A Bayesian Inferred Health Prognosis and State of Charge Estimation for Power Batteries

Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery management systems to ensure reliable and efficient operations. This article proposes a co-estimation scheme for state-of-charge (SOC) and state-of-h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 12
Main Authors Dong, Guangzhong, Shen, Fukang, Sun, Li, Zhang, Mingming, Wei, Jingwen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2024.3497053

Cover

Abstract Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery management systems to ensure reliable and efficient operations. This article proposes a co-estimation scheme for state-of-charge (SOC) and state-of-health (SOH) using Bayesian inference. First, a fractional-order model (FOM) is introduced to capture battery dynamics due to its capability to describe both time-domain and frequency-domain characteristics. To address the complex parameter identification challenges inherent in FOMs, the article proposes a Bayesian optimization algorithm (BOA) which efficiently reduces computational complexity and time associated with evaluating fractional-order functions. Next, a combination of Gaussian-sum particle filter (GSPF) and recursive total least squares (RTLSs) is proposed to simultaneously estimate battery SOC and SOH. The principle of GSPF is to approximate posterior distribution by weighted Gaussian mixtures, which can avoid the time-consuming resample process of sequential-importance-resample PF while retaining its advantages. The RLTS can fully consider biased noises of SOC estimation and accumulated ampere hour measurements. Additionally, the co-estimation algorithm provides accurate estimates of crucial battery aging parameters such as capacity and internal resistance, facilitating enhanced model adaptation and estimation accuracy over the battery's entire lifespan. Finally, the proposed method is compared with several available technologies to highlight its superiorities in terms of accuracy, complexity, and robustness.
AbstractList Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery management systems to ensure reliable and efficient operations. This article proposes a co-estimation scheme for state-of-charge (SOC) and state-of-health (SOH) using Bayesian inference. First, a fractional-order model (FOM) is introduced to capture battery dynamics due to its capability to describe both time-domain and frequency-domain characteristics. To address the complex parameter identification challenges inherent in FOMs, the article proposes a Bayesian optimization algorithm (BOA) which efficiently reduces computational complexity and time associated with evaluating fractional-order functions. Next, a combination of Gaussian-sum particle filter (GSPF) and recursive total least squares (RTLSs) is proposed to simultaneously estimate battery SOC and SOH. The principle of GSPF is to approximate posterior distribution by weighted Gaussian mixtures, which can avoid the time-consuming resample process of sequential-importance-resample PF while retaining its advantages. The RLTS can fully consider biased noises of SOC estimation and accumulated ampere hour measurements. Additionally, the co-estimation algorithm provides accurate estimates of crucial battery aging parameters such as capacity and internal resistance, facilitating enhanced model adaptation and estimation accuracy over the battery’s entire lifespan. Finally, the proposed method is compared with several available technologies to highlight its superiorities in terms of accuracy, complexity, and robustness.
Author Dong, Guangzhong
Shen, Fukang
Sun, Li
Wei, Jingwen
Zhang, Mingming
Author_xml – sequence: 1
  givenname: Guangzhong
  orcidid: 0000-0002-0757-8580
  surname: Dong
  fullname: Dong, Guangzhong
  email: dongguangzhong@hit.edu.cn
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China
– sequence: 2
  givenname: Fukang
  orcidid: 0009-0001-4580-5174
  surname: Shen
  fullname: Shen, Fukang
  email: 22s153100@stu.hit.edu.cn
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-8866-7875
  surname: Sun
  fullname: Sun, Li
  email: sunli2021@hit.edu.cn
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China
– sequence: 4
  givenname: Mingming
  orcidid: 0009-0004-4299-9243
  surname: Zhang
  fullname: Zhang, Mingming
  email: mmzhang@hit.edu.cn
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China
– sequence: 5
  givenname: Jingwen
  orcidid: 0000-0001-9185-3604
  surname: Wei
  fullname: Wei, Jingwen
  email: jwwei@nju.edu.cn
  organization: School of Management and Engineering, Nanjing University, Nanjing, China
BookMark eNpNkEFPAjEQRhuDiYDePXho4nlxum13t0ckKCQYScR4bLq7s7AEt9iWGP69JXDwNJf3fTPzBqTX2Q4JuWcwYgzU02r-NkohFSMuVA6SX5E-kzJPVJalPdIHYEWihMxuyMD7LQDkmcj75GtMn80RfWs6Ou8adA5rOkOzCxu6dHbdWd96arqafgQTkNqGTjbGrZFOfWi_TWhtRxvr6NL-ootdIaBr0d-S68bsPN5d5pB8vkxXk1myeH-dT8aLpOJMhqQRgtd5akyaFaKEAjPMoTaomkJh_IbVoqwUSKYEZxVUWZlWGZSpNMChyhkfksdz797ZnwP6oLf24Lq4UnPGowvJQUQKzlTlrPcOG7138Xh31Az0SZ-O-vRJn77oi5GHc6RFxH94LgvBOf8Dp-1sHA
CODEN IEIMAO
Cites_doi 10.1109/TEC.2015.2424673
10.1016/j.energy.2018.09.101
10.1109/TVT.2017.2709326
10.1109/TIM.2022.3199253
10.1109/TTE.2020.3041604
10.1109/VTCSpring.2019.8746351
10.1016/j.energy.2019.115880
10.1016/j.jpowsour.2004.02.033
10.1109/TIE.2018.2890499
10.1016/j.egyr.2021.10.095
10.1109/TIM.2023.3239629
10.1109/TVT.2021.3064287
10.1007/978-3-540-32373-0_3
10.1109/TIA.2022.3170842
10.1109/TIM.2022.3160554
10.1016/j.jpowsour.2010.09.048
10.1109/TIM.2023.3284955
10.1016/j.energy.2020.119603
10.1016/j.conengprac.2023.105451
10.1016/j.energy.2020.118000
10.1109/ACC.2012.6314697
10.1109/TTE.2020.3029295
10.1016/j.jpowsour.2019.227543
10.1016/j.jclepro.2019.119147
10.1109/tie.2021.3062266
10.1109/TSP.2003.816754
10.1149/1945-7111/abec55
10.1109/TVT.2018.2865664
10.1016/j.jpowsour.2016.10.040
10.1016/j.apenergy.2016.08.016
10.1109/TCST.2020.2992523
10.1016/j.apenergy.2016.09.010
10.1109/TIM.2023.3280524
10.1016/j.energy.2017.12.061
10.1109/TIE.2022.3179549
10.1016/j.apenergy.2019.114324
10.1038/s42256-021-00312-3
10.1109/TTE.2020.2994543
10.1109/TVT.2021.3066249
10.1109/TII.2020.2997828
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3497053
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2024_3497053
10758433
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62203139
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011371; 2024A1515012417
  funderid: 10.13039/501100021171
– fundername: Shenzhen Natural Science Fund (the Stable Support Plan Program)
  grantid: GXWD20220811151813005
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c315t-f443d72aa2684b08e6e70dae9f89e0241d4bc90519431c0c6b2c60b25a030c713
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:02:37 EDT 2025
Wed Oct 01 03:47:04 EDT 2025
Wed Aug 27 03:03:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-f443d72aa2684b08e6e70dae9f89e0241d4bc90519431c0c6b2c60b25a030c713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-4299-9243
0009-0001-4580-5174
0000-0002-8866-7875
0000-0002-0757-8580
0000-0001-9185-3604
PQID 3133495304
PQPubID 85462
PageCount 12
ParticipantIDs proquest_journals_3133495304
crossref_primary_10_1109_TIM_2024_3497053
ieee_primary_10758433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
Acerbi (ref39) 2017
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref27
  doi: 10.1109/TEC.2015.2424673
– ident: ref37
  doi: 10.1016/j.energy.2018.09.101
– ident: ref17
  doi: 10.1109/TVT.2017.2709326
– ident: ref3
  doi: 10.1109/TIM.2022.3199253
– ident: ref11
  doi: 10.1109/TTE.2020.3041604
– ident: ref38
  doi: 10.1109/VTCSpring.2019.8746351
– ident: ref30
  doi: 10.1016/j.energy.2019.115880
– year: 2017
  ident: ref39
  article-title: Practical Bayesian optimization for model fitting with Bayesian adaptive direct search
  publication-title: arXiv:1705.04405
– ident: ref23
  doi: 10.1016/j.jpowsour.2004.02.033
– ident: ref14
  doi: 10.1109/TIE.2018.2890499
– ident: ref8
  doi: 10.1016/j.egyr.2021.10.095
– ident: ref7
  doi: 10.1109/TIM.2023.3239629
– ident: ref12
  doi: 10.1109/TVT.2021.3064287
– ident: ref34
  doi: 10.1007/978-3-540-32373-0_3
– ident: ref10
  doi: 10.1109/TIA.2022.3170842
– ident: ref4
  doi: 10.1109/TIM.2022.3160554
– ident: ref26
  doi: 10.1016/j.jpowsour.2010.09.048
– ident: ref13
  doi: 10.1109/TIM.2023.3284955
– ident: ref18
  doi: 10.1016/j.energy.2020.119603
– ident: ref28
  doi: 10.1016/j.conengprac.2023.105451
– ident: ref9
  doi: 10.1016/j.energy.2020.118000
– ident: ref31
  doi: 10.1109/ACC.2012.6314697
– ident: ref20
  doi: 10.1109/TTE.2020.3029295
– ident: ref36
  doi: 10.1016/j.jpowsour.2019.227543
– ident: ref29
  doi: 10.1016/j.jclepro.2019.119147
– ident: ref5
  doi: 10.1109/tie.2021.3062266
– ident: ref33
  doi: 10.1109/TSP.2003.816754
– ident: ref22
  doi: 10.1149/1945-7111/abec55
– ident: ref25
  doi: 10.1109/TVT.2018.2865664
– ident: ref24
  doi: 10.1016/j.jpowsour.2016.10.040
– ident: ref6
  doi: 10.1016/j.apenergy.2016.08.016
– ident: ref16
  doi: 10.1109/TCST.2020.2992523
– ident: ref40
  doi: 10.1016/j.apenergy.2016.09.010
– ident: ref1
  doi: 10.1109/TIM.2023.3280524
– ident: ref32
  doi: 10.1016/j.energy.2017.12.061
– ident: ref35
  doi: 10.1109/TIE.2022.3179549
– ident: ref41
  doi: 10.1016/j.apenergy.2019.114324
– ident: ref19
  doi: 10.1038/s42256-021-00312-3
– ident: ref21
  doi: 10.1109/TTE.2020.2994543
– ident: ref15
  doi: 10.1109/TVT.2021.3066249
– ident: ref2
  doi: 10.1109/TII.2020.2997828
SSID ssj0007647
Score 2.4450018
Snippet Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Algorithms
Batteries
Bayes methods
Bayesian analysis
Bayesian optimization algorithm (BOA)
Complexity
Computational complexity
Computational modeling
Electric charge
Estimation
fractional-order modeling
Gaussian process
Lithium-ion batteries
Management systems
Monitoring
Normal distribution
Parameter estimation
Parameter identification
Power management
Power sources
State of charge
state-of-charge (SOC)
state-of-health (SOH)
Statistical inference
Title A Bayesian Inferred Health Prognosis and State of Charge Estimation for Power Batteries
URI https://ieeexplore.ieee.org/document/10758433
https://www.proquest.com/docview/3133495304
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5UEPTgoyrWFzl48bA1m2R3m6NKSyu0eLDobclrRYRW-jjor3eSbMUHgrc9ZCHMJJP5kvm-ATg3VjuZUZ1YJSUClEolssqqJE0LPE0qylxQ2x8M895I3D5mjzVZPXBhnHOh-My1_Gd4y7cTs_BXZbjDMbsVnK_CatHOI1nrM-wWuYgCmSnuYEwLlm-SVF7e9weIBJlocSELmvFvZ1BoqvIrEofjpbsNw-XEYlXJS2sx1y3z_kOz8d8z34GtOtEkV3Fl7MKKGzdg84v8YAPWQ_mnme3BwxW5Vm_OEypJ31MAp86SyFAid9OJL8Z7nhE1tiQkp2RSEf9O_-RIB0NEZD8STH_JnW-6RqJoJ2LwfRh1O_c3vaRuuZAYnmbzpBKC24Ip5UVgNG273BXUKiertnRowdQKbbykl8TEw1CTa2ZyqlmmMFgYBLwHsDaejN0hEM6sXwhaCYuoSBnVRgtY7rm6jHLDmnCxdEL5GpU1yoBIqCzRYaV3WFk7rAn73qZfxkVzNuFk6bay3nuzkiPs9lWzVBz98dsxbDDfxjfcpJzA2ny6cKeYW8z1WVhTH63MyXY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB3RoKrtAUqaqimh9YELh029tnc3PgIKSiiJOASR28pfW1VICUo2h_bXd2xvEAUhcduDV7Jm7PE8e94bgGNjtZMZ1YlVUiJAqVQiq6xK0rTA06SizAW1_ck0H92Iy3k2b8jqgQvjnAvFZ67vP8Nbvl2ajb8qwx2O2a3g_A3sZkKILNK1HgJvkYsokZniHsbEYPsqSeWP2XiCWJCJPheyoBn_7xQKbVWexeJwwFzsw3Q7tVhXctff1Lpv_j5RbXz13D_CXpNqktO4Ng5gxy3a8OGRAGEb3oYCULP-BLen5Ez9cZ5SScaeBLhylkSOErleLX053u81UQtLQnpKlhXxL_W_HBlikIj8R4IJMLn2bddIlO1EFN6Bm4vh7HyUNE0XEsPTrE4qIbgtmFJeBkbTgctdQa1yshpIhxZMrdDGi3pJTD0MNblmJqeaZQrDhUHI-xlai-XCfQHCmfVLQSthERcpowZoAcs9W5dRblgXTrZOKO-jtkYZMAmVJTqs9A4rG4d1oeNt-mhcNGcXelu3lc3uW5ccgbevm6Xi6wu_fYd3o9nkqrwaT38ewnvmm_qGe5UetOrVxh1hplHrb2F9_QNo9MzD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Inferred+Health+Prognosis+and+State+of+Charge+Estimation+for+Power+Batteries&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Dong%2C+Guangzhong&rft.au=Shen%2C+Fukang&rft.au=Sun%2C+Li&rft.au=Zhang%2C+Mingming&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft_id=info:doi/10.1109%2FTIM.2024.3497053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon