On the microstructure evolution in tungsten ITER monoblocks: A computational study

We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of tungsten monoblocks in the future ITER device. These plasma-facing components will indeed be subject to unsteady heat loads and neutron bombar...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 219; p. 112001
Main Authors Castin, N., Van den Kerkhof, S., Bonny, G., Terentyev, D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.02.2023
Subjects
Online AccessGet full text
ISSN0927-0256
1879-0801
DOI10.1016/j.commatsci.2022.112001

Cover

Abstract We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of tungsten monoblocks in the future ITER device. These plasma-facing components will indeed be subject to unsteady heat loads and neutron bombardment, whose combination induces a degradation of the mechanical properties in a heterogeneous manner. Though both phenomena have received substantial attention in literature, their combined effects are not well known. The first tool is an in-house finite volume based solver for the heat conduction equation, which is dedicated to the evaluation of temperature profiles, during steady state and typical transient conditions, such as (mitigated) type I edge localized modes and slow power transients. The second tool is a multiscale object Kinetic Monte Carlo (OKMC) model, dedicated to the prediction of the microstructure evolution under high-energy neutron bombardment, given the local temperature as input. Finally, the last tool estimates the macroscopic properties of the tungsten material, given the microstructure as predicted by the OKMC tool. As a result of the combined study, we find that thermal transients alleviate the degradation of mechanical properties for the most part of the monoblock components, at the exception of the areas close to the cooling pipes where, on the contrary, the degradations kinetics are accelerated.
AbstractList We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of tungsten monoblocks in the future ITER device. These plasma-facing components will indeed be subject to unsteady heat loads and neutron bombardment, whose combination induces a degradation of the mechanical properties in a heterogeneous manner. Though both phenomena have received substantial attention in literature, their combined effects are not well known. The first tool is an in-house finite volume based solver for the heat conduction equation, which is dedicated to the evaluation of temperature profiles, during steady state and typical transient conditions, such as (mitigated) type I edge localized modes and slow power transients. The second tool is a multiscale object Kinetic Monte Carlo (OKMC) model, dedicated to the prediction of the microstructure evolution under high-energy neutron bombardment, given the local temperature as input. Finally, the last tool estimates the macroscopic properties of the tungsten material, given the microstructure as predicted by the OKMC tool. As a result of the combined study, we find that thermal transients alleviate the degradation of mechanical properties for the most part of the monoblock components, at the exception of the areas close to the cooling pipes where, on the contrary, the degradations kinetics are accelerated.
ArticleNumber 112001
Author Bonny, G.
Castin, N.
Van den Kerkhof, S.
Terentyev, D.
Author_xml – sequence: 1
  givenname: N.
  surname: Castin
  fullname: Castin, N.
  email: nicolas.m.b.castin@gmail.com
  organization: Studiecentrum voor Kernenergie – Centre D’Études de L’énergie Nucléaire (SCK CEN), NMS Unit, Boeretang 200, Mol B2400, Belgium
– sequence: 2
  givenname: S.
  surname: Van den Kerkhof
  fullname: Van den Kerkhof, S.
  organization: Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001 Leuven, Belgium
– sequence: 3
  givenname: G.
  surname: Bonny
  fullname: Bonny, G.
  organization: Studiecentrum voor Kernenergie – Centre D’Études de L’énergie Nucléaire (SCK CEN), NMS Unit, Boeretang 200, Mol B2400, Belgium
– sequence: 4
  givenname: D.
  surname: Terentyev
  fullname: Terentyev, D.
  organization: Studiecentrum voor Kernenergie – Centre D’Études de L’énergie Nucléaire (SCK CEN), NMS Unit, Boeretang 200, Mol B2400, Belgium
BookMark eNqNkFFLwzAUhYNMcJv-BvMHWpN0bVrBhzGmDgaDMZ9Dmt5qZpuMJB3s39tS8cEXfboP93zn3nNmaGKsAYTuKYkpodnDMVa2bWXwSseMMBZTygihV2hKc15EJCd0gqakYDwiLM1u0Mz7Yy_IipxN0X5ncPgA3GrlrA-uU6FzgOFsmy5oa7Du95159wEM3hzWe9xaY8vGqk__iJe4v33qghykssE-dNXlFl3XsvFw9z3n6O15fVi9Rtvdy2a13EYqoWmIqlrlRbKoK1YrxXkGSabUIpVQ18DzNC04yWVS1WnJmeQLyVSZEGBVWhLZB6fJHPHRd_jcO6jFyelWuougRAzViKP4qUYM1Yixmp58-kUqPWYITurmH_xy5KGPd9bgRK8Ao6DSDlQQldV_enwBKlWJsw
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_175815
crossref_primary_10_1016_j_ceramint_2024_11_442
crossref_primary_10_1016_j_jnucmat_2024_155370
crossref_primary_10_1016_j_ijrmhm_2024_107028
crossref_primary_10_3934_matersci_2023030
Cites_doi 10.1016/j.fusengdes.2017.08.009
10.1088/1741-4326/abe7bb
10.1016/j.jnucmat.2018.04.031
10.1016/j.jnucmat.2018.06.020
10.1016/j.actamat.2020.03.034
10.1016/j.jnucmat.2016.08.024
10.1016/j.nme.2017.04.014
10.1016/j.commatsci.2017.12.024
10.1016/j.jnucmat.2013.01.008
10.1016/j.fusengdes.2013.05.010
10.1016/j.fusengdes.2017.12.007
10.1016/j.jnucmat.2006.10.002
10.1088/0029-5515/46/11/001
10.13182/FST05-A764
10.1016/j.actamat.2020.07.047
10.1016/j.jnucmat.2015.09.023
10.1016/j.fusengdes.2013.05.091
10.1016/j.actamat.2015.01.067
10.1016/j.jnucmat.2021.153122
10.2320/matertrans.MG201208
10.2320/matertrans.MAW200722
10.1016/j.actamat.2022.117926
10.1016/j.jnucmat.2022.153589
10.1016/j.jnucmat.2020.152594
10.1016/j.ijrmhm.2021.105522
10.1016/B978-0-08-056033-5.00118-X
10.1016/0029-5493(75)90035-7
10.2320/matertrans.MBW201110
10.1016/j.nme.2016.07.003
10.1088/1741-4326/abe312
10.1016/j.fusengdes.2013.02.156
10.1038/s41598-021-86746-6
10.1063/1.4894742
10.1016/j.jnucmat.2017.12.014
10.1038/s41467-018-03415-5
10.1016/j.jnucmat.2019.07.005
10.1016/j.commatsci.2020.109727
10.1080/14786437308227997
10.1016/j.jnucmat.2019.151808
10.1038/s41598-019-52521-x
10.1016/j.actamat.2018.11.032
10.1016/j.jnucmat.2018.06.041
10.1088/0031-8949/2016/T167/014002
10.1016/j.jnucmat.2017.06.008
10.1016/j.fusengdes.2014.04.035
10.1016/j.jnucmat.2013.01.283
10.1016/j.jnucmat.2018.10.027
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2022.112001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
ExternalDocumentID 10_1016_j_commatsci_2022_112001
S0927025622007121
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SMS
VH1
WUQ
~HD
ID FETCH-LOGICAL-c315t-dfc8934fd2fcc776e36cc45aeffe78559708a3df5b72a74a2cb30e2d5b0a10113
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Sat Oct 25 05:12:02 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 23 02:38:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Irradiation effects
Hardening and embrittlement
Kinetic Monte Carlo
Temperature effects
Tungsten
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-dfc8934fd2fcc776e36cc45aeffe78559708a3df5b72a74a2cb30e2d5b0a10113
ParticipantIDs crossref_primary_10_1016_j_commatsci_2022_112001
crossref_citationtrail_10_1016_j_commatsci_2022_112001
elsevier_sciencedirect_doi_10_1016_j_commatsci_2022_112001
PublicationCentury 2000
PublicationDate 2023-02-25
PublicationDateYYYYMMDD 2023-02-25
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-25
  day: 25
PublicationDecade 2020
PublicationTitle Computational materials science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Castin, Bakaev, Bonny, Sand, Malerba, Terentyev (b0115) 2017; 493
Hirai (b0095) 2018; 127
Hwang, Hasegawa, Tomura, Ebisawa, Toyama, Nagai, Fukuda, Miyazawa, Tanaka, Nogami (b0170) 2018; 507
Eich (b0065) 2017; 12
Pitts (b0075) 2013; 438
Arakcheev (b0215) 2019; 20
Bonny, Konstantinovic, Bakaeva, Yin, Castin, Mergia, Chatzikos, Dellis, Khvan, Bakaev, Dubinko, Terentyev (b0266) 2020; 198
Hu, Parish, Wang, Koyanagi, Eftink, Katoh (b0175) 2019; 165
S. Van den Kerkhof, Thermomechanical analysis and optimal design of the ITER monoblock using functionally graded materials to handle extreme heat loads. PhD dissertation (KU Leuven, September 2021).
Hirai (b0010) 2016; 9
Bonny, Bakaev, Terentyev (b0267) 2019; 9
Website. <https://www.iter.org/sci/Goals> (Accessed on 5/7/2022).
He (b0200) 2006; 46
Ferroni (b0225) 2015; 90
Castin, Dubinko, Bonny, Bakaev, Likonen, De Backer, Sand, Heinola, Terentyev (b0125) 2019; 527
Hirai (b0090) 2013; 88
Evans (b0060) 2013; 438
Reza, He, Dennett, Yu, Mizohata, Hofmann (b0245) 2022; 232
Villari (b0045) 2013; 88
Castin (b0185) 2020; 17
Pitts (b0005) 2019; 20
Van den Kerkhof (b0105) 2020; T171
Monnet (b0050) 2018; 508
Li (b0020) 2021; 61
Nordlund (b0150) 2018; 9
Van den Kerkhof, Blommaert, Pitts, Dekeyser, Carli, Baelmans (b0085) 2021; 27
Castin, Bonny, Bakaev, Ortiz, Sand, Terentyev (b0120) 2018; 500
Castin, Bakaev, Terentyev, Pascuet, Bonny (b0220) 2021; 555
Gilbert, Marian, Sublet (b0160) 2015; 467
Panayotis (b0025) 2017; 125
Bonny, Castin, Bakaev, Sand, Terentyev (b0268) 2020; 181
Malerba, Becquart, Domain (b0135) 2007; 360
Castin (b0190) 2022; 27
Hu (b0055) 2016; 480
Akiyoshi (b0260) 2021; 543
Habainy, Dai, Lee, Iyengar (b0250) 2018; 509
Fukuda (b0210) 2012; 53
Pintsuk (b0015) 2013; 88
Leonard (b0070) 2014; 21
Hasegawa, Fukuda, Nogami, Yabuuchi (b0035) 2014; 89
Hasegawa (b0030) 2013; 54
Norgett, Robinson, Torrens (b0145) 1975; 33
Reza, Yu, Mizohata, Hofmann (b0240) 2020; 193
Linke, Lorenzetto, Majerus, Merola, Pitzer, Rödig (b0255) 2005; 47
Pintsuk (b0040) 2012; 4
Dubinko (b0195) 2021; 98
Dürrschnabel, Klimenkov, Jäntsch, Rieth, Schneider, Terentyev (b0180) 2021; 11
Van den Kerkhof (b0100) 2021; 61
Bonny, Castin, Bakaev, Terentyev (b0140) 2018; 144
Tanno (b0205) 2007; 48
Castin, Terentyev, Bakaev, Stankovskiy, Bonny (b0130) 2022; 562
Nordlund (b0155) 2018; 512
Tanure, Bakaeva, Dubinko, Terentyev, Verbeken (b0230) 2019; 524
Bacon, Kocks, Scattergood (b0165) 1973; 28
Coenen, Antusch, Aumann, Biel, Du, Engels (b0235) 2016; T167
ITER Material Property Handbook, Material Assessment Report, G 74 MA 10 W 0.3, 2004.
Castin (10.1016/j.commatsci.2022.112001_b0115) 2017; 493
Ferroni (10.1016/j.commatsci.2022.112001_b0225) 2015; 90
Gilbert (10.1016/j.commatsci.2022.112001_b0160) 2015; 467
Castin (10.1016/j.commatsci.2022.112001_b0220) 2021; 555
Bonny (10.1016/j.commatsci.2022.112001_b0266) 2020; 198
Malerba (10.1016/j.commatsci.2022.112001_b0135) 2007; 360
Evans (10.1016/j.commatsci.2022.112001_b0060) 2013; 438
Habainy (10.1016/j.commatsci.2022.112001_b0250) 2018; 509
Hasegawa (10.1016/j.commatsci.2022.112001_b0030) 2013; 54
10.1016/j.commatsci.2022.112001_b0080
Van den Kerkhof (10.1016/j.commatsci.2022.112001_b0085) 2021; 27
Bacon (10.1016/j.commatsci.2022.112001_b0165) 1973; 28
Van den Kerkhof (10.1016/j.commatsci.2022.112001_b0105) 2020; T171
Reza (10.1016/j.commatsci.2022.112001_b0245) 2022; 232
Hirai (10.1016/j.commatsci.2022.112001_b0010) 2016; 9
Pintsuk (10.1016/j.commatsci.2022.112001_b0040) 2012; 4
Pintsuk (10.1016/j.commatsci.2022.112001_b0015) 2013; 88
Villari (10.1016/j.commatsci.2022.112001_b0045) 2013; 88
Akiyoshi (10.1016/j.commatsci.2022.112001_b0260) 2021; 543
Nordlund (10.1016/j.commatsci.2022.112001_b0155) 2018; 512
Bonny (10.1016/j.commatsci.2022.112001_b0267) 2019; 9
Linke (10.1016/j.commatsci.2022.112001_b0255) 2005; 47
Coenen (10.1016/j.commatsci.2022.112001_b0235) 2016; T167
Castin (10.1016/j.commatsci.2022.112001_b0125) 2019; 527
Bonny (10.1016/j.commatsci.2022.112001_b0268) 2020; 181
Van den Kerkhof (10.1016/j.commatsci.2022.112001_b0100) 2021; 61
Castin (10.1016/j.commatsci.2022.112001_b0130) 2022; 562
Tanno (10.1016/j.commatsci.2022.112001_b0205) 2007; 48
Dürrschnabel (10.1016/j.commatsci.2022.112001_b0180) 2021; 11
Hasegawa (10.1016/j.commatsci.2022.112001_b0035) 2014; 89
Arakcheev (10.1016/j.commatsci.2022.112001_b0215) 2019; 20
Li (10.1016/j.commatsci.2022.112001_b0020) 2021; 61
10.1016/j.commatsci.2022.112001_b0265
Panayotis (10.1016/j.commatsci.2022.112001_b0025) 2017; 125
Castin (10.1016/j.commatsci.2022.112001_b0120) 2018; 500
Pitts (10.1016/j.commatsci.2022.112001_b0005) 2019; 20
Hirai (10.1016/j.commatsci.2022.112001_b0095) 2018; 127
Dubinko (10.1016/j.commatsci.2022.112001_b0195) 2021; 98
Hirai (10.1016/j.commatsci.2022.112001_b0090) 2013; 88
He (10.1016/j.commatsci.2022.112001_b0200) 2006; 46
Pitts (10.1016/j.commatsci.2022.112001_b0075) 2013; 438
Reza (10.1016/j.commatsci.2022.112001_b0240) 2020; 193
Nordlund (10.1016/j.commatsci.2022.112001_b0150) 2018; 9
Hwang (10.1016/j.commatsci.2022.112001_b0170) 2018; 507
Leonard (10.1016/j.commatsci.2022.112001_b0070) 2014; 21
Castin (10.1016/j.commatsci.2022.112001_b0185) 2020; 17
Monnet (10.1016/j.commatsci.2022.112001_b0050) 2018; 508
Norgett (10.1016/j.commatsci.2022.112001_b0145) 1975; 33
Castin (10.1016/j.commatsci.2022.112001_b0190) 2022; 27
Fukuda (10.1016/j.commatsci.2022.112001_b0210) 2012; 53
Hu (10.1016/j.commatsci.2022.112001_b0175) 2019; 165
10.1016/j.commatsci.2022.112001_b0110
Hu (10.1016/j.commatsci.2022.112001_b0055) 2016; 480
Tanure (10.1016/j.commatsci.2022.112001_b0230) 2019; 524
Eich (10.1016/j.commatsci.2022.112001_b0065) 2017; 12
Bonny (10.1016/j.commatsci.2022.112001_b0140) 2018; 144
References_xml – volume: 127
  start-page: 66
  year: 2018
  end-page: 72
  ident: b0095
  article-title: Design optimization of the ITER tungsten divertor vertical targets
  publication-title: Fus. Eng. Des.
– volume: 562
  year: 2022
  ident: b0130
  article-title: On the equivalence of irradiation conditions on present and future facilities for fusion materials research and qualification: a computational study
  publication-title: J. Nucl. Mater.
– volume: 20
  year: 2019
  ident: b0005
  article-title: Physics basis for the first ITER tungsten divertor
  publication-title: Nucl. Mater. Energy
– volume: 90
  start-page: 380
  year: 2015
  end-page: 393
  ident: b0225
  article-title: High temperature annealing of ion irradiated tungsten
  publication-title: Acta Mater.
– volume: 493
  start-page: 280
  year: 2017
  end-page: 293
  ident: b0115
  article-title: On the onset of void swelling in pure tungsten under neutron irradiation: an object kinetic Monte Carlo approach
  publication-title: J. Nucl. Mater.
– volume: 438
  start-page: S11
  year: 2013
  end-page: S18
  ident: b0060
  article-title: ELM mitigation techniques
  publication-title: J. Nucl. Mater.
– volume: 88
  start-page: 2006
  year: 2013
  end-page: 2010
  ident: b0045
  publication-title: Fus. Eng. Des.
– reference: Website. <https://www.iter.org/sci/Goals> (Accessed on 5/7/2022).
– volume: 33
  start-page: 50
  year: 1975
  end-page: 54
  ident: b0145
  publication-title: Nucl. Eng. Des.
– volume: 54
  start-page: 466
  year: 2013
  end-page: 471
  ident: b0030
  article-title: Neutron irradiation behavior of tungsten
  publication-title: Mater. Trans.
– volume: 9
  start-page: 616
  year: 2016
  end-page: 622
  ident: b0010
  article-title: Use of tungsten material for the ITER divertor
  publication-title: Nucl. Mater. Energy
– volume: 438
  start-page: S48
  year: 2013
  end-page: S56
  ident: b0075
  article-title: A full tungsten divertor for ITER: Physics issues and design status
  publication-title: J. Nucl. Mater.
– volume: T171
  year: 2020
  ident: b0105
  article-title: Investigating the potential of FGMs through numerical minimization of thermal stresses
  publication-title: Phys. Scr.
– volume: 61
  year: 2021
  ident: b0020
  article-title: Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating
  publication-title: Nucl. Fusion
– volume: 28
  start-page: 1241
  year: 1973
  end-page: 1263
  ident: b0165
  article-title: The effect of dislocation self-interaction on the orowan stress
  publication-title: Phil. Mag.
– volume: 524
  start-page: 191
  year: 2019
  end-page: 199
  ident: b0230
  article-title: Effect of annealing on microstructure, texture and hardness of ITER-specification tungsten analyzed by EBSD, vickers micro-hardness and nano-indentation techniques
  publication-title: J. Nucl. Mater.
– volume: 20
  year: 2019
  ident: b0215
  article-title: On the mechanism of surface-parallel cracks formation under pulsed heat loads
  publication-title: Nucl. Mat. Energy
– volume: 193
  start-page: 270
  year: 2020
  end-page: 279
  ident: b0240
  article-title: Thermal diffusivity degradation and point defect density in self-ion implanted tungsten
  publication-title: Acta Mater.
– volume: 165
  start-page: 51
  year: 2019
  end-page: 61
  ident: b0175
  article-title: Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum
  publication-title: Acta Mater.
– volume: 509
  start-page: 152
  year: 2018
  end-page: 157
  ident: b0250
  article-title: Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa
  publication-title: J. Nucl. Mater.
– volume: 27
  year: 2022
  ident: b0190
  article-title: Multiscale modelling in nuclear ferritic steels: from nano-sized defects to embrittlement
  publication-title: Mater. Today Phys.
– volume: 4
  start-page: 551
  year: 2012
  end-page: 581
  ident: b0040
  article-title: Tungsten as a plasma-facing material
  publication-title: Comprehens. Nucl. Mater.
– volume: 88
  start-page: 1858
  year: 2013
  end-page: 1861
  ident: b0015
  article-title: Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading
  publication-title: Fus. Eng. Des.
– volume: 89
  start-page: 1568
  year: 2014
  end-page: 1572
  ident: b0035
  publication-title: Fus. Eng. Des.
– reference: ITER Material Property Handbook, Material Assessment Report, G 74 MA 10 W 0.3, 2004.
– volume: T167
  year: 2016
  ident: b0235
  publication-title: Phys. Scripta
– volume: 125
  start-page: 256
  year: 2017
  end-page: 262
  ident: b0025
  article-title: Fracture modes of ITER tungsten divertor monoblock under stationary thermal loads
  publication-title: Fus. Eng. Des.
– volume: 17
  year: 2020
  ident: b0185
  article-title: The dominant mechanisms for the formation of solute-rich clusters in low-Cu steels under irradiation
  publication-title: Mater. Today Energy
– volume: 48
  start-page: 2399
  year: 2007
  end-page: 2402
  ident: b0205
  article-title: Effects of transmutation elements on neutron irradiation hardening of tungsten
  publication-title: Mater. Trans.
– volume: 198
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0266
  article-title: Trends in vacancy distribution and hardness of high temperature neutron irradiated single crystal tungsten
  publication-title: Acta Mate.
– volume: 9
  start-page: 1084
  year: 2018
  ident: b0150
  article-title: Improving atomic displacement and replacement calculations with physically realistic damage models
  publication-title: Nat. Commun.
– volume: 98
  year: 2021
  ident: b0195
  article-title: Microstructure and hardening induced by neutron irradiation in single crystal, ITER specification and cold rolled tungsten
  publication-title: Int. J. Refractory Metals Hard Mater.
– volume: 512
  start-page: 450
  year: 2018
  end-page: 479
  ident: b0155
  article-title: Primary radiation damage: a review of current understanding and models
  publication-title: J. Nucl. Mater.
– volume: 480
  start-page: 235
  year: 2016
  end-page: 243
  ident: b0055
  article-title: Irradiation hardening of pure tungsten exposed to neutron irradiation
  publication-title: J. Nucl. Mater.
– volume: 61
  year: 2021
  ident: b0100
  article-title: Optimized design of a tungsten-copper functionally graded material monoblock for minimal von Mises stress meeting the material operational temperature window
  publication-title: Nucl. Fusion
– volume: 53
  start-page: 2145
  year: 2012
  end-page: 2150
  ident: b0210
  article-title: Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten
  publication-title: Mater. Trans.
– volume: 12
  start-page: 84
  year: 2017
  end-page: 90
  ident: b0065
  article-title: ELM divertor peak energy fluence scaling to ITER with data from JET, MAST, and ASDEX upgrade
  publication-title: Nucl. Mater. Energy
– volume: 88
  start-page: 1798
  year: 2013
  end-page: 1801
  ident: b0090
  article-title: ITER tungsten divertor design development and qualification program
  publication-title: Fus. Eng. Des.
– volume: 467
  start-page: 121
  year: 2015
  end-page: 134
  ident: b0160
  publication-title: J. Nucl. Mater.
– volume: 555
  year: 2021
  ident: b0220
  article-title: Understanding why dislocation loops are visible in transmission electron microscopy: the tungsten case
  publication-title: J. Nucl. Mater.
– volume: 527
  year: 2019
  ident: b0125
  article-title: The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions
  publication-title: J. Nucl. Mater.
– volume: 46
  start-page: 877
  year: 2006
  end-page: 883
  ident: b0200
  article-title: Microstructural development and irradiation hardening of W and W–(3–26) wt%Re alloys after high-temperature neutron irradiation to 0.15 dpa
  publication-title: Nucl. Fusion
– volume: 507
  start-page: 78
  year: 2018
  end-page: 86
  ident: b0170
  article-title: Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys
  publication-title: J. Nucl. Mater.
– volume: 508
  start-page: 609
  year: 2018
  end-page: 627
  ident: b0050
  article-title: Multiscale modeling of irradiation hardening: application to important nuclear materials
  publication-title: J. Nucl. Mater.
– volume: 500
  start-page: 15
  year: 2018
  end-page: 25
  ident: b0120
  article-title: Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities
  publication-title: J. Nucl. Mater.
– reference: S. Van den Kerkhof, Thermomechanical analysis and optimal design of the ITER monoblock using functionally graded materials to handle extreme heat loads. PhD dissertation (KU Leuven, September 2021).
– volume: 543
  year: 2021
  ident: b0260
  article-title: Thermal diffusivity of irradiated tungsten and tungsten-rhenium alloys
  publication-title: J. Nucl. Mater.
– volume: 360
  start-page: 159
  year: 2007
  ident: b0135
  article-title: Object kinetic Monte Carlo study of sink strengths
  publication-title: J. Nucl. Mater.
– volume: 181
  start-page: 109727
  year: 2020
  ident: b0268
  article-title: Effects of cascade-induced dislocation structures on the long-term microstructural evolution in tungsten
  publication-title: Comp. Mate. Sci.
– volume: 11
  start-page: 7572
  year: 2021
  ident: b0180
  article-title: New insights into microstructure of neutron-irradiated tungsten
  publication-title: Sci. Rep.
– volume: 27
  year: 2021
  ident: b0085
  article-title: Impact of ELM mitigation on the ITER monoblock thermal behavior and the tungsten recrystallization depth
  publication-title: Nucl. Mater. Energy
– volume: 47
  start-page: 678
  year: 2005
  end-page: 685
  ident: b0255
  article-title: EU development of high heat flux components
  publication-title: Fusion Sci. Technol.
– volume: 232
  year: 2022
  ident: b0245
  article-title: Thermal diffusivity recovery and defect annealing kinetics of self-ion implanted tungsten prob e d by insitu transient grating spectroscopy
  publication-title: Acta Mater.
– volume: 9
  start-page: 16215
  year: 2019
  ident: b0267
  article-title: Assessment of hardening due to non-coherent precipitates in tungsten-rhenium alloys at the atomic scale
  publication-title: Sci. Rep.
– volume: 21
  year: 2014
  ident: b0070
  article-title: Edge-localized-modes in tokamaks
  publication-title: Phys. Plasm.
– volume: 144
  start-page: 355
  year: 2018
  end-page: 362
  ident: b0140
  article-title: Kinetic Monte Carlo model for 1-D migration in a field of strong traps: application to self-interstitial clusters in W-Re alloys
  publication-title: Comput. Mater. Sci.
– volume: 125
  start-page: 256
  year: 2017
  ident: 10.1016/j.commatsci.2022.112001_b0025
  article-title: Fracture modes of ITER tungsten divertor monoblock under stationary thermal loads
  publication-title: Fus. Eng. Des.
  doi: 10.1016/j.fusengdes.2017.08.009
– volume: 61
  year: 2021
  ident: 10.1016/j.commatsci.2022.112001_b0100
  article-title: Optimized design of a tungsten-copper functionally graded material monoblock for minimal von Mises stress meeting the material operational temperature window
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/abe7bb
– volume: 507
  start-page: 78
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0170
  article-title: Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.04.031
– ident: 10.1016/j.commatsci.2022.112001_b0265
– volume: 508
  start-page: 609
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0050
  article-title: Multiscale modeling of irradiation hardening: application to important nuclear materials
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.06.020
– volume: 193
  start-page: 270
  year: 2020
  ident: 10.1016/j.commatsci.2022.112001_b0240
  article-title: Thermal diffusivity degradation and point defect density in self-ion implanted tungsten
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.03.034
– volume: 480
  start-page: 235
  year: 2016
  ident: 10.1016/j.commatsci.2022.112001_b0055
  article-title: Irradiation hardening of pure tungsten exposed to neutron irradiation
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2016.08.024
– volume: 12
  start-page: 84
  year: 2017
  ident: 10.1016/j.commatsci.2022.112001_b0065
  article-title: ELM divertor peak energy fluence scaling to ITER with data from JET, MAST, and ASDEX upgrade
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2017.04.014
– ident: 10.1016/j.commatsci.2022.112001_b0110
– volume: 144
  start-page: 355
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0140
  article-title: Kinetic Monte Carlo model for 1-D migration in a field of strong traps: application to self-interstitial clusters in W-Re alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.12.024
– volume: 438
  start-page: S48
  year: 2013
  ident: 10.1016/j.commatsci.2022.112001_b0075
  article-title: A full tungsten divertor for ITER: Physics issues and design status
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.01.008
– volume: 88
  start-page: 1798
  year: 2013
  ident: 10.1016/j.commatsci.2022.112001_b0090
  article-title: ITER tungsten divertor design development and qualification program
  publication-title: Fus. Eng. Des.
  doi: 10.1016/j.fusengdes.2013.05.010
– volume: 127
  start-page: 66
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0095
  article-title: Design optimization of the ITER tungsten divertor vertical targets
  publication-title: Fus. Eng. Des.
  doi: 10.1016/j.fusengdes.2017.12.007
– volume: 360
  start-page: 159
  year: 2007
  ident: 10.1016/j.commatsci.2022.112001_b0135
  article-title: Object kinetic Monte Carlo study of sink strengths
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2006.10.002
– volume: 46
  start-page: 877
  year: 2006
  ident: 10.1016/j.commatsci.2022.112001_b0200
  article-title: Microstructural development and irradiation hardening of W and W–(3–26) wt%Re alloys after high-temperature neutron irradiation to 0.15 dpa
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/46/11/001
– volume: 47
  start-page: 678
  year: 2005
  ident: 10.1016/j.commatsci.2022.112001_b0255
  article-title: EU development of high heat flux components
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST05-A764
– volume: 198
  start-page: 1
  year: 2020
  ident: 10.1016/j.commatsci.2022.112001_b0266
  article-title: Trends in vacancy distribution and hardness of high temperature neutron irradiated single crystal tungsten
  publication-title: Acta Mate.
  doi: 10.1016/j.actamat.2020.07.047
– volume: T171
  year: 2020
  ident: 10.1016/j.commatsci.2022.112001_b0105
  article-title: Investigating the potential of FGMs through numerical minimization of thermal stresses
  publication-title: Phys. Scr.
– volume: 467
  start-page: 121
  year: 2015
  ident: 10.1016/j.commatsci.2022.112001_b0160
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.09.023
– volume: 20
  year: 2019
  ident: 10.1016/j.commatsci.2022.112001_b0005
  article-title: Physics basis for the first ITER tungsten divertor
  publication-title: Nucl. Mater. Energy
– volume: 88
  start-page: 1858
  year: 2013
  ident: 10.1016/j.commatsci.2022.112001_b0015
  article-title: Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading
  publication-title: Fus. Eng. Des.
  doi: 10.1016/j.fusengdes.2013.05.091
– volume: 27
  year: 2022
  ident: 10.1016/j.commatsci.2022.112001_b0190
  article-title: Multiscale modelling in nuclear ferritic steels: from nano-sized defects to embrittlement
  publication-title: Mater. Today Phys.
– volume: 90
  start-page: 380
  year: 2015
  ident: 10.1016/j.commatsci.2022.112001_b0225
  article-title: High temperature annealing of ion irradiated tungsten
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.01.067
– volume: 27
  year: 2021
  ident: 10.1016/j.commatsci.2022.112001_b0085
  article-title: Impact of ELM mitigation on the ITER monoblock thermal behavior and the tungsten recrystallization depth
  publication-title: Nucl. Mater. Energy
– volume: 555
  year: 2021
  ident: 10.1016/j.commatsci.2022.112001_b0220
  article-title: Understanding why dislocation loops are visible in transmission electron microscopy: the tungsten case
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2021.153122
– volume: 54
  start-page: 466
  year: 2013
  ident: 10.1016/j.commatsci.2022.112001_b0030
  article-title: Neutron irradiation behavior of tungsten
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MG201208
– volume: 48
  start-page: 2399
  year: 2007
  ident: 10.1016/j.commatsci.2022.112001_b0205
  article-title: Effects of transmutation elements on neutron irradiation hardening of tungsten
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MAW200722
– volume: 232
  year: 2022
  ident: 10.1016/j.commatsci.2022.112001_b0245
  article-title: Thermal diffusivity recovery and defect annealing kinetics of self-ion implanted tungsten prob e d by insitu transient grating spectroscopy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117926
– volume: 562
  year: 2022
  ident: 10.1016/j.commatsci.2022.112001_b0130
  article-title: On the equivalence of irradiation conditions on present and future facilities for fusion materials research and qualification: a computational study
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2022.153589
– volume: 543
  year: 2021
  ident: 10.1016/j.commatsci.2022.112001_b0260
  article-title: Thermal diffusivity of irradiated tungsten and tungsten-rhenium alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152594
– volume: 98
  year: 2021
  ident: 10.1016/j.commatsci.2022.112001_b0195
  article-title: Microstructure and hardening induced by neutron irradiation in single crystal, ITER specification and cold rolled tungsten
  publication-title: Int. J. Refractory Metals Hard Mater.
  doi: 10.1016/j.ijrmhm.2021.105522
– volume: 4
  start-page: 551
  year: 2012
  ident: 10.1016/j.commatsci.2022.112001_b0040
  article-title: Tungsten as a plasma-facing material
  publication-title: Comprehens. Nucl. Mater.
  doi: 10.1016/B978-0-08-056033-5.00118-X
– ident: 10.1016/j.commatsci.2022.112001_b0080
– volume: 33
  start-page: 50
  year: 1975
  ident: 10.1016/j.commatsci.2022.112001_b0145
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(75)90035-7
– volume: 53
  start-page: 2145
  year: 2012
  ident: 10.1016/j.commatsci.2022.112001_b0210
  article-title: Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MBW201110
– volume: 9
  start-page: 616
  year: 2016
  ident: 10.1016/j.commatsci.2022.112001_b0010
  article-title: Use of tungsten material for the ITER divertor
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2016.07.003
– volume: 61
  year: 2021
  ident: 10.1016/j.commatsci.2022.112001_b0020
  article-title: Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/abe312
– volume: 88
  start-page: 2006
  year: 2013
  ident: 10.1016/j.commatsci.2022.112001_b0045
  publication-title: Fus. Eng. Des.
  doi: 10.1016/j.fusengdes.2013.02.156
– volume: 11
  start-page: 7572
  year: 2021
  ident: 10.1016/j.commatsci.2022.112001_b0180
  article-title: New insights into microstructure of neutron-irradiated tungsten
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-86746-6
– volume: 20
  year: 2019
  ident: 10.1016/j.commatsci.2022.112001_b0215
  article-title: On the mechanism of surface-parallel cracks formation under pulsed heat loads
  publication-title: Nucl. Mat. Energy
– volume: 21
  year: 2014
  ident: 10.1016/j.commatsci.2022.112001_b0070
  article-title: Edge-localized-modes in tokamaks
  publication-title: Phys. Plasm.
  doi: 10.1063/1.4894742
– volume: 500
  start-page: 15
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0120
  article-title: Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2017.12.014
– volume: 17
  year: 2020
  ident: 10.1016/j.commatsci.2022.112001_b0185
  article-title: The dominant mechanisms for the formation of solute-rich clusters in low-Cu steels under irradiation
  publication-title: Mater. Today Energy
– volume: 9
  start-page: 1084
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0150
  article-title: Improving atomic displacement and replacement calculations with physically realistic damage models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03415-5
– volume: 524
  start-page: 191
  year: 2019
  ident: 10.1016/j.commatsci.2022.112001_b0230
  article-title: Effect of annealing on microstructure, texture and hardness of ITER-specification tungsten analyzed by EBSD, vickers micro-hardness and nano-indentation techniques
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2019.07.005
– volume: 181
  start-page: 109727
  year: 2020
  ident: 10.1016/j.commatsci.2022.112001_b0268
  article-title: Effects of cascade-induced dislocation structures on the long-term microstructural evolution in tungsten
  publication-title: Comp. Mate. Sci.
  doi: 10.1016/j.commatsci.2020.109727
– volume: 28
  start-page: 1241
  year: 1973
  ident: 10.1016/j.commatsci.2022.112001_b0165
  article-title: The effect of dislocation self-interaction on the orowan stress
  publication-title: Phil. Mag.
  doi: 10.1080/14786437308227997
– volume: 527
  year: 2019
  ident: 10.1016/j.commatsci.2022.112001_b0125
  article-title: The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2019.151808
– volume: 9
  start-page: 16215
  year: 2019
  ident: 10.1016/j.commatsci.2022.112001_b0267
  article-title: Assessment of hardening due to non-coherent precipitates in tungsten-rhenium alloys at the atomic scale
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52521-x
– volume: 165
  start-page: 51
  year: 2019
  ident: 10.1016/j.commatsci.2022.112001_b0175
  article-title: Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.11.032
– volume: 509
  start-page: 152
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0250
  article-title: Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.06.041
– volume: T167
  year: 2016
  ident: 10.1016/j.commatsci.2022.112001_b0235
  publication-title: Phys. Scripta
  doi: 10.1088/0031-8949/2016/T167/014002
– volume: 493
  start-page: 280
  year: 2017
  ident: 10.1016/j.commatsci.2022.112001_b0115
  article-title: On the onset of void swelling in pure tungsten under neutron irradiation: an object kinetic Monte Carlo approach
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2017.06.008
– volume: 89
  start-page: 1568
  year: 2014
  ident: 10.1016/j.commatsci.2022.112001_b0035
  publication-title: Fus. Eng. Des.
  doi: 10.1016/j.fusengdes.2014.04.035
– volume: 438
  start-page: S11
  year: 2013
  ident: 10.1016/j.commatsci.2022.112001_b0060
  article-title: ELM mitigation techniques
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.01.283
– volume: 512
  start-page: 450
  year: 2018
  ident: 10.1016/j.commatsci.2022.112001_b0155
  article-title: Primary radiation damage: a review of current understanding and models
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.10.027
SSID ssj0016982
Score 2.3980386
Snippet We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112001
SubjectTerms Hardening and embrittlement
Irradiation effects
Kinetic Monte Carlo
Temperature effects
Tungsten
Title On the microstructure evolution in tungsten ITER monoblocks: A computational study
URI https://dx.doi.org/10.1016/j.commatsci.2022.112001
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywhjqO7STdqoqqgFSkQqVuUfyIVB5pBYWR387ZcapWDB3I6Pis6PPl7mx9d4fQtYQYXhgqAy0UgwNKwgJbBi5IInjSIhGFcSzfkRhO2P2UTxuoX-fCWFqlt_2VTXfW2o90PJqdxWzWeSKpzaUC_22v20KXTM5YbLsY3PysaB6hSF3DKDs5sLM3OF6wNsSFsDocFCm16TTEd4f546HWvM7gAO37cBH3qi86RA1THqG9tSKCx2j8WGKI4vC7pdZV5WC_Pgw2316p8Azewy8N21liMFRjDJo3l-DEXj-7uIeV6-vg7wSxKzd7giaD2-f-MPCdEgIVhXwZ6EJB3MEKTQul4liYSCjFeG45IXFiDw0kySNdcBnTPGY5VTIihmouSQ5QhNEpapbz0pwhzLnOZWyIgr1liuo0IanWTOUGhsGZt5Co0cmULyNuu1m8ZTVf7CVbwZpZWLMK1hYiK8FFVUlju0i3hj_bUIoM7P024fP_CF-gXdtX3uWu80vUhM0zVxB9LGXbqVcb7fTuHoajX3hc3AI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YE11HFsJ-lWVVQFSpFKK3WzEtuRyiOtoDDy2zknTtWKoQMZHZ8V3V3uYX13h9B1CjG8MDT1tFAMEpSIebYNnBcF8MRZJDJToHz7ojti92M-rqF2VQtjYZXO9pc2vbDWbqXhuNmYTSaNZxLbWirw3_a6zbfF5JuM09BmYDc_C5yHL-JiYpTd7dntKyAvOBwCQzgeMkVKbT0NceNh_rioJbfT2UO7Ll7ErfKT9lHN5AdoZ6mL4CEaPOUYwjj8brF1ZT_Yrw-DzbfTKjyB9_BPgzxzDJZqgEH1pil4sdfPJm5hVQx2cJeCuOg3e4RGndthu-u5UQmeCnw-93SmIPBgmaaZUmEoTCCUYjyxoJAwslkDiZJAZzwNaRKyhKo0IIZqnpIEWOEHx2gjn-bmBGHOdZKGhigQLlNUxxGJtWYqMbAM3ryORMUdqVwfcTvO4k1WgLEXuWCrtGyVJVvriCwIZ2UrjfUkzYr9ckUrJBj8dcSn_yG-Qlvd4WNP9u76D2do2w6ZLwrZ-TnaAEGaCwhF5ulloWq_rKndlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+microstructure+evolution+in+tungsten+ITER+monoblocks%3A+A+computational+study&rft.jtitle=Computational+materials+science&rft.au=Castin%2C+N.&rft.au=Van+den+Kerkhof%2C+S.&rft.au=Bonny%2C+G.&rft.au=Terentyev%2C+D.&rft.date=2023-02-25&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=219&rft_id=info:doi/10.1016%2Fj.commatsci.2022.112001&rft.externalDocID=S0927025622007121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon