Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models
Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, whi...
Saved in:
| Published in | Methods in ecology and evolution Vol. 9; no. 4; pp. 834 - 848 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
John Wiley & Sons, Inc
01.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2041-210X 2041-210X |
| DOI | 10.1111/2041-210X.12936 |
Cover
| Abstract | Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in r to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs.
We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research.
We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data.
Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space. |
|---|---|
| AbstractList | Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in
r
to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs.
We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research.
We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data.
Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space. Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in r to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs.We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research.We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data.Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space. Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs) for analysing and predicting biodiversity patterns. Community‐level models simultaneously model multiple species, including rare species, while reducing overfitting and implicitly considering drivers of co‐occurrence. Many CLMs are direct extensions of well‐known SDMs and therefore should be familiar to ecologists. However, CLMs remain underutilized, and there have been few tests of their potential benefits and no systematic reviews of their assumptions and implementations. Here, we review this emerging field and provide examples in r to fit common CLMs. Our goal is to introduce CLMs to a broader audience, and discuss their attributes, benefits and limitations relative to SDMs. We review (1) statistical implementations and applications of CLMs, (2) their advantages and limitations, and (3) comparative analyses of CLMs and SDMs. We also suggest directions for future research. We identify seven CLM algorithms with similar data structures and predictive outputs as SDMs that should be most accessible to ecologists familiar with species‐level modelling, including five methods that predict assemblage composition and individual species distributions and two methods that model compositional turnover along environmental gradients. Community‐level models have been applied to numerous taxa, regions, and spatial scales, and a variety of topics (e.g. studying drivers of community structure or assessing relationships between community composition and functional traits). Studies suggest that the relative benefits of CLMs and SDMs may be case specific, especially in terms of predicting species distributions and community composition. However, CLMs may offer advantages in terms of computational efficiency, modelling rare species, and projecting to no‐analog climates. A major shortcoming of CLMs is their reliance on presence–absence community composition data. Studies are needed to assess the relative merits of SDMs and CLMs, and different CLM algorithms, with a focus on three key areas: (1) under which circumstances CLMs improve predictions for rare species, (2) how CLMs perform under different community compositions (e.g. relative abundance of rare vs. common species), including the extent to which co‐occurrence patterns are structured by biotic interactions, and (3) ability to project across time/space. |
| Author | Maguire, Kaitlin C. Fitzpatrick, Matthew C. Peres‐Neto, Pedro Nieto‐Lugilde, Diego Blois, Jessica L. Williams, John W. |
| Author_xml | – sequence: 1 givenname: Diego orcidid: 0000-0003-4135-2881 surname: Nieto‐Lugilde fullname: Nieto‐Lugilde, Diego email: dnietolugilde@gmail.com organization: Universidad de Córdoba – sequence: 2 givenname: Kaitlin C. surname: Maguire fullname: Maguire, Kaitlin C. organization: University of California – sequence: 3 givenname: Jessica L. surname: Blois fullname: Blois, Jessica L. organization: University of California – sequence: 4 givenname: John W. surname: Williams fullname: Williams, John W. organization: University of Wisconsin – sequence: 5 givenname: Matthew C. surname: Fitzpatrick fullname: Fitzpatrick, Matthew C. organization: University of Maryland Center for Environmental Science – sequence: 6 givenname: Pedro surname: Peres‐Neto fullname: Peres‐Neto, Pedro |
| BookMark | eNqFkDtLBDEUhYMo-KxtA7au5jUvO5H1ASuCKNiFbOaORjKTMcko29nZ-hv9Jc7siIiFnia54XznkrOJVhvXAEK7lBzQXoeMCDphlNwdUFbwdAVtfL-s_rivo50QHkkvnheEiQ30dtnZaDyE1jUBsLL3zpv4UAdcOY-1q-uuMXHx8fpu4Rksrl0J1prm_ghfw7OBF-wqHB_A-cU-Vm1rjVbR9Fn91JRDQKu8Ca7B0eHQgjYQcGlC9GbeDcYxMWyjtUrZADtf5xa6PZ3enJxPZldnFyfHs4nmNE0niYJEZCzLacK40lwLUSaQQ0XTJJ1nVZ6nldZpmQHwIptzNRecKUJLJXiRUMG30N6Y23r31EGI8tF1vulXSkYYKwQpaNK7ktGlvQvBQyW1ict_Ra-MlZTIoXY5FCuHYuWy9p47_MW13tTKL_4g0pF4MRYW_9nl5XTKR_ATfh6ZIQ |
| CitedBy_id | crossref_primary_10_1002_eap_2379 crossref_primary_10_1038_s41598_024_70827_3 crossref_primary_10_1111_ecog_04728 crossref_primary_10_1016_j_tree_2019_12_010 crossref_primary_10_1016_j_ecolind_2022_109500 crossref_primary_10_1098_rstb_2023_0169 crossref_primary_10_1016_j_baae_2019_06_002 crossref_primary_10_1016_j_tree_2021_01_002 crossref_primary_10_1093_biolinnean_blac134 crossref_primary_10_1016_j_ecolind_2020_106649 crossref_primary_10_3897_VCS_2020_48518 crossref_primary_10_1016_j_quascirev_2021_107005 crossref_primary_10_1111_ecog_04327 crossref_primary_10_7717_peerj_4890 crossref_primary_10_1007_s10584_021_03097_x crossref_primary_10_1016_j_ecolind_2021_107606 crossref_primary_10_1002_ecm_1370 crossref_primary_10_1038_s41598_020_69157_x crossref_primary_10_1111_1749_4877_12946 crossref_primary_10_1016_j_scitotenv_2025_178601 crossref_primary_10_1111_1365_2745_13280 crossref_primary_10_1016_j_foreco_2023_121352 crossref_primary_10_1002_ecs2_3864 crossref_primary_10_1007_s10531_020_02024_3 crossref_primary_10_1111_oik_09873 crossref_primary_10_1111_geb_12759 crossref_primary_10_1002_eap_2546 crossref_primary_10_1080_0269249X_2022_2078429 crossref_primary_10_1139_cjfas_2023_0385 crossref_primary_10_1002_fee_2673 crossref_primary_10_1098_rstb_2023_0335 crossref_primary_10_1016_j_ecoinf_2024_102644 crossref_primary_10_3389_fmars_2022_887346 crossref_primary_10_1016_j_tree_2018_10_012 crossref_primary_10_1111_ecog_07522 crossref_primary_10_1002_ece3_4948 crossref_primary_10_1093_icesjms_fsaa068 crossref_primary_10_3390_d11010005 crossref_primary_10_1111_ecog_06272 crossref_primary_10_1111_ecog_07340 crossref_primary_10_1111_jbi_13491 crossref_primary_10_1002_ecs2_4028 crossref_primary_10_1080_17550874_2019_1646831 crossref_primary_10_1111_brv_13004 |
| Cites_doi | 10.1111/ele.12376 10.1111/ecog.01388 10.1890/10-1251.1 10.1111/j.1472-4642.2011.00813.x 10.1111/geb.12300 10.1111/j.1600-0587.2009.05856.x 10.1111/j.1365-2427.2010.02414.x 10.1111/j.1461-0248.2005.00792.x 10.1371/journal.pone.0077191 10.1111/j.2041-210X.2011.00172.x 10.1111/gcb.13251 10.1111/jbi.12628 10.1111/j.1600-0587.2013.00127.x 10.1186/1471-2148-13-75 10.1111/ecog.00819 10.1016/j.tree.2015.03.014 10.1111/brv.12222 10.1038/nmeth.1975 10.1002/ecy.1605 10.1111/j.2006.0906-7590.04596.x 10.1016/j.tree.2017.05.003 10.1007/s11295-010-0341-7 10.1111/2041-210X.12180 10.1016/j.soilbio.2014.05.025 10.1007/s13253-013-0146-x 10.1111/j.1600-0587.2011.07085.x 10.1111/j.1469-185X.2012.00235.x 10.1111/2041-210X.12501 10.1111/j.1472-4642.2008.00532.x 10.1111/j.1472-4642.2007.00341.x 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2 10.1111/ddi.12021 10.1111/j.1600-0587.2011.06653.x 10.1098/rspb.2013.1201 10.1111/2041-210X.12332 10.1890/14-2384.1 10.1890/11-0252.1 10.1016/j.biocon.2005.12.030 10.1126/science.1179504 10.1016/j.ecolmodel.2005.03.026 10.1111/2041-210X.12502 10.1038/ismej.2011.159 10.1073/pnas.071034898 10.1111/j.1365-2486.2012.02760.x 10.1016/j.dsr.2009.01.009 10.1111/j.1365-2699.2011.02517.x 10.1890/12-1322.1 10.1073/pnas.0914089107 10.1191/1471082X03st045oa 10.1890/1051-0761(2006)016[1449:RTSICP]2.0.CO;2 10.1111/j.1600-0587.2013.00466.x 10.1111/j.1600-0587.2012.07852.x 10.1111/j.1365-2664.2006.01149.x 10.1111/1365-2656.12287 10.1016/j.ecoinf.2009.12.002 10.1111/j.1365-2699.2010.02341.x 10.1111/nyas.12226 10.1111/j.1461-0248.2008.01270.x 10.1111/j.1365-2656.2010.01771.x 10.1146/annurev.ecolsys.110308.120159 10.1111/1365-2745.12239 10.1111/j.1472-4642.2007.00340.x 10.1890/13-1015.1 10.1371/journal.pone.0054179 10.1016/j.ecolmodel.2006.05.022 10.1111/j.1365-2699.2010.02418.x 10.1890/05-0283 10.1111/ecog.01892 10.1890/12-1549.1 10.1111/geb.12102 10.1016/j.tree.2015.09.007 10.1046/j.1523-1739.2003.01280.x 10.1890/10-0173.1 10.1111/j.1752-4571.2010.00172.x 10.1890/03-0078 10.1098/rspb.2015.2817 10.1007/s00027-011-0194-7 10.1146/annurev-ecolsys-112414-054441 10.1073/pnas.1220228110 10.1214/ss/1177012761 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors. Methods in Ecology and Evolution © 2017 British Ecological Society Methods in Ecology and Evolution © 2018 British Ecological Society |
| Copyright_xml | – notice: 2017 The Authors. Methods in Ecology and Evolution © 2017 British Ecological Society – notice: Methods in Ecology and Evolution © 2018 British Ecological Society |
| DBID | AAYXX CITATION 7QG 7SN 8FD C1K FR3 P64 RC3 |
| DOI | 10.1111/2041-210X.12936 |
| DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
| DatabaseTitle | CrossRef Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Genetics Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 2041-210X |
| EndPage | 848 |
| ExternalDocumentID | 10_1111_2041_210X_12936 MEE312936 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: National Science Foundation funderid: DEB‐1257033; DEB‐1257164; DEB‐1257508 |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 4.4 4P2 50Y 5DZ 702 8-1 A00 AAESR AAFWJ AAHBH AAHHS AAZKR ABCUV ABLJU ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AENEX AEQDE AEUYN AFBPY AFKRA AFPKN AFRAH AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AVUZU AZVAB BBNVY BENPR BFHJK BHPHI BMXJE BRXPI CAG CCPQU COF DCZOG DPXWK EBD EBS EDH EJD F1Z G-S GODZA GROUPED_DOAJ HCIFZ HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES M7P MY. MY~ M~E O9- P2P P2W P4E PATMY PYCSY R.K ROL RX1 SUPJJ V8K WBKPD WOHZO WYJ ZZTAW ~S- AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB PUEGO WIN 7QG 7SN 8FD C1K FR3 P64 RC3 |
| ID | FETCH-LOGICAL-c3166-5ae5472781523ac3c44d5e8ef1656b7f886fcc6d7ee397b3ab432a01da4395143 |
| ISSN | 2041-210X |
| IngestDate | Wed Aug 13 09:18:54 EDT 2025 Wed Oct 01 04:00:09 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Wed Jan 22 17:01:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3166-5ae5472781523ac3c44d5e8ef1656b7f886fcc6d7ee397b3ab432a01da4395143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4135-2881 |
| PQID | 2022940915 |
| PQPubID | 1016379 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2022940915 crossref_citationtrail_10_1111_2041_210X_12936 crossref_primary_10_1111_2041_210X_12936 wiley_primary_10_1111_2041_210X_12936_MEE312936 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2018 2018-04-00 20180401 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Methods in ecology and evolution |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2015; 39 2009; 40 2010; 107 2013; 1297 2015; 30 2006; 130 2014; 24 2012; 18 2003; 17 2011; 56 2011; 17 2013; 280 2013; 8 2016; 39 2014; 23 2009; 56 2013; 19 2009; 12 2015; 46 2013; 18 2004; 74 2014; 5 2013; 13 2002; 83 2015; 84 2013; 94 2017; 32 2016; 43 2003; 3 2006; 29 2013; 110 2010; 5 2009; 15 2009; 326 2001; 98 2015; 6 2010; 37 2015; 18 2013; 88 2011 2011; 80 2006; 16 2016; 97 2011; 34 2011; 4 2011; 38 2012; 35 2007; 13 2011; 7 2006; 199 2016; 283 2012; 74 2015; 24 2012; 93 2015; 25 2016; 7 1988; 3 2012; 3 2013; 36 2009; 32 2017; 92 2006; 43 2006; 190 2006; 87 2005; 8 2011; 92 2014; 38 2014; 37 2017 2016 2015 2012; 6 2010; 91 2014; 76 2012; 9 2014; 102 2016; 22 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_83_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 Nieto‐Lugilde D. (e_1_2_11_60_1) 2017 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 R Core Team (e_1_2_11_71_1) 2017 |
| References_xml | – year: 2011 – volume: 56 start-page: 21 year: 2011 end-page: 38 article-title: Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications publication-title: Freshwater Biology – volume: 13 start-page: 265 year: 2007 end-page: 275 article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines publication-title: Diversity and Distributions – volume: 36 start-page: 460 year: 2013 end-page: 473 article-title: Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum publication-title: Ecography – volume: 7 start-page: 399 year: 2011 end-page: 408 article-title: Developing seed zones and transfer guidelines with multivariate regression trees publication-title: Tree Genetics & Genomes – volume: 24 start-page: 905 year: 2015 end-page: 916 article-title: Close agreement between pollen‐based and forest inventory‐based models of vegetation turnover publication-title: Global Ecology and Biogeography – volume: 110 start-page: 9374 year: 2013 end-page: 9379 article-title: Space can substitute for time in predicting climate‐change effects on biodiversity publication-title: Proceedings of the National Academy of Sciences – volume: 84 start-page: 427 year: 2015 end-page: 441 article-title: Elements of regional beetle faunas: Faunal variation and compositional breakpoints along climate, land cover and geographical gradients publication-title: Journal of Animal Ecology – volume: 18 start-page: 3149 year: 2012 end-page: 3159 article-title: Dynamic macroecology and the future for biodiversity publication-title: Global Change Biology – volume: 93 start-page: 156 year: 2012 end-page: 168 article-title: Gradient forests: Calculating importance gradients on physical predictors publication-title: Ecology – volume: 18 start-page: 1 year: 2015 end-page: 16 article-title: Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation publication-title: Ecology Letters – volume: 39 start-page: 1139 year: 2016 end-page: 1150 article-title: A network approach for inferring species associations from co‐occurrence data publication-title: Ecography – volume: 43 start-page: 393 year: 2006 end-page: 404 article-title: Spatial modelling of biodiversity at the community level publication-title: Journal of Applied Ecology – volume: 107 start-page: 5030 year: 2010 end-page: 5035 article-title: Macroecological signals of species interactions in the Danish avifauna publication-title: Proceedings of the National Academy of Sciences – volume: 7 start-page: 549 year: 2016 end-page: 555 article-title: Using latent variable models to identify large networks of species‐to‐species associations at different spatial scales publication-title: Methods in Ecology and Evolution – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: Ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 15 start-page: 266 year: 2009 end-page: 279 article-title: Modelling species distribution in complex environments: An evaluation of predictive ability and reliability in five shorebird species publication-title: Diversity and Distributions – volume: 16 start-page: 1449 year: 2006 end-page: 1460 article-title: Rediscovering the species in community‐wide predictive modeling publication-title: Ecological Applications – volume: 6 start-page: 465 year: 2015 end-page: 476 article-title: Generating realistic assemblages with a joint species distribution model publication-title: Methods in Ecology and Evolution – volume: 102 start-page: 765 year: 2014 end-page: 775 article-title: Incorporating dominant species as proxies for biotic interactions strengthens plant community models publication-title: Journal of Ecology – volume: 17 start-page: 854 year: 2003 end-page: 863 article-title: A species‐specific approach to modeling biological communities and its potential for conservation publication-title: Conservation Biology – volume: 43 start-page: 289 year: 2016 end-page: 300 article-title: Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region publication-title: Journal of Biogeography – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species' distributions from occurrence data publication-title: Ecography – volume: 8 start-page: 993 year: 2005 end-page: 1009 article-title: Predicting species distribution: Offering more than simple habitat models publication-title: Ecology Letters – volume: 12 start-page: 144 year: 2009 end-page: 154 article-title: Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States publication-title: Ecology Letters – volume: 88 start-page: 15 year: 2013 end-page: 30 article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling publication-title: Biological Reviews – volume: 17 start-page: 1132 year: 2011 end-page: 1140 article-title: Keep collecting: Accurate species distribution modelling requires more collections than previously thought publication-title: Diversity and Distributions – volume: 30 start-page: 766 year: 2015 end-page: 779 article-title: So many variables: Joint modeling in community ecology publication-title: Trends in Ecology & Evolution – volume: 83 start-page: 1105 year: 2002 end-page: 1117 article-title: Multivariate regression trees: A new technique for modelling species‐environment relationships publication-title: Ecology – volume: 35 start-page: 716 year: 2012 end-page: 725 article-title: The role of functional traits in species distributions revealed through a hierarchical model publication-title: Ecography – volume: 39 start-page: 599 year: 2015 end-page: 607 article-title: virtualspecies, an package to generate virtual species distributions publication-title: Ecography – volume: 36 start-page: 1291 year: 2013 end-page: 1298 article-title: Community‐level vs. species‐specific approaches to model selection publication-title: Ecography – volume: 74 start-page: 685 year: 2004 end-page: 701 article-title: A new technique for maximum‐likelihood canonical gaussian ordination publication-title: Ecological Monographs – volume: 6 start-page: 1007 year: 2012 end-page: 1017 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: The ISME Journal – volume: 30 start-page: 347 year: 2015 end-page: 356 article-title: Inferring biotic interactions from proxies publication-title: Trends in Ecology & Evolution – volume: 326 start-page: 1100 year: 2009 end-page: 1103 article-title: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America publication-title: Science – volume: 94 start-page: 1913 year: 2013 end-page: 1919 article-title: To mix or not to mix: Comparing the predictive performance of mixture models vs. separate species distribution models publication-title: Ecology – volume: 24 start-page: 990 year: 2014 end-page: 999 article-title: More than the sum of the parts: Forest climate response from joint species distribution models publication-title: Ecological Applications – volume: 9 start-page: 621 year: 2012 end-page: 625 article-title: Predicting bacterial community assemblages using an artificial neural network approach publication-title: Nature Methods – volume: 5 start-page: 397 year: 2014 end-page: 406 article-title: Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM) publication-title: Methods in Ecology and Evolution – volume: 24 start-page: 287 year: 2014 end-page: 299 article-title: Congruence in demersal fish, macroinvertebrate, and macroalgal community turnover on shallow temperate reefs publication-title: Ecological Applications – year: 2015 – volume: 38 start-page: 346 year: 2014 end-page: 357 article-title: Multispecies interactions across trophic levels at macroscales: Retrospective and future directions publication-title: Ecography – volume: 25 start-page: 2132 year: 2015 end-page: 2141 article-title: Linking changes in community composition and function under climate change publication-title: Ecological Applications – volume: 7 start-page: 428 year: 2016 end-page: 436 article-title: Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models publication-title: Methods in Ecology and Evolution – volume: 98 start-page: 4534 year: 2001 end-page: 4539 article-title: Multiscale assessment of patterns of avian species richness publication-title: Proceedings of the National Academy of Sciences – volume: 22 start-page: 2651 year: 2016 end-page: 2664 article-title: Benchmarking novel approaches for modelling species range dynamics publication-title: Global Change Biology – volume: 92 start-page: 289 year: 2011 end-page: 295 article-title: Making more out of sparse data: Hierarchical modeling of species communities publication-title: Ecology – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 74 start-page: 45 year: 2012 end-page: 59 article-title: Can bottom‐up procedures improve the performance of stream classifications? publication-title: Aquatic Sciences – volume: 3 start-page: 15 year: 2003 end-page: 41 article-title: Reduced‐rank vector generalized linear models publication-title: Statistical Modelling – volume: 3 start-page: 425 year: 1988 end-page: 441 article-title: Monotone regression splines in action publication-title: Statistical Science – volume: 8 start-page: e77191 year: 2013 article-title: Regional differences in seasonal timing of rainfall discriminate between genetically distinct East African Giraffe Taxa publication-title: PLoS ONE – volume: 3 start-page: 327 year: 2012 end-page: 338 article-title: Selecting pseudo‐absences for species distribution models: How, where and how many? publication-title: Methods in Ecology and Evolution – volume: 280 start-page: 20131201 year: 2013 article-title: Environmental and historical imprints on beta diversity: Insights from variation in rates of species turnover along gradients publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 283 start-page: 20152817 year: 2016 article-title: Controlled comparison of species‐ and community‐level models across novel climates and communities publication-title: Proceedings of the Royal Society B – volume: 4 start-page: 397 year: 2011 end-page: 413 article-title: Mapping evolutionary process: A multi‐taxa approach to conservation prioritization publication-title: Evolutionary Applications – volume: 92 start-page: 169 year: 2017 end-page: 187 article-title: Spatial predictions at the community level: From current approaches to future frameworks publication-title: Biological Reviews – volume: 34 start-page: 836 year: 2011 end-page: 847 article-title: Forecasting the future of biodiversity: A test of single‐ and multi‐species models for ants in North America publication-title: Ecography – volume: 91 start-page: 2514 year: 2010 end-page: 2521 article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions publication-title: Ecology – volume: 32 start-page: 556 year: 2017 end-page: 566 article-title: Biodiversity models: What if unsaturation is the rule? publication-title: Trends in Ecology & Evolution – year: 2016 – volume: 87 start-page: 203 year: 2006 end-page: 213 article-title: Constrained additive ordination publication-title: Ecology – volume: 199 start-page: 188 year: 2006 end-page: 196 article-title: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions publication-title: Ecological Modelling – volume: 80 start-page: 393 year: 2011 end-page: 402 article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: Insights from multiscale deconstruction publication-title: Journal of Animal Ecology – volume: 37 start-page: 21 year: 2014 end-page: 32 article-title: Phylogenetic generalised dissimilarity modelling: A new approach to analysing and predicting spatial turnover in the phylogenetic composition of communities publication-title: Ecography – volume: 23 start-page: 99 year: 2014 end-page: 112 article-title: Stacking species distribution models and adjusting bias by linking them to macroecological models publication-title: Global Ecology and Biogeography – volume: 56 start-page: 1371 year: 2009 end-page: 1378 article-title: Biogeographic relationships among deep‐sea hydrothermal vent faunas at global scale publication-title: Deep‐Sea Research Part I: Oceanographic Research Papers – volume: 19 start-page: 688 year: 2013 end-page: 699 article-title: Revisiting the indicator problem: Can three epigean arthropod taxa inform about each other's biodiversity? publication-title: Diversity and Distributions – volume: 38 start-page: 1524 year: 2011 end-page: 1535 article-title: Community versus single‐species distribution models for British plants publication-title: Journal of Biogeography – volume: 76 start-page: 201 year: 2014 end-page: 209 article-title: Soil properties and tree species drive ß‐diversity of soil bacterial communities publication-title: Soil Biology and Biochemistry – volume: 8 start-page: e54179 year: 2013 article-title: Assessing community‐level and single‐species models predictions of species distributions and assemblage composition after 25 years of land cover change publication-title: PLoS ONE – volume: 38 start-page: 575 year: 2011 end-page: 594 article-title: Faunal changes and geographic crypticism indicate the occurrence of a biogeographic transition zone along the southern East Pacific Rise publication-title: Journal of Biogeography – volume: 5 start-page: 124 year: 2010 end-page: 132 article-title: Using generalised dissimilarity models and many small samples to improve the efficiency of regional and landscape scale invertebrate sampling publication-title: Ecological Informatics – volume: 13 start-page: 252 year: 2007 end-page: 264 article-title: Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment publication-title: Diversity and Distributions – volume: 13 start-page: 75 year: 2013 article-title: The role of ecological variation in driving divergence of sexual and non‐sexual traits in the red‐backed fairy‐wren ( ) publication-title: BMC Evolutionary Biology – volume: 18 start-page: 357 year: 2013 end-page: 375 article-title: Finite mixture of regression modeling for high‐dimensional count and biomass data in ecology publication-title: Journal of Agricultural, Biological, and Environmental Statistics – volume: 1297 start-page: 29 year: 2013 end-page: 43 article-title: Model systems for a no‐analog future: Species associations and climates during the last deglaciation publication-title: Annals of the New York Academy of Sciences – year: 2017 article-title: Data from: Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models publication-title: Dryad Digital Repository – volume: 32 start-page: 55 year: 2009 end-page: 65 article-title: Individualistic vs. community modelling of species distributions under climate change publication-title: Ecography – volume: 37 start-page: 1842 year: 2010 end-page: 1850 article-title: Do community‐level models describe community variation effectively? publication-title: Journal of Biogeography – volume: 97 start-page: 3308 year: 2016 end-page: 3314 article-title: Inferring species interactions from co‐occurrence data with Markov networks publication-title: Ecology – volume: 46 start-page: 343 year: 2015 end-page: 368 article-title: Modeling species and community responses to past, present, and future episodes of climatic and ecological change publication-title: Annual Review of Ecology, Evolution, and Systematics – year: 2017 – volume: 130 start-page: 349 year: 2006 end-page: 369 article-title: Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community‐based indicators publication-title: Biological Conservation – ident: e_1_2_11_29_1 doi: 10.1111/ele.12376 – ident: e_1_2_11_49_1 doi: 10.1111/ecog.01388 – ident: e_1_2_11_67_1 doi: 10.1890/10-1251.1 – ident: e_1_2_11_25_1 doi: 10.1111/j.1472-4642.2011.00813.x – ident: e_1_2_11_59_1 doi: 10.1111/geb.12300 – ident: e_1_2_11_6_1 doi: 10.1111/j.1600-0587.2009.05856.x – ident: e_1_2_11_48_1 doi: 10.1111/j.1365-2427.2010.02414.x – ident: e_1_2_11_34_1 doi: 10.1111/j.1461-0248.2005.00792.x – ident: e_1_2_11_77_1 doi: 10.1371/journal.pone.0077191 – ident: e_1_2_11_5_1 doi: 10.1111/j.2041-210X.2011.00172.x – ident: e_1_2_11_86_1 doi: 10.1111/gcb.13251 – ident: e_1_2_11_41_1 doi: 10.1111/jbi.12628 – ident: e_1_2_11_50_1 doi: 10.1111/j.1600-0587.2013.00127.x – ident: e_1_2_11_4_1 doi: 10.1186/1471-2148-13-75 – ident: e_1_2_11_42_1 doi: 10.1111/ecog.00819 – ident: e_1_2_11_57_1 doi: 10.1016/j.tree.2015.03.014 – ident: e_1_2_11_17_1 doi: 10.1111/brv.12222 – ident: e_1_2_11_44_1 doi: 10.1038/nmeth.1975 – ident: e_1_2_11_37_1 doi: 10.1002/ecy.1605 – ident: e_1_2_11_21_1 doi: 10.1111/j.2006.0906-7590.04596.x – ident: e_1_2_11_54_1 doi: 10.1016/j.tree.2017.05.003 – ident: e_1_2_11_35_1 doi: 10.1007/s11295-010-0341-7 – ident: e_1_2_11_70_1 doi: 10.1111/2041-210X.12180 – ident: e_1_2_11_43_1 doi: 10.1016/j.soilbio.2014.05.025 – ident: e_1_2_11_20_1 doi: 10.1007/s13253-013-0146-x – ident: e_1_2_11_69_1 doi: 10.1111/j.1600-0587.2011.07085.x – ident: e_1_2_11_82_1 doi: 10.1111/j.1469-185X.2012.00235.x – ident: e_1_2_11_64_1 doi: 10.1111/2041-210X.12501 – ident: e_1_2_11_38_1 doi: 10.1111/j.1472-4642.2008.00532.x – ident: e_1_2_11_9_1 – ident: e_1_2_11_27_1 doi: 10.1111/j.1472-4642.2007.00341.x – ident: e_1_2_11_18_1 doi: 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2 – ident: e_1_2_11_8_1 doi: 10.1111/ddi.12021 – ident: e_1_2_11_30_1 doi: 10.1111/j.1600-0587.2011.06653.x – ident: e_1_2_11_31_1 doi: 10.1098/rspb.2013.1201 – ident: e_1_2_11_36_1 doi: 10.1111/2041-210X.12332 – ident: e_1_2_11_56_1 doi: 10.1890/14-2384.1 – ident: e_1_2_11_24_1 doi: 10.1890/11-0252.1 – ident: e_1_2_11_16_1 doi: 10.1016/j.biocon.2005.12.030 – ident: e_1_2_11_32_1 doi: 10.1126/science.1179504 – ident: e_1_2_11_68_1 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: e_1_2_11_66_1 doi: 10.1111/2041-210X.12502 – ident: e_1_2_11_28_1 doi: 10.1038/ismej.2011.159 – ident: e_1_2_11_72_1 doi: 10.1073/pnas.071034898 – ident: e_1_2_11_55_1 doi: 10.1111/j.1365-2486.2012.02760.x – ident: e_1_2_11_3_1 doi: 10.1016/j.dsr.2009.01.009 – ident: e_1_2_11_14_1 doi: 10.1111/j.1365-2699.2011.02517.x – ident: e_1_2_11_40_1 doi: 10.1890/12-1322.1 – ident: e_1_2_11_33_1 doi: 10.1073/pnas.0914089107 – ident: e_1_2_11_85_1 doi: 10.1191/1471082X03st045oa – ident: e_1_2_11_19_1 – ident: e_1_2_11_63_1 doi: 10.1890/1051-0761(2006)016[1449:RTSICP]2.0.CO;2 – ident: e_1_2_11_74_1 doi: 10.1111/j.1600-0587.2013.00466.x – ident: e_1_2_11_10_1 doi: 10.1111/j.1600-0587.2012.07852.x – ident: e_1_2_11_26_1 doi: 10.1111/j.1365-2664.2006.01149.x – ident: e_1_2_11_39_1 doi: 10.1111/1365-2656.12287 – ident: e_1_2_11_2_1 doi: 10.1016/j.ecoinf.2009.12.002 – ident: e_1_2_11_7_1 doi: 10.1111/j.1365-2699.2010.02341.x – ident: e_1_2_11_81_1 doi: 10.1111/nyas.12226 – ident: e_1_2_11_45_1 doi: 10.1111/j.1461-0248.2008.01270.x – ident: e_1_2_11_76_1 doi: 10.1111/j.1365-2656.2010.01771.x – ident: e_1_2_11_23_1 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: e_1_2_11_46_1 doi: 10.1111/1365-2745.12239 – ident: e_1_2_11_22_1 doi: 10.1111/j.1472-4642.2007.00340.x – ident: e_1_2_11_15_1 doi: 10.1890/13-1015.1 – ident: e_1_2_11_12_1 doi: 10.1371/journal.pone.0054179 – ident: e_1_2_11_47_1 doi: 10.1016/j.ecolmodel.2006.05.022 – ident: e_1_2_11_53_1 doi: 10.1111/j.1365-2699.2010.02418.x – ident: e_1_2_11_84_1 doi: 10.1890/05-0283 – year: 2017 ident: e_1_2_11_60_1 article-title: Data from: Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models publication-title: Dryad Digital Repository – ident: e_1_2_11_58_1 doi: 10.1111/ecog.01892 – ident: e_1_2_11_79_1 doi: 10.1890/12-1549.1 – volume-title: R: A Language and Environment for Statistical Computing year: 2017 ident: e_1_2_11_71_1 – ident: e_1_2_11_13_1 doi: 10.1111/geb.12102 – ident: e_1_2_11_80_1 doi: 10.1016/j.tree.2015.09.007 – ident: e_1_2_11_62_1 doi: 10.1046/j.1523-1739.2003.01280.x – ident: e_1_2_11_61_1 – ident: e_1_2_11_65_1 doi: 10.1890/10-0173.1 – ident: e_1_2_11_78_1 doi: 10.1111/j.1752-4571.2010.00172.x – ident: e_1_2_11_83_1 doi: 10.1890/03-0078 – ident: e_1_2_11_51_1 doi: 10.1098/rspb.2015.2817 – ident: e_1_2_11_75_1 doi: 10.1007/s00027-011-0194-7 – ident: e_1_2_11_52_1 doi: 10.1146/annurev-ecolsys-112414-054441 – ident: e_1_2_11_11_1 doi: 10.1073/pnas.1220228110 – ident: e_1_2_11_73_1 doi: 10.1214/ss/1177012761 |
| SSID | ssj0000389024 |
| Score | 2.3760617 |
| SecondaryResourceType | review_article |
| Snippet | Community‐level models (CLMs) consider multiple, co‐occurring species in model fitting and are lesser known alternatives to species distribution models (SDMs)... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 834 |
| SubjectTerms | Algorithms Biodiversity biotic interactions community assembly Community composition Community structure Computer applications Computing time Data structures ecological niche models Ecologists Environmental gradient large datasets Literature reviews macroecology Predictions Rare species Relative abundance spatial modelling |
| Title | Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12936 https://www.proquest.com/docview/2022940915 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: AVUZU dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFB3qiuCL-InVVebBBWFNbTKTNPFNNGXRdgVpoW8hH5NuITTrNl1YH8Q3X_2J4i_x3pnJZFZ3_XopaUinJfd05tzJOfcS8iQs3TIVrutkI1c4aNV0Is5SBzIBwf1hATBCv_P0MDiY8zcLf9HrfbNUS9smG-QfL_SV_E9U4RzEFV2y_xBZMyicgGOIL7xChOH1r2Is3bMnSuUq9tNqWUOqf6RKLKBYHK0fzZnRM1QoEFK9byrtc35vnCvS0SjvuP1MuxV35l27QiCraM-EDBuf7piGWWrcjU12p7I7tRTciryr9SRO9U0xJHolljVgUjS1-a2T7XJVFZYwd9ka0t5iqx_0KpqdhKpeaVfaBjG3b_az7c0kJRGyNznc0NLGyAXoVxWRLRUVcr70htx1IINd2JN7ZGGYWxN1u4Wq13xV7fOS5cQMPEBydEHh7sN3yXg-mSSzeDHbY-PjDw52NcOn_3vstYLdFXLVg3UHm4tMP3W7gFjeEFiSrjmFErOfvuw8XepyIDuTklRodpPc0DkMfakAeYv0xPo2uRarEN8hX87BknawpABLamD5_fNXCUhqAPmCKjjSuqQKjs-oDUZ4ty5oB0Xa1FRDkdpQVCNu7pL5OJ69OnB0vw8nZ24QOH4qfA58OgROydKc5ZwXvghFiRWislEZhkGZ50ExEgJYdMbSjDMvHbpFCqwaif89srOu1-I-oZDH8zyKiiLKQp4Oh1nJUY1UjlzmZSwUfTJob2uS62L42JOlStqkGOOQYBwSGYc-eWo-cKzqwFx-6W4bp0RPFhu4xvMiDuTc75PnMnZ_GiaZxjGTRw9-P-BDcr37y-ySneZkKx4BU26yxxJsPwAdtsI7 |
| linkProvider | ISSN International Centre |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEYIF8SkKBTwwMJCSDydN2CrUqkDbqUUVS-Q4DgwlRW0ZurGx8hv5Jdw5aShICLElku0h58u9Z9-9Azj1EysRyrKMqGYpg0o1jYA7wkAmoLhrxriNqN650_VafX4zcAcLtTCZPkRx4Eaeof_X5OB0IL3g5bbJLQMZy6BKMctbhhWXglMJVup3_ft-cdJCEnKm7m5bzMg1fiil58cq38PTF-ZcRK469DQ3YSPHjKyeGXkLllS6DasNrTc924E3XUQ7zpJdFRPDhxEy_senCUNAymRWATKdfby-DylDiOnmN1SFfsmymwE2SpguaJyds8ULbXxLYyaLToVsOmJUmYnkmsUkuJv3yspWnOxCv9noXbWMvL-CIR3L8wxXKJcjfvExhjtCOpLz2FW-SkiRJ6olvu8lUnpxTSlELZEjIu7YwrRigSiGgNYelNJRqvaBIW_iMgjiOIh8LkwzSjhlfyRIge3I8VUZqvPPGspcfJx6YAzDOQkhO4Rkh1DboQxnxYTnTHfj96GVuZ3C3AEnOMa2A-SulluGC227v5YJO42Go58O_j3jBNZavU47bF93bw9hHUGVn2X3VKA0Hb-oIwQu0-g435mftxjkCg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEYgF8RTl6YGBgUAeTpqwIWjFWwwUVSyR4wcMpa1oGbqxsfIb-SXcOWkoSAixJZLtIefLfWff9x3ATmw8I7TnOVnN0w5RNZ2EB8LBTEDz0FW4jYjvfHUdnTb5eStsjXFhcn2I8sCNPMP-r8nBdU-ZMS_3Xe45mLG09ilmRZMwhdHc5RWYOrpr3jfLkxaSkHNtd9tyRqHxQyU9P1b5Hp6-MOc4crWhpzEPcwVmZEe5kRdgQncWYbpu9aaHS_BmSbTPebGrZqL90MWM__GpzxCQMpkzQAbDj9f3NlUIMdv8hljohyy_GWBdwyyhcbjHxi-08a2jmCw7FbJBlxEzE5Nrpkhwt-iVla_YX4Zmo357fOoU_RUcGXhR5IRChxzxS4wxPBAykJyrUMfakCJPVjNxHBkpI1XTGlFLFoiMB75wPSUQxRDQWoFKp9vRq8Awb-IySZRKspgL180Mp-oPgymwnwWxrsL-6LOmshAfpx4Y7XSUhJAdUrJDau1Qhd1yQi_X3fh96MbITmnhgH0c4_sJ5q5eWIUDa7u_lkmv6vXAPq39e8Y2zNycNNLLs-uLdZhFTBXnxT0bUBk8v-hNxC2DbKvYmJ-Tg-OZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiresponse+algorithms+for+community%E2%80%90level+modelling%3A+Review+of+theory%2C+applications%2C+and+comparison+to+species+distribution+models&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Diego+Nieto%E2%80%90Lugilde&rft.au=Maguire%2C+Kaitlin+C&rft.au=Blois%2C+Jessica+L&rft.au=Williams%2C+John+W&rft.date=2018-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2041-210X&rft.volume=9&rft.issue=4&rft.spage=834&rft.epage=848&rft_id=info:doi/10.1111%2F2041-210X.12936&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon |