A Bayesian Inferred Health Prognosis and State of Charge Estimation for Power Batteries
Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery management systems to ensure reliable and efficient operations. This article proposes a co-estimation scheme for state-of-charge (SOC) and state-of-h...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 12 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2024.3497053 |
Cover
| Abstract | Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery management systems to ensure reliable and efficient operations. This article proposes a co-estimation scheme for state-of-charge (SOC) and state-of-health (SOH) using Bayesian inference. First, a fractional-order model (FOM) is introduced to capture battery dynamics due to its capability to describe both time-domain and frequency-domain characteristics. To address the complex parameter identification challenges inherent in FOMs, the article proposes a Bayesian optimization algorithm (BOA) which efficiently reduces computational complexity and time associated with evaluating fractional-order functions. Next, a combination of Gaussian-sum particle filter (GSPF) and recursive total least squares (RTLSs) is proposed to simultaneously estimate battery SOC and SOH. The principle of GSPF is to approximate posterior distribution by weighted Gaussian mixtures, which can avoid the time-consuming resample process of sequential-importance-resample PF while retaining its advantages. The RLTS can fully consider biased noises of SOC estimation and accumulated ampere hour measurements. Additionally, the co-estimation algorithm provides accurate estimates of crucial battery aging parameters such as capacity and internal resistance, facilitating enhanced model adaptation and estimation accuracy over the battery's entire lifespan. Finally, the proposed method is compared with several available technologies to highlight its superiorities in terms of accuracy, complexity, and robustness. |
|---|---|
| AbstractList | Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery management systems to ensure reliable and efficient operations. This article proposes a co-estimation scheme for state-of-charge (SOC) and state-of-health (SOH) using Bayesian inference. First, a fractional-order model (FOM) is introduced to capture battery dynamics due to its capability to describe both time-domain and frequency-domain characteristics. To address the complex parameter identification challenges inherent in FOMs, the article proposes a Bayesian optimization algorithm (BOA) which efficiently reduces computational complexity and time associated with evaluating fractional-order functions. Next, a combination of Gaussian-sum particle filter (GSPF) and recursive total least squares (RTLSs) is proposed to simultaneously estimate battery SOC and SOH. The principle of GSPF is to approximate posterior distribution by weighted Gaussian mixtures, which can avoid the time-consuming resample process of sequential-importance-resample PF while retaining its advantages. The RLTS can fully consider biased noises of SOC estimation and accumulated ampere hour measurements. Additionally, the co-estimation algorithm provides accurate estimates of crucial battery aging parameters such as capacity and internal resistance, facilitating enhanced model adaptation and estimation accuracy over the battery’s entire lifespan. Finally, the proposed method is compared with several available technologies to highlight its superiorities in terms of accuracy, complexity, and robustness. |
| Author | Dong, Guangzhong Shen, Fukang Sun, Li Wei, Jingwen Zhang, Mingming |
| Author_xml | – sequence: 1 givenname: Guangzhong orcidid: 0000-0002-0757-8580 surname: Dong fullname: Dong, Guangzhong email: dongguangzhong@hit.edu.cn organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China – sequence: 2 givenname: Fukang orcidid: 0009-0001-4580-5174 surname: Shen fullname: Shen, Fukang email: 22s153100@stu.hit.edu.cn organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China – sequence: 3 givenname: Li orcidid: 0000-0002-8866-7875 surname: Sun fullname: Sun, Li email: sunli2021@hit.edu.cn organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China – sequence: 4 givenname: Mingming orcidid: 0009-0004-4299-9243 surname: Zhang fullname: Zhang, Mingming email: mmzhang@hit.edu.cn organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen, China – sequence: 5 givenname: Jingwen orcidid: 0000-0001-9185-3604 surname: Wei fullname: Wei, Jingwen email: jwwei@nju.edu.cn organization: School of Management and Engineering, Nanjing University, Nanjing, China |
| BookMark | eNpNkEFPAjEQRhuDiYDePXho4nlxum13t0ckKCQYScR4bLq7s7AEt9iWGP69JXDwNJf3fTPzBqTX2Q4JuWcwYgzU02r-NkohFSMuVA6SX5E-kzJPVJalPdIHYEWihMxuyMD7LQDkmcj75GtMn80RfWs6Ou8adA5rOkOzCxu6dHbdWd96arqafgQTkNqGTjbGrZFOfWi_TWhtRxvr6NL-ootdIaBr0d-S68bsPN5d5pB8vkxXk1myeH-dT8aLpOJMhqQRgtd5akyaFaKEAjPMoTaomkJh_IbVoqwUSKYEZxVUWZlWGZSpNMChyhkfksdz797ZnwP6oLf24Lq4UnPGowvJQUQKzlTlrPcOG7138Xh31Az0SZ-O-vRJn77oi5GHc6RFxH94LgvBOf8Dp-1sHA |
| CODEN | IEIMAO |
| Cites_doi | 10.1109/TEC.2015.2424673 10.1016/j.energy.2018.09.101 10.1109/TVT.2017.2709326 10.1109/TIM.2022.3199253 10.1109/TTE.2020.3041604 10.1109/VTCSpring.2019.8746351 10.1016/j.energy.2019.115880 10.1016/j.jpowsour.2004.02.033 10.1109/TIE.2018.2890499 10.1016/j.egyr.2021.10.095 10.1109/TIM.2023.3239629 10.1109/TVT.2021.3064287 10.1007/978-3-540-32373-0_3 10.1109/TIA.2022.3170842 10.1109/TIM.2022.3160554 10.1016/j.jpowsour.2010.09.048 10.1109/TIM.2023.3284955 10.1016/j.energy.2020.119603 10.1016/j.conengprac.2023.105451 10.1016/j.energy.2020.118000 10.1109/ACC.2012.6314697 10.1109/TTE.2020.3029295 10.1016/j.jpowsour.2019.227543 10.1016/j.jclepro.2019.119147 10.1109/tie.2021.3062266 10.1109/TSP.2003.816754 10.1149/1945-7111/abec55 10.1109/TVT.2018.2865664 10.1016/j.jpowsour.2016.10.040 10.1016/j.apenergy.2016.08.016 10.1109/TCST.2020.2992523 10.1016/j.apenergy.2016.09.010 10.1109/TIM.2023.3280524 10.1016/j.energy.2017.12.061 10.1109/TIE.2022.3179549 10.1016/j.apenergy.2019.114324 10.1038/s42256-021-00312-3 10.1109/TTE.2020.2994543 10.1109/TVT.2021.3066249 10.1109/TII.2020.2997828 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3497053 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TIM_2024_3497053 10758433 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62203139 funderid: 10.13039/501100001809 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515011371; 2024A1515012417 funderid: 10.13039/501100021171 – fundername: Shenzhen Natural Science Fund (the Stable Support Plan Program) grantid: GXWD20220811151813005 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c315t-f443d72aa2684b08e6e70dae9f89e0241d4bc90519431c0c6b2c60b25a030c713 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:02:37 EDT 2025 Wed Oct 01 03:47:04 EDT 2025 Wed Aug 27 03:03:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c315t-f443d72aa2684b08e6e70dae9f89e0241d4bc90519431c0c6b2c60b25a030c713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-4299-9243 0009-0001-4580-5174 0000-0002-8866-7875 0000-0002-0757-8580 0000-0001-9185-3604 |
| PQID | 3133495304 |
| PQPubID | 85462 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3133495304 crossref_primary_10_1109_TIM_2024_3497053 ieee_primary_10758433 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 Acerbi (ref39) 2017 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref27 doi: 10.1109/TEC.2015.2424673 – ident: ref37 doi: 10.1016/j.energy.2018.09.101 – ident: ref17 doi: 10.1109/TVT.2017.2709326 – ident: ref3 doi: 10.1109/TIM.2022.3199253 – ident: ref11 doi: 10.1109/TTE.2020.3041604 – ident: ref38 doi: 10.1109/VTCSpring.2019.8746351 – ident: ref30 doi: 10.1016/j.energy.2019.115880 – year: 2017 ident: ref39 article-title: Practical Bayesian optimization for model fitting with Bayesian adaptive direct search publication-title: arXiv:1705.04405 – ident: ref23 doi: 10.1016/j.jpowsour.2004.02.033 – ident: ref14 doi: 10.1109/TIE.2018.2890499 – ident: ref8 doi: 10.1016/j.egyr.2021.10.095 – ident: ref7 doi: 10.1109/TIM.2023.3239629 – ident: ref12 doi: 10.1109/TVT.2021.3064287 – ident: ref34 doi: 10.1007/978-3-540-32373-0_3 – ident: ref10 doi: 10.1109/TIA.2022.3170842 – ident: ref4 doi: 10.1109/TIM.2022.3160554 – ident: ref26 doi: 10.1016/j.jpowsour.2010.09.048 – ident: ref13 doi: 10.1109/TIM.2023.3284955 – ident: ref18 doi: 10.1016/j.energy.2020.119603 – ident: ref28 doi: 10.1016/j.conengprac.2023.105451 – ident: ref9 doi: 10.1016/j.energy.2020.118000 – ident: ref31 doi: 10.1109/ACC.2012.6314697 – ident: ref20 doi: 10.1109/TTE.2020.3029295 – ident: ref36 doi: 10.1016/j.jpowsour.2019.227543 – ident: ref29 doi: 10.1016/j.jclepro.2019.119147 – ident: ref5 doi: 10.1109/tie.2021.3062266 – ident: ref33 doi: 10.1109/TSP.2003.816754 – ident: ref22 doi: 10.1149/1945-7111/abec55 – ident: ref25 doi: 10.1109/TVT.2018.2865664 – ident: ref24 doi: 10.1016/j.jpowsour.2016.10.040 – ident: ref6 doi: 10.1016/j.apenergy.2016.08.016 – ident: ref16 doi: 10.1109/TCST.2020.2992523 – ident: ref40 doi: 10.1016/j.apenergy.2016.09.010 – ident: ref1 doi: 10.1109/TIM.2023.3280524 – ident: ref32 doi: 10.1016/j.energy.2017.12.061 – ident: ref35 doi: 10.1109/TIE.2022.3179549 – ident: ref41 doi: 10.1016/j.apenergy.2019.114324 – ident: ref19 doi: 10.1038/s42256-021-00312-3 – ident: ref21 doi: 10.1109/TTE.2020.2994543 – ident: ref15 doi: 10.1109/TVT.2021.3066249 – ident: ref2 doi: 10.1109/TII.2020.2997828 |
| SSID | ssj0007647 |
| Score | 2.4450018 |
| Snippet | Lithium-ion batteries serve as vital power sources across various industrial sectors, necessitating accurate modeling and state monitoring via battery... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Adaptation models Algorithms Batteries Bayes methods Bayesian analysis Bayesian optimization algorithm (BOA) Complexity Computational complexity Computational modeling Electric charge Estimation fractional-order modeling Gaussian process Lithium-ion batteries Management systems Monitoring Normal distribution Parameter estimation Parameter identification Power management Power sources State of charge state-of-charge (SOC) state-of-health (SOH) Statistical inference |
| Title | A Bayesian Inferred Health Prognosis and State of Charge Estimation for Power Batteries |
| URI | https://ieeexplore.ieee.org/document/10758433 https://www.proquest.com/docview/3133495304 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5UEPTgoyrWFzl48bA1m2R3m6NKSyu0eLDobclrRYRW-jjor3eSbMUHgrc9ZCHMJJP5kvm-ATg3VjuZUZ1YJSUClEolssqqJE0LPE0qylxQ2x8M895I3D5mjzVZPXBhnHOh-My1_Gd4y7cTs_BXZbjDMbsVnK_CatHOI1nrM-wWuYgCmSnuYEwLlm-SVF7e9weIBJlocSELmvFvZ1BoqvIrEofjpbsNw-XEYlXJS2sx1y3z_kOz8d8z34GtOtEkV3Fl7MKKGzdg84v8YAPWQ_mnme3BwxW5Vm_OEypJ31MAp86SyFAid9OJL8Z7nhE1tiQkp2RSEf9O_-RIB0NEZD8STH_JnW-6RqJoJ2LwfRh1O_c3vaRuuZAYnmbzpBKC24Ip5UVgNG273BXUKiertnRowdQKbbykl8TEw1CTa2ZyqlmmMFgYBLwHsDaejN0hEM6sXwhaCYuoSBnVRgtY7rm6jHLDmnCxdEL5GpU1yoBIqCzRYaV3WFk7rAn73qZfxkVzNuFk6bay3nuzkiPs9lWzVBz98dsxbDDfxjfcpJzA2ny6cKeYW8z1WVhTH63MyXY |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB3RoKrtAUqaqimh9YELh029tnc3PgIKSiiJOASR28pfW1VICUo2h_bXd2xvEAUhcduDV7Jm7PE8e94bgGNjtZMZ1YlVUiJAqVQiq6xK0rTA06SizAW1_ck0H92Iy3k2b8jqgQvjnAvFZ67vP8Nbvl2ajb8qwx2O2a3g_A3sZkKILNK1HgJvkYsokZniHsbEYPsqSeWP2XiCWJCJPheyoBn_7xQKbVWexeJwwFzsw3Q7tVhXctff1Lpv_j5RbXz13D_CXpNqktO4Ng5gxy3a8OGRAGEb3oYCULP-BLen5Ez9cZ5SScaeBLhylkSOErleLX053u81UQtLQnpKlhXxL_W_HBlikIj8R4IJMLn2bddIlO1EFN6Bm4vh7HyUNE0XEsPTrE4qIbgtmFJeBkbTgctdQa1yshpIhxZMrdDGi3pJTD0MNblmJqeaZQrDhUHI-xlai-XCfQHCmfVLQSthERcpowZoAcs9W5dRblgXTrZOKO-jtkYZMAmVJTqs9A4rG4d1oeNt-mhcNGcXelu3lc3uW5ccgbevm6Xi6wu_fYd3o9nkqrwaT38ewnvmm_qGe5UetOrVxh1hplHrb2F9_QNo9MzD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Inferred+Health+Prognosis+and+State+of+Charge+Estimation+for+Power+Batteries&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Dong%2C+Guangzhong&rft.au=Shen%2C+Fukang&rft.au=Sun%2C+Li&rft.au=Zhang%2C+Mingming&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft_id=info:doi/10.1109%2FTIM.2024.3497053&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |