00172.x
10.1890/03-0078
10.1098/rspb.2015.2817
10.1007/s00027-011-0194-7
10.1146/annurev-ecolsys-112414-054441
10.1073/pnas.1220228110
10.1214/ss/1177012761
ContentType Journal Article
Copyright 2017 The Authors. Methods in Ecology and Evolution © 2017 British Ecological Society
Methods in Ecology and Evolution © 2018 British Ecological Society
Copyright_xml – notice: 2017 The Authors. Methods in Ecology and Evolution © 2017 British Ecological Society
– notice: Methods in Ecology and Evolution © 2018 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
DOI 10.1111/2041-210X.12936
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Genetics Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 848
ExternalDocumentID 10_1111_2041_210X_12936
MEE312936
Genre reviewArticle
GrantInformation_xml – fundername: National Science Foundation
  funderid: DEB‐1257033; DEB‐1257164; DEB‐1257508
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
WIN
7QG
7SN
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c3166-5ae5472781523ac3c44d5e8ef1656b7f886fcc6d7ee397b3ab432a01da4395143
ISSN 2041-210X
IngestDate Wed Aug 13 09:18:54 EDT 2025
Wed Oct 01 04:00:09 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Wed Jan 22 17:01:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3166-5ae5472781523ac3c44d5e8ef1656b7f886fcc6d7ee397b3ab432a01da4395143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4135-2881
PQID 2022940915
PQPubID 1016379
PageCount 15
ParticipantIDs proquest_journals_2022940915
crossref_citationtrail_10_1111_2041_210X_12936
crossref_primary_10_1111_2041_210X_12936
wiley_primary_10_1111_2041_210X_12936_MEE312936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 39
2009; 40
2010; 107
2013; 1297
2015; 30
2006; 130
2014; 24
2012; 18
2003; 17
2011; 56
2011; 17
2013; 280
2013; 8
2016; 39
2014; 23
2009; 56
2013; 19
2009; 12
2015; 46
2013; 18
2004; 74
2014; 5
2013; 13
2002; 83
2015; 84
2013; 94
2017; 32
2016; 43
2003; 3
2006; 29
2013; 110
2010; 5
2009; 15
2009; 326
2001; 98
2015; 6
2010; 37
2015; 18
2013; 88
2011
2011; 80
2006; 16
2016; 97
2011; 34
2011; 4
2011; 38
2012; 35
2007; 13
2011; 7
2006; 199
2016; 283
2012; 74
2015; 24
2012; 93
2015; 25
2016; 7
1988; 3
2012; 3
2013; 36
2009; 32
2017; 92
2006; 43
2006; 190
2006; 87
2005; 8
2011; 92
2014; 38
2014; 37
2017
2016
2015
2012; 6
2010; 91
2014; 76
2012; 9
2014; 102
2016; 22
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_83_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
Nieto‐Lugilde D. (e_1_2_11_60_1) 2017
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
R Core Team (e_1_2_11_71_1) 2017
References_xml – year: 2011
– volume: 56
  start-page: 21
  year: 2011
  end-page: 38
  article-title: Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications
  publication-title: Freshwater Biology
– volume: 13
  start-page: 265
  year: 2007
  end-page: 275
  article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
  publication-title: Diversity and Distributions
– volume: 36
  start-page: 460
  year: 2013
  end-page: 473
  article-title: Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum
  publication-title: Ecography
– volume: 7
  start-page: 399
  year: 2011
  end-page: 408
  article-title: Developing seed zones and transfer guidelines with multivariate regression trees
  publication-title: Tree Genetics & Genomes
– volume: 24
  start-page: 905
  year: 2015
  end-page: 916
  article-title: Close agreement between pollen‐based and forest inventory‐based models of vegetation turnover
  publication-title: Global Ecology and Biogeography
– volume: 110
  start-page: 9374
  year: 2013
  end-page: 9379
  article-title: Space can substitute for time in predicting climate‐change effects on biodiversity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 84
  start-page: 427
  year: 2015
  end-page: 441
  article-title: Elements of regional beetle faunas: Faunal variation and compositional breakpoints along climate, land cover and geographical gradients
  publication-title: Journal of Animal Ecology
– volume: 18
  start-page: 3149
  year: 2012
  end-page: 3159
  article-title: Dynamic macroecology and the future for biodiversity
  publication-title: Global Change Biology
– volume: 93
  start-page: 156
  year: 2012
  end-page: 168
  article-title: Gradient forests: Calculating importance gradients on physical predictors
  publication-title: Ecology
– volume: 18
  start-page: 1
  year: 2015
  end-page: 16
  article-title: Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation
  publication-title: Ecology Letters
– volume: 39
  start-page: 1139
  year: 2016
  end-page: 1150
  article-title: A network approach for inferring species associations from co‐occurrence data
  publication-title: Ecography
– volume: 43
  start-page: 393
  year: 2006
  end-page: 404
  article-title: Spatial modelling of biodiversity at the community level
  publication-title: Journal of Applied Ecology
– volume: 107
  start-page: 5030
  year: 2010
  end-page: 5035
  article-title: Macroecological signals of species interactions in the Danish avifauna
  publication-title: Proceedings of the National Academy of Sciences
– volume: 7
  start-page: 549
  year: 2016
  end-page: 555
  article-title: Using latent variable models to identify large networks of species‐to‐species associations at different spatial scales
  publication-title: Methods in Ecology and Evolution
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: Ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 15
  start-page: 266
  year: 2009
  end-page: 279
  article-title: Modelling species distribution in complex environments: An evaluation of predictive ability and reliability in five shorebird species
  publication-title: Diversity and Distributions
– volume: 16
  start-page: 1449
  year: 2006
  end-page: 1460
  article-title: Rediscovering the species in community‐wide predictive modeling
  publication-title: Ecological Applications
– volume: 6
  start-page: 465
  year: 2015
  end-page: 476
  article-title: Generating realistic assemblages with a joint species distribution model
  publication-title: Methods in Ecology and Evolution
– volume: 102
  start-page: 765
  year: 2014
  end-page: 775
  article-title: Incorporating dominant species as proxies for biotic interactions strengthens plant community models
  publication-title: Journal of Ecology
– volume: 17
  start-page: 854
  year: 2003
  end-page: 863
  article-title: A species‐specific approach to modeling biological communities and its potential for conservation
  publication-title: Conservation Biology
– volume: 43
  start-page: 289
  year: 2016
  end-page: 300
  article-title: Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region
  publication-title: Journal of Biogeography
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species' distributions from occurrence data
  publication-title: Ecography
– volume: 8
  start-page: 993
  year: 2005
  end-page: 1009
  article-title: Predicting species distribution: Offering more than simple habitat models
  publication-title: Ecology Letters
– volume: 12
  start-page: 144
  year: 2009
  end-page: 154
  article-title: Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States
  publication-title: Ecology Letters
– volume: 88
  start-page: 15
  year: 2013
  end-page: 30
  article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling
  publication-title: Biological Reviews
– volume: 17
  start-page: 1132
  year: 2011
  end-page: 1140
  article-title: Keep collecting: Accurate species distribution modelling requires more collections than previously thought
  publication-title: Diversity and Distributions
– volume: 30
  start-page: 766
  year: 2015
  end-page: 779
  article-title: So many variables: Joint modeling in community ecology
  publication-title: Trends in Ecology & Evolution
– volume: 83
  start-page: 1105
  year: 2002
  end-page: 1117
  article-title: Multivariate regression trees: A new technique for modelling species‐environment relationships
  publication-title: Ecology
– volume: 35
  start-page: 716
  year: 2012
  end-page: 725
  article-title: The role of functional traits in species distributions revealed through a hierarchical model
  publication-title: Ecography
– volume: 39
  start-page: 599
  year: 2015
  end-page: 607
  article-title: virtualspecies, an package to generate virtual species distributions
  publication-title: Ecography
– volume: 36
  start-page: 1291
  year: 2013
  end-page: 1298
  article-title: Community‐level vs. species‐specific approaches to model selection
  publication-title: Ecography
– volume: 74
  start-page: 685
  year: 2004
  end-page: 701
  article-title: A new technique for maximum‐likelihood canonical gaussian ordination
  publication-title: Ecological Monographs
– volume: 6
  start-page: 1007
  year: 2012
  end-page: 1017
  article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients
  publication-title: The ISME Journal
– volume: 30
  start-page: 347
  year: 2015
  end-page: 356
  article-title: Inferring biotic interactions from proxies
  publication-title: Trends in Ecology & Evolution
– volume: 326
  start-page: 1100
  year: 2009
  end-page: 1103
  article-title: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America
  publication-title: Science
– volume: 94
  start-page: 1913
  year: 2013
  end-page: 1919
  article-title: To mix or not to mix: Comparing the predictive performance of mixture models vs. separate species distribution models
  publication-title: Ecology
– volume: 24
  start-page: 990
  year: 2014
  end-page: 999
  article-title: More than the sum of the parts: Forest climate response from joint species distribution models
  publication-title: Ecological Applications
– volume: 9
  start-page: 621
  year: 2012
  end-page: 625
  article-title: Predicting bacterial community assemblages using an artificial neural network approach
  publication-title: Nature Methods
– volume: 5
  start-page: 397
  year: 2014
  end-page: 406
  article-title: Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)
  publication-title: Methods in Ecology and Evolution
– volume: 24
  start-page: 287
  year: 2014
  end-page: 299
  article-title: Congruence in demersal fish, macroinvertebrate, and macroalgal community turnover on shallow temperate reefs
  publication-title: Ecological Applications
– year: 2015
– volume: 38
  start-page: 346
  year: 2014
  end-page: 357
  article-title: Multispecies interactions across trophic levels at macroscales: Retrospective and future directions
  publication-title: Ecography
– volume: 25
  start-page: 2132
  year: 2015
  end-page: 2141
  article-title: Linking changes in community composition and function under climate change
  publication-title: Ecological Applications
– volume: 7
  start-page: 428
  year: 2016
  end-page: 436
  article-title: Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models
  publication-title: Methods in Ecology and Evolution
– volume: 98
  start-page: 4534
  year: 2001
  end-page: 4539
  article-title: Multiscale assessment of patterns of avian species richness
  publication-title: Proceedings of the National Academy of Sciences
– volume: 22
  start-page: 2651
  year: 2016
  end-page: 2664
  article-title: Benchmarking novel approaches for modelling species range dynamics
  publication-title: Global Change Biology
– volume: 92
  start-page: 289
  year: 2011
  end-page: 295
  article-title: Making more out of sparse data: Hierarchical modeling of species communities
  publication-title: Ecology
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 74
  start-page: 45
  year: 2012
  end-page: 59
  article-title: Can bottom‐up procedures improve the performance of stream classifications?
  publication-title: Aquatic Sciences
– volume: 3
  start-page: 15
  year: 2003
  end-page: 41
  article-title: Reduced‐rank vector generalized linear models
  publication-title: Statistical Modelling
– volume: 3
  start-page: 425
  year: 1988
  end-page: 441
  article-title: Monotone regression splines in action
  publication-title: Statistical Science
– volume: 8
  start-page: e77191
  year: 2013
  article-title: Regional differences in seasonal timing of rainfall discriminate between genetically distinct East African Giraffe Taxa
  publication-title: PLoS ONE
– volume: 3
  start-page: 327
  year: 2012
  end-page: 338
  article-title: Selecting pseudo‐absences for species distribution models: How, where and how many?
  publication-title: Methods in Ecology and Evolution
– volume: 280
  start-page: 20131201
  year: 2013
  article-title: Environmental and historical imprints on beta diversity: Insights from variation in rates of species turnover along gradients
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 283
  start-page: 20152817
  year: 2016
  article-title: Controlled comparison of species‐ and community‐level models across novel climates and communities
  publication-title: Proceedings of the Royal Society B
– volume: 4
  start-page: 397
  year: 2011
  end-page: 413
  article-title: Mapping evolutionary process: A multi‐taxa approach to conservation prioritization
  publication-title: Evolutionary Applications
– volume: 92
  start-page: 169
  year: 2017
  end-page: 187
  article-title: Spatial predictions at the community level: From current approaches to future frameworks
  publication-title: Biological Reviews
– volume: 34
  start-page: 836
  year: 2011
  end-page: 847
  article-title: Forecasting the future of biodiversity: A test of single‐ and multi‐species models for ants in North America
  publication-title: Ecography
– volume: 91
  start-page: 2514
  year: 2010
  end-page: 2521
  article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions
  publication-title: Ecology
– volume: 32
  start-page: 556
  year: 2017
  end-page: 566
  article-title: Biodiversity models: What if unsaturation is the rule?
  publication-title: Trends in Ecology & Evolution
– year: 2016
– volume: 87
  start-page: 203
  year: 2006
  end-page: 213
  article-title: Constrained additive ordination
  publication-title: Ecology
– volume: 199
  start-page: 188
  year: 2006
  end-page: 196
  article-title: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions
  publication-title: Ecological Modelling
– volume: 80
  start-page: 393
  year: 2011
  end-page: 402
  article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: Insights from multiscale deconstruction
  publication-title: Journal of Animal Ecology
– volume: 37
  start-page: 21
  year: 2014
  end-page: 32
  article-title: Phylogenetic generalised dissimilarity modelling: A new approach to analysing and predicting spatial turnover in the phylogenetic composition of communities
  publication-title: Ecography
– volume: 23
  start-page: 99
  year: 2014
  end-page: 112
  article-title: Stacking species distribution models and adjusting bias by linking them to macroecological models
  publication-title: Global Ecology and Biogeography
– volume: 56
  start-page: 1371
  year: 2009
  end-page: 1378
  article-title: Biogeographic relationships among deep‐sea hydrothermal vent faunas at global scale
  publication-title: Deep‐Sea Research Part I: Oceanographic Research Papers
– volume: 19
  start-page: 688
  year: 2013
  end-page: 699
  article-title: Revisiting the indicator problem: Can three epigean arthropod taxa inform about each other's biodiversity?
  publication-title: Diversity and Distributions
– volume: 38
  start-page: 1524
  year: 2011
  end-page: 1535
  article-title: Community versus single‐species distribution models for British plants
  publication-title: Journal of Biogeography
– volume: 76
  start-page: 201
  year: 2014
  end-page: 209
  article-title: Soil properties and tree species drive ß‐diversity of soil bacterial communities
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: e54179
  year: 2013
  article-title: Assessing community‐level and single‐species models predictions of species distributions and assemblage composition after 25 years of land cover change
  publication-title: PLoS ONE
– volume: 38
  start-page: 575
  year: 2011
  end-page: 594
  article-title: Faunal changes and geographic crypticism indicate the occurrence of a biogeographic transition zone along the southern East Pacific Rise
  publication-title: Journal of Biogeography
– volume: 5
  start-page: 124
  year: 2010
  end-page: 132
  article-title: Using generalised dissimilarity models and many small samples to improve the efficiency of regional and landscape scale invertebrate sampling
  publication-title: Ecological Informatics
– volume: 13
  start-page: 252
  year: 2007
  end-page: 264
  article-title: Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment
  publication-title: Diversity and Distributions
– volume: 13
  start-page: 75
  year: 2013
  article-title: The role of ecological variation in driving divergence of sexual and non‐sexual traits in the red‐backed fairy‐wren ( )
  publication-title: BMC Evolutionary Biology
– volume: 18
  start-page: 357
  year: 2013
  end-page: 375
  article-title: Finite mixture of regression modeling for high‐dimensional count and biomass data in ecology
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 1297
  start-page: 29
  year: 2013
  end-page: 43
  article-title: Model systems for a no‐analog future: Species associations and climates during the last deglaciation
  publication-title: Annals of the New York Academy of Sciences
– year: 2017
  article-title: Data from: Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models
  publication-title: Dryad Digital Repository
– volume: 32
  start-page: 55
  year: 2009
  end-page: 65
  article-title: Individualistic vs. community modelling of species distributions under climate change
  publication-title: Ecography
– volume: 37
  start-page: 1842
  year: 2010
  end-page: 1850
  article-title: Do community‐level models describe community variation effectively?
  publication-title: Journal of Biogeography
– volume: 97
  start-page: 3308
  year: 2016
  end-page: 3314
  article-title: Inferring species interactions from co‐occurrence data with Markov networks
  publication-title: Ecology
– volume: 46
  start-page: 343
  year: 2015
  end-page: 368
  article-title: Modeling species and community responses to past, present, and future episodes of climatic and ecological change
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– year: 2017
– volume: 130
  start-page: 349
  year: 2006
  end-page: 369
  article-title: Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community‐based indicators
  publication-title: Biological Conservation
– ident: e_1_2_11_29_1
  doi: 10.1111/ele.12376
– ident: e_1_2_11_49_1
  doi: 10.1111/ecog.01388
– ident: e_1_2_11_67_1
  doi: 10.1890/10-1251.1
– ident: e_1_2_11_25_1
  doi: 10.1111/j.1472-4642.2011.00813.x
– ident: e_1_2_11_59_1
  doi: 10.1111/geb.12300
– ident: e_1_2_11_6_1
  doi: 10.1111/j.1600-0587.2009.05856.x
– ident: e_1_2_11_48_1
  doi: 10.1111/j.1365-2427.2010.02414.x
– ident: e_1_2_11_34_1
  doi: 10.1111/j.1461-0248.2005.00792.x
– ident: e_1_2_11_77_1
  doi: 10.1371/journal.pone.0077191
– ident: e_1_2_11_5_1
  doi: 10.1111/j.2041-210X.2011.00172.x
– ident: e_1_2_11_86_1
  doi: 10.1111/gcb.13251
– ident: e_1_2_11_41_1
  doi: 10.1111/jbi.12628
– ident: e_1_2_11_50_1
  doi: 10.1111/j.1600-0587.2013.00127.x
– ident: e_1_2_11_4_1
  doi: 10.1186/1471-2148-13-75
– ident: e_1_2_11_42_1
  doi: 10.1111/ecog.00819
– ident: e_1_2_11_57_1
  doi: 10.1016/j.tree.2015.03.014
– ident: e_1_2_11_17_1
  doi: 10.1111/brv.12222
– ident: e_1_2_11_44_1
  doi: 10.1038/nmeth.1975
– ident: e_1_2_11_37_1
  doi: 10.1002/ecy.1605
– ident: e_1_2_11_21_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_11_54_1
  doi: 10.1016/j.tree.2017.05.003
– ident: e_1_2_11_35_1
  doi: 10.1007/s11295-010-0341-7
– ident: e_1_2_11_70_1
  doi: 10.1111/2041-210X.12180
– ident: e_1_2_11_43_1
  doi: 10.1016/j.soilbio.2014.05.025
– ident: e_1_2_11_20_1
  doi: 10.1007/s13253-013-0146-x
– ident: e_1_2_11_69_1
  doi: 10.1111/j.1600-0587.2011.07085.x
– ident: e_1_2_11_82_1
  doi: 10.1111/j.1469-185X.2012.00235.x
– ident: e_1_2_11_64_1
  doi: 10.1111/2041-210X.12501
– ident: e_1_2_11_38_1
  doi: 10.1111/j.1472-4642.2008.00532.x
– ident: e_1_2_11_9_1
– ident: e_1_2_11_27_1
  doi: 10.1111/j.1472-4642.2007.00341.x
– ident: e_1_2_11_18_1
  doi: 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
– ident: e_1_2_11_8_1
  doi: 10.1111/ddi.12021
– ident: e_1_2_11_30_1
  doi: 10.1111/j.1600-0587.2011.06653.x
– ident: e_1_2_11_31_1
  doi: 10.1098/rspb.2013.1201
– ident: e_1_2_11_36_1
  doi: 10.1111/2041-210X.12332
– ident: e_1_2_11_56_1
  doi: 10.1890/14-2384.1
– ident: e_1_2_11_24_1
  doi: 10.1890/11-0252.1
– ident: e_1_2_11_16_1
  doi: 10.1016/j.biocon.2005.12.030
– ident: e_1_2_11_32_1
  doi: 10.1126/science.1179504
– ident: e_1_2_11_68_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_11_66_1
  doi: 10.1111/2041-210X.12502
– ident: e_1_2_11_28_1
  doi: 10.1038/ismej.2011.159
– ident: e_1_2_11_72_1
  doi: 10.1073/pnas.071034898
– ident: e_1_2_11_55_1
  doi: 10.1111/j.1365-2486.2012.02760.x
– ident: e_1_2_11_3_1
  doi: 10.1016/j.dsr.2009.01.009
– ident: e_1_2_11_14_1
  doi: 10.1111/j.1365-2699.2011.02517.x
– ident: e_1_2_11_40_1
  doi: 10.1890/12-1322.1
– ident: e_1_2_11_33_1
  doi: 10.1073/pnas.0914089107
– ident: e_1_2_11_85_1
  doi: 10.1191/1471082X03st045oa
– ident: e_1_2_11_19_1
– ident: e_1_2_11_63_1
  doi: 10.1890/1051-0761(2006)016[1449:RTSICP]2.0.CO;2
– ident: e_1_2_11_74_1
  doi: 10.1111/j.1600-0587.2013.00466.x
– ident: e_1_2_11_10_1
  doi: 10.1111/j.1600-0587.2012.07852.x
– ident: e_1_2_11_26_1
  doi: 10.1111/j.1365-2664.2006.01149.x
– ident: e_1_2_11_39_1
  doi: 10.1111/1365-2656.12287
– ident: e_1_2_11_2_1
  doi: 10.1016/j.ecoinf.2009.12.002
– ident: e_1_2_11_7_1
  doi: 10.1111/j.1365-2699.2010.02341.x
– ident: e_1_2_11_81_1
  doi: 10.1111/nyas.12226
– ident: e_1_2_11_45_1
  doi: 10.1111/j.1461-0248.2008.01270.x
– ident: e_1_2_11_76_1
  doi: 10.1111/j.1365-2656.2010.01771.x
– ident: e_1_2_11_23_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_11_46_1
  doi: 10.1111/1365-2745.12239
– ident: e_1_2_11_22_1
  doi: 10.1111/j.1472-4642.2007.00340.x
– ident: e_1_2_11_15_1
  doi: 10.1890/13-1015.1
– ident: e_1_2_11_12_1
  doi: 10.1371/journal.pone.0054179
– ident: e_1_2_11_47_1
  doi: 10.1016/j.ecolmodel.2006.05.022
– ident: e_1_2_11_53_1
  doi: 10.1111/j.1365-2699.2010.02418.x
– ident: e_1_2_11_84_1
  doi: 10.1890/05-0283
– year: 2017
  ident: e_1_2_11_60_1
  article-title: Data from: Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models
  publication-title: Dryad Digital Repository
– ident: e_1_2_11_58_1
  doi: 10.1111/ecog.01892
– ident: e_1_2_11_79_1
  doi: 10.1890/12-1549.1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2017
  ident: e_1_2_11_71_1
– ident: e_1_2_11_13_1
  doi: 10.1111/geb.12102
– ident: e_1_2_11_80_1
  doi: 10.1016/j.tree.2015.09.007
– ident: e_1_2_11_62_1
  doi: 10.1046/j.1523-1739.2003.01280.x
– ident: e_1_2_11_61_1
– ident: e_1_2_11_65_1
  doi: 10.1890/10-0173.1
– ident: e_1_2_11_78_1
  doi: 10.1111/j.1752-4571.2010.00172.x
– ident: e_1_2_11_83_1
  doi: 10.1890/03-0078
– ident: e_1_2_11_51_1
  doi: 10.1098/rspb.2015.2817
– ident: e_1_2_11_75_1
  doi: 10.1007/s00027-011-0194-7
– ident: e_1_2_11_52_1
  doi: 10.1146/annurev-ecolsys-112414-054441
– ident: e_1_2_11_11_1
  doi: 10.1073/pnas.1220228110
– ident: e_1_2_11_73_1
  doi: 10.1214/ss/1177012761
SSID ssj0000389024
Score 2.3760617
SecondaryResourceType review_article
Snippet Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 834
SubjectTerms Algorithms
Biodiversity
biotic interactions
community assembly
Community composition
Community structure
Computer applications
Computing time
Data structures
ecological niche models
Ecologists
Environmental gradient
large datasets
Literature reviews
macroecology
Predictions
Rare species
Relative abundance
spatial modelling
Title Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12936
https://www.proquest.com/docview/2022940915
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: AVUZU
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFB3qiuCL-InVVebBBWFNbTKTNPFNNGXRdgVpoW8hH5NuITTrNl1YH8Q3X_2J4i_x3pnJZFZ3_XopaUinJfd05tzJOfcS8iQs3TIVrutkI1c4aNV0Is5SBzIBwf1hATBCv_P0MDiY8zcLf9HrfbNUS9smG-QfL_SV_E9U4RzEFV2y_xBZMyicgGOIL7xChOH1r2Is3bMnSuUq9tNqWUOqf6RKLKBYHK0fzZnRM1QoEFK9byrtc35vnCvS0SjvuP1MuxV35l27QiCraM-EDBuf7piGWWrcjU12p7I7tRTciryr9SRO9U0xJHolljVgUjS1-a2T7XJVFZYwd9ka0t5iqx_0KpqdhKpeaVfaBjG3b_az7c0kJRGyNznc0NLGyAXoVxWRLRUVcr70htx1IINd2JN7ZGGYWxN1u4Wq13xV7fOS5cQMPEBydEHh7sN3yXg-mSSzeDHbY-PjDw52NcOn_3vstYLdFXLVg3UHm4tMP3W7gFjeEFiSrjmFErOfvuw8XepyIDuTklRodpPc0DkMfakAeYv0xPo2uRarEN8hX87BknawpABLamD5_fNXCUhqAPmCKjjSuqQKjs-oDUZ4ty5oB0Xa1FRDkdpQVCNu7pL5OJ69OnB0vw8nZ24QOH4qfA58OgROydKc5ZwXvghFiRWislEZhkGZ50ExEgJYdMbSjDMvHbpFCqwaif89srOu1-I-oZDH8zyKiiLKQp4Oh1nJUY1UjlzmZSwUfTJob2uS62L42JOlStqkGOOQYBwSGYc-eWo-cKzqwFx-6W4bp0RPFhu4xvMiDuTc75PnMnZ_GiaZxjGTRw9-P-BDcr37y-ySneZkKx4BU26yxxJsPwAdtsI7
linkProvider ISSN International Centre
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEYIF8SkKBTwwMJCSDydN2CrUqkDbqUUVS-Q4DgwlRW0ZurGx8hv5Jdw5aShICLElku0h58u9Z9-9Azj1EysRyrKMqGYpg0o1jYA7wkAmoLhrxriNqN650_VafX4zcAcLtTCZPkRx4Eaeof_X5OB0IL3g5bbJLQMZy6BKMctbhhWXglMJVup3_ft-cdJCEnKm7m5bzMg1fiil58cq38PTF-ZcRK469DQ3YSPHjKyeGXkLllS6DasNrTc924E3XUQ7zpJdFRPDhxEy_senCUNAymRWATKdfby-DylDiOnmN1SFfsmymwE2SpguaJyds8ULbXxLYyaLToVsOmJUmYnkmsUkuJv3yspWnOxCv9noXbWMvL-CIR3L8wxXKJcjfvExhjtCOpLz2FW-SkiRJ6olvu8lUnpxTSlELZEjIu7YwrRigSiGgNYelNJRqvaBIW_iMgjiOIh8LkwzSjhlfyRIge3I8VUZqvPPGspcfJx6YAzDOQkhO4Rkh1DboQxnxYTnTHfj96GVuZ3C3AEnOMa2A-SulluGC227v5YJO42Go58O_j3jBNZavU47bF93bw9hHUGVn2X3VKA0Hb-oIwQu0-g435mftxjkCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEYgF8RTl6YGBgUAeTpqwIWjFWwwUVSyR4wcMpa1oGbqxsfIb-SXcOWkoSAixJZLtIefLfWff9x3ATmw8I7TnOVnN0w5RNZ2EB8LBTEDz0FW4jYjvfHUdnTb5eStsjXFhcn2I8sCNPMP-r8nBdU-ZMS_3Xe45mLG09ilmRZMwhdHc5RWYOrpr3jfLkxaSkHNtd9tyRqHxQyU9P1b5Hp6-MOc4crWhpzEPcwVmZEe5kRdgQncWYbpu9aaHS_BmSbTPebGrZqL90MWM__GpzxCQMpkzQAbDj9f3NlUIMdv8hljohyy_GWBdwyyhcbjHxi-08a2jmCw7FbJBlxEzE5Nrpkhwt-iVla_YX4Zmo357fOoU_RUcGXhR5IRChxzxS4wxPBAykJyrUMfakCJPVjNxHBkpI1XTGlFLFoiMB75wPSUQxRDQWoFKp9vRq8Awb-IySZRKspgL180Mp-oPgymwnwWxrsL-6LOmshAfpx4Y7XSUhJAdUrJDau1Qhd1yQi_X3fh96MbITmnhgH0c4_sJ5q5eWIUDa7u_lkmv6vXAPq39e8Y2zNycNNLLs-uLdZhFTBXnxT0bUBk8v-hNxC2DbKvYmJ-Tg-OZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiresponse+algorithms+for+community%E2%80%90level+modelling%3A+Review+of+theory%2C+applications%2C+and+comparison+to+species+distribution+models&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Diego+Nieto%E2%80%90Lugilde&rft.au=Maguire%2C+Kaitlin+C&rft.au=Blois%2C+Jessica+L&rft.au=Williams%2C+John+W&rft.date=2018-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2041-210X&rft.volume=9&rft.issue=4&rft.spage=834&rft.epage=848&rft_id=info:doi/10.1111%2F2041-210X.12936&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon