On the microstructure evolution in tungsten ITER monoblocks: A computational study
We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of tungsten monoblocks in the future ITER device. These plasma-facing components will indeed be subject to unsteady heat loads and neutron bombar...
Saved in:
| Published in | Computational materials science Vol. 219; p. 112001 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
25.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0927-0256 1879-0801 |
| DOI | 10.1016/j.commatsci.2022.112001 |
Cover
| Abstract | We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of tungsten monoblocks in the future ITER device. These plasma-facing components will indeed be subject to unsteady heat loads and neutron bombardment, whose combination induces a degradation of the mechanical properties in a heterogeneous manner. Though both phenomena have received substantial attention in literature, their combined effects are not well known. The first tool is an in-house finite volume based solver for the heat conduction equation, which is dedicated to the evaluation of temperature profiles, during steady state and typical transient conditions, such as (mitigated) type I edge localized modes and slow power transients. The second tool is a multiscale object Kinetic Monte Carlo (OKMC) model, dedicated to the prediction of the microstructure evolution under high-energy neutron bombardment, given the local temperature as input. Finally, the last tool estimates the macroscopic properties of the tungsten material, given the microstructure as predicted by the OKMC tool. As a result of the combined study, we find that thermal transients alleviate the degradation of mechanical properties for the most part of the monoblock components, at the exception of the areas close to the cooling pipes where, on the contrary, the degradations kinetics are accelerated. |
|---|---|
| AbstractList | We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of tungsten monoblocks in the future ITER device. These plasma-facing components will indeed be subject to unsteady heat loads and neutron bombardment, whose combination induces a degradation of the mechanical properties in a heterogeneous manner. Though both phenomena have received substantial attention in literature, their combined effects are not well known. The first tool is an in-house finite volume based solver for the heat conduction equation, which is dedicated to the evaluation of temperature profiles, during steady state and typical transient conditions, such as (mitigated) type I edge localized modes and slow power transients. The second tool is a multiscale object Kinetic Monte Carlo (OKMC) model, dedicated to the prediction of the microstructure evolution under high-energy neutron bombardment, given the local temperature as input. Finally, the last tool estimates the macroscopic properties of the tungsten material, given the microstructure as predicted by the OKMC tool. As a result of the combined study, we find that thermal transients alleviate the degradation of mechanical properties for the most part of the monoblock components, at the exception of the areas close to the cooling pipes where, on the contrary, the degradations kinetics are accelerated. |
| ArticleNumber | 112001 |
| Author | Bonny, G. Castin, N. Van den Kerkhof, S. Terentyev, D. |
| Author_xml | – sequence: 1 givenname: N. surname: Castin fullname: Castin, N. email: nicolas.m.b.castin@gmail.com organization: Studiecentrum voor Kernenergie – Centre D’Études de L’énergie Nucléaire (SCK CEN), NMS Unit, Boeretang 200, Mol B2400, Belgium – sequence: 2 givenname: S. surname: Van den Kerkhof fullname: Van den Kerkhof, S. organization: Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001 Leuven, Belgium – sequence: 3 givenname: G. surname: Bonny fullname: Bonny, G. organization: Studiecentrum voor Kernenergie – Centre D’Études de L’énergie Nucléaire (SCK CEN), NMS Unit, Boeretang 200, Mol B2400, Belgium – sequence: 4 givenname: D. surname: Terentyev fullname: Terentyev, D. organization: Studiecentrum voor Kernenergie – Centre D’Études de L’énergie Nucléaire (SCK CEN), NMS Unit, Boeretang 200, Mol B2400, Belgium |
| BookMark | eNqNkFFLwzAUhYNMcJv-BvMHWpN0bVrBhzGmDgaDMZ9Dmt5qZpuMJB3s39tS8cEXfboP93zn3nNmaGKsAYTuKYkpodnDMVa2bWXwSseMMBZTygihV2hKc15EJCd0gqakYDwiLM1u0Mz7Yy_IipxN0X5ncPgA3GrlrA-uU6FzgOFsmy5oa7Du95159wEM3hzWe9xaY8vGqk__iJe4v33qghykssE-dNXlFl3XsvFw9z3n6O15fVi9Rtvdy2a13EYqoWmIqlrlRbKoK1YrxXkGSabUIpVQ18DzNC04yWVS1WnJmeQLyVSZEGBVWhLZB6fJHPHRd_jcO6jFyelWuougRAzViKP4qUYM1Yixmp58-kUqPWYITurmH_xy5KGPd9bgRK8Ao6DSDlQQldV_enwBKlWJsw |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_175815 crossref_primary_10_1016_j_ceramint_2024_11_442 crossref_primary_10_1016_j_jnucmat_2024_155370 crossref_primary_10_1016_j_ijrmhm_2024_107028 crossref_primary_10_3934_matersci_2023030 |
| Cites_doi | 10.1016/j.fusengdes.2017.08.009 10.1088/1741-4326/abe7bb 10.1016/j.jnucmat.2018.04.031 10.1016/j.jnucmat.2018.06.020 10.1016/j.actamat.2020.03.034 10.1016/j.jnucmat.2016.08.024 10.1016/j.nme.2017.04.014 10.1016/j.commatsci.2017.12.024 10.1016/j.jnucmat.2013.01.008 10.1016/j.fusengdes.2013.05.010 10.1016/j.fusengdes.2017.12.007 10.1016/j.jnucmat.2006.10.002 10.1088/0029-5515/46/11/001 10.13182/FST05-A764 10.1016/j.actamat.2020.07.047 10.1016/j.jnucmat.2015.09.023 10.1016/j.fusengdes.2013.05.091 10.1016/j.actamat.2015.01.067 10.1016/j.jnucmat.2021.153122 10.2320/matertrans.MG201208 10.2320/matertrans.MAW200722 10.1016/j.actamat.2022.117926 10.1016/j.jnucmat.2022.153589 10.1016/j.jnucmat.2020.152594 10.1016/j.ijrmhm.2021.105522 10.1016/B978-0-08-056033-5.00118-X 10.1016/0029-5493(75)90035-7 10.2320/matertrans.MBW201110 10.1016/j.nme.2016.07.003 10.1088/1741-4326/abe312 10.1016/j.fusengdes.2013.02.156 10.1038/s41598-021-86746-6 10.1063/1.4894742 10.1016/j.jnucmat.2017.12.014 10.1038/s41467-018-03415-5 10.1016/j.jnucmat.2019.07.005 10.1016/j.commatsci.2020.109727 10.1080/14786437308227997 10.1016/j.jnucmat.2019.151808 10.1038/s41598-019-52521-x 10.1016/j.actamat.2018.11.032 10.1016/j.jnucmat.2018.06.041 10.1088/0031-8949/2016/T167/014002 10.1016/j.jnucmat.2017.06.008 10.1016/j.fusengdes.2014.04.035 10.1016/j.jnucmat.2013.01.283 10.1016/j.jnucmat.2018.10.027 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.commatsci.2022.112001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0801 |
| ExternalDocumentID | 10_1016_j_commatsci_2022_112001 S0927025622007121 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSM SST SSZ T5K XPP ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SMS VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c315t-dfc8934fd2fcc776e36cc45aeffe78559708a3df5b72a74a2cb30e2d5b0a10113 |
| IEDL.DBID | .~1 |
| ISSN | 0927-0256 |
| IngestDate | Sat Oct 25 05:12:02 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 23 02:38:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Irradiation effects Hardening and embrittlement Kinetic Monte Carlo Temperature effects Tungsten |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c315t-dfc8934fd2fcc776e36cc45aeffe78559708a3df5b72a74a2cb30e2d5b0a10113 |
| ParticipantIDs | crossref_primary_10_1016_j_commatsci_2022_112001 crossref_citationtrail_10_1016_j_commatsci_2022_112001 elsevier_sciencedirect_doi_10_1016_j_commatsci_2022_112001 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-25 |
| PublicationDateYYYYMMDD | 2023-02-25 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational materials science |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Castin, Bakaev, Bonny, Sand, Malerba, Terentyev (b0115) 2017; 493 Hirai (b0095) 2018; 127 Hwang, Hasegawa, Tomura, Ebisawa, Toyama, Nagai, Fukuda, Miyazawa, Tanaka, Nogami (b0170) 2018; 507 Eich (b0065) 2017; 12 Pitts (b0075) 2013; 438 Arakcheev (b0215) 2019; 20 Bonny, Konstantinovic, Bakaeva, Yin, Castin, Mergia, Chatzikos, Dellis, Khvan, Bakaev, Dubinko, Terentyev (b0266) 2020; 198 Hu, Parish, Wang, Koyanagi, Eftink, Katoh (b0175) 2019; 165 S. Van den Kerkhof, Thermomechanical analysis and optimal design of the ITER monoblock using functionally graded materials to handle extreme heat loads. PhD dissertation (KU Leuven, September 2021). Hirai (b0010) 2016; 9 Bonny, Bakaev, Terentyev (b0267) 2019; 9 Website. <https://www.iter.org/sci/Goals> (Accessed on 5/7/2022). He (b0200) 2006; 46 Ferroni (b0225) 2015; 90 Castin, Dubinko, Bonny, Bakaev, Likonen, De Backer, Sand, Heinola, Terentyev (b0125) 2019; 527 Hirai (b0090) 2013; 88 Evans (b0060) 2013; 438 Reza, He, Dennett, Yu, Mizohata, Hofmann (b0245) 2022; 232 Villari (b0045) 2013; 88 Castin (b0185) 2020; 17 Pitts (b0005) 2019; 20 Van den Kerkhof (b0105) 2020; T171 Monnet (b0050) 2018; 508 Li (b0020) 2021; 61 Nordlund (b0150) 2018; 9 Van den Kerkhof, Blommaert, Pitts, Dekeyser, Carli, Baelmans (b0085) 2021; 27 Castin, Bonny, Bakaev, Ortiz, Sand, Terentyev (b0120) 2018; 500 Castin, Bakaev, Terentyev, Pascuet, Bonny (b0220) 2021; 555 Gilbert, Marian, Sublet (b0160) 2015; 467 Panayotis (b0025) 2017; 125 Bonny, Castin, Bakaev, Sand, Terentyev (b0268) 2020; 181 Malerba, Becquart, Domain (b0135) 2007; 360 Castin (b0190) 2022; 27 Hu (b0055) 2016; 480 Akiyoshi (b0260) 2021; 543 Habainy, Dai, Lee, Iyengar (b0250) 2018; 509 Fukuda (b0210) 2012; 53 Pintsuk (b0015) 2013; 88 Leonard (b0070) 2014; 21 Hasegawa, Fukuda, Nogami, Yabuuchi (b0035) 2014; 89 Hasegawa (b0030) 2013; 54 Norgett, Robinson, Torrens (b0145) 1975; 33 Reza, Yu, Mizohata, Hofmann (b0240) 2020; 193 Linke, Lorenzetto, Majerus, Merola, Pitzer, Rödig (b0255) 2005; 47 Pintsuk (b0040) 2012; 4 Dubinko (b0195) 2021; 98 Dürrschnabel, Klimenkov, Jäntsch, Rieth, Schneider, Terentyev (b0180) 2021; 11 Van den Kerkhof (b0100) 2021; 61 Bonny, Castin, Bakaev, Terentyev (b0140) 2018; 144 Tanno (b0205) 2007; 48 Castin, Terentyev, Bakaev, Stankovskiy, Bonny (b0130) 2022; 562 Nordlund (b0155) 2018; 512 Tanure, Bakaeva, Dubinko, Terentyev, Verbeken (b0230) 2019; 524 Bacon, Kocks, Scattergood (b0165) 1973; 28 Coenen, Antusch, Aumann, Biel, Du, Engels (b0235) 2016; T167 ITER Material Property Handbook, Material Assessment Report, G 74 MA 10 W 0.3, 2004. Castin (10.1016/j.commatsci.2022.112001_b0115) 2017; 493 Ferroni (10.1016/j.commatsci.2022.112001_b0225) 2015; 90 Gilbert (10.1016/j.commatsci.2022.112001_b0160) 2015; 467 Castin (10.1016/j.commatsci.2022.112001_b0220) 2021; 555 Bonny (10.1016/j.commatsci.2022.112001_b0266) 2020; 198 Malerba (10.1016/j.commatsci.2022.112001_b0135) 2007; 360 Evans (10.1016/j.commatsci.2022.112001_b0060) 2013; 438 Habainy (10.1016/j.commatsci.2022.112001_b0250) 2018; 509 Hasegawa (10.1016/j.commatsci.2022.112001_b0030) 2013; 54 10.1016/j.commatsci.2022.112001_b0080 Van den Kerkhof (10.1016/j.commatsci.2022.112001_b0085) 2021; 27 Bacon (10.1016/j.commatsci.2022.112001_b0165) 1973; 28 Van den Kerkhof (10.1016/j.commatsci.2022.112001_b0105) 2020; T171 Reza (10.1016/j.commatsci.2022.112001_b0245) 2022; 232 Hirai (10.1016/j.commatsci.2022.112001_b0010) 2016; 9 Pintsuk (10.1016/j.commatsci.2022.112001_b0040) 2012; 4 Pintsuk (10.1016/j.commatsci.2022.112001_b0015) 2013; 88 Villari (10.1016/j.commatsci.2022.112001_b0045) 2013; 88 Akiyoshi (10.1016/j.commatsci.2022.112001_b0260) 2021; 543 Nordlund (10.1016/j.commatsci.2022.112001_b0155) 2018; 512 Bonny (10.1016/j.commatsci.2022.112001_b0267) 2019; 9 Linke (10.1016/j.commatsci.2022.112001_b0255) 2005; 47 Coenen (10.1016/j.commatsci.2022.112001_b0235) 2016; T167 Castin (10.1016/j.commatsci.2022.112001_b0125) 2019; 527 Bonny (10.1016/j.commatsci.2022.112001_b0268) 2020; 181 Van den Kerkhof (10.1016/j.commatsci.2022.112001_b0100) 2021; 61 Castin (10.1016/j.commatsci.2022.112001_b0130) 2022; 562 Tanno (10.1016/j.commatsci.2022.112001_b0205) 2007; 48 Dürrschnabel (10.1016/j.commatsci.2022.112001_b0180) 2021; 11 Hasegawa (10.1016/j.commatsci.2022.112001_b0035) 2014; 89 Arakcheev (10.1016/j.commatsci.2022.112001_b0215) 2019; 20 Li (10.1016/j.commatsci.2022.112001_b0020) 2021; 61 10.1016/j.commatsci.2022.112001_b0265 Panayotis (10.1016/j.commatsci.2022.112001_b0025) 2017; 125 Castin (10.1016/j.commatsci.2022.112001_b0120) 2018; 500 Pitts (10.1016/j.commatsci.2022.112001_b0005) 2019; 20 Hirai (10.1016/j.commatsci.2022.112001_b0095) 2018; 127 Dubinko (10.1016/j.commatsci.2022.112001_b0195) 2021; 98 Hirai (10.1016/j.commatsci.2022.112001_b0090) 2013; 88 He (10.1016/j.commatsci.2022.112001_b0200) 2006; 46 Pitts (10.1016/j.commatsci.2022.112001_b0075) 2013; 438 Reza (10.1016/j.commatsci.2022.112001_b0240) 2020; 193 Nordlund (10.1016/j.commatsci.2022.112001_b0150) 2018; 9 Hwang (10.1016/j.commatsci.2022.112001_b0170) 2018; 507 Leonard (10.1016/j.commatsci.2022.112001_b0070) 2014; 21 Castin (10.1016/j.commatsci.2022.112001_b0185) 2020; 17 Monnet (10.1016/j.commatsci.2022.112001_b0050) 2018; 508 Norgett (10.1016/j.commatsci.2022.112001_b0145) 1975; 33 Castin (10.1016/j.commatsci.2022.112001_b0190) 2022; 27 Fukuda (10.1016/j.commatsci.2022.112001_b0210) 2012; 53 Hu (10.1016/j.commatsci.2022.112001_b0175) 2019; 165 10.1016/j.commatsci.2022.112001_b0110 Hu (10.1016/j.commatsci.2022.112001_b0055) 2016; 480 Tanure (10.1016/j.commatsci.2022.112001_b0230) 2019; 524 Eich (10.1016/j.commatsci.2022.112001_b0065) 2017; 12 Bonny (10.1016/j.commatsci.2022.112001_b0140) 2018; 144 |
| References_xml | – volume: 127 start-page: 66 year: 2018 end-page: 72 ident: b0095 article-title: Design optimization of the ITER tungsten divertor vertical targets publication-title: Fus. Eng. Des. – volume: 562 year: 2022 ident: b0130 article-title: On the equivalence of irradiation conditions on present and future facilities for fusion materials research and qualification: a computational study publication-title: J. Nucl. Mater. – volume: 20 year: 2019 ident: b0005 article-title: Physics basis for the first ITER tungsten divertor publication-title: Nucl. Mater. Energy – volume: 90 start-page: 380 year: 2015 end-page: 393 ident: b0225 article-title: High temperature annealing of ion irradiated tungsten publication-title: Acta Mater. – volume: 493 start-page: 280 year: 2017 end-page: 293 ident: b0115 article-title: On the onset of void swelling in pure tungsten under neutron irradiation: an object kinetic Monte Carlo approach publication-title: J. Nucl. Mater. – volume: 438 start-page: S11 year: 2013 end-page: S18 ident: b0060 article-title: ELM mitigation techniques publication-title: J. Nucl. Mater. – volume: 88 start-page: 2006 year: 2013 end-page: 2010 ident: b0045 publication-title: Fus. Eng. Des. – reference: Website. <https://www.iter.org/sci/Goals> (Accessed on 5/7/2022). – volume: 33 start-page: 50 year: 1975 end-page: 54 ident: b0145 publication-title: Nucl. Eng. Des. – volume: 54 start-page: 466 year: 2013 end-page: 471 ident: b0030 article-title: Neutron irradiation behavior of tungsten publication-title: Mater. Trans. – volume: 9 start-page: 616 year: 2016 end-page: 622 ident: b0010 article-title: Use of tungsten material for the ITER divertor publication-title: Nucl. Mater. Energy – volume: 438 start-page: S48 year: 2013 end-page: S56 ident: b0075 article-title: A full tungsten divertor for ITER: Physics issues and design status publication-title: J. Nucl. Mater. – volume: T171 year: 2020 ident: b0105 article-title: Investigating the potential of FGMs through numerical minimization of thermal stresses publication-title: Phys. Scr. – volume: 61 year: 2021 ident: b0020 article-title: Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating publication-title: Nucl. Fusion – volume: 28 start-page: 1241 year: 1973 end-page: 1263 ident: b0165 article-title: The effect of dislocation self-interaction on the orowan stress publication-title: Phil. Mag. – volume: 524 start-page: 191 year: 2019 end-page: 199 ident: b0230 article-title: Effect of annealing on microstructure, texture and hardness of ITER-specification tungsten analyzed by EBSD, vickers micro-hardness and nano-indentation techniques publication-title: J. Nucl. Mater. – volume: 20 year: 2019 ident: b0215 article-title: On the mechanism of surface-parallel cracks formation under pulsed heat loads publication-title: Nucl. Mat. Energy – volume: 193 start-page: 270 year: 2020 end-page: 279 ident: b0240 article-title: Thermal diffusivity degradation and point defect density in self-ion implanted tungsten publication-title: Acta Mater. – volume: 165 start-page: 51 year: 2019 end-page: 61 ident: b0175 article-title: Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum publication-title: Acta Mater. – volume: 509 start-page: 152 year: 2018 end-page: 157 ident: b0250 article-title: Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa publication-title: J. Nucl. Mater. – volume: 27 year: 2022 ident: b0190 article-title: Multiscale modelling in nuclear ferritic steels: from nano-sized defects to embrittlement publication-title: Mater. Today Phys. – volume: 4 start-page: 551 year: 2012 end-page: 581 ident: b0040 article-title: Tungsten as a plasma-facing material publication-title: Comprehens. Nucl. Mater. – volume: 88 start-page: 1858 year: 2013 end-page: 1861 ident: b0015 article-title: Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading publication-title: Fus. Eng. Des. – volume: 89 start-page: 1568 year: 2014 end-page: 1572 ident: b0035 publication-title: Fus. Eng. Des. – reference: ITER Material Property Handbook, Material Assessment Report, G 74 MA 10 W 0.3, 2004. – volume: T167 year: 2016 ident: b0235 publication-title: Phys. Scripta – volume: 125 start-page: 256 year: 2017 end-page: 262 ident: b0025 article-title: Fracture modes of ITER tungsten divertor monoblock under stationary thermal loads publication-title: Fus. Eng. Des. – volume: 17 year: 2020 ident: b0185 article-title: The dominant mechanisms for the formation of solute-rich clusters in low-Cu steels under irradiation publication-title: Mater. Today Energy – volume: 48 start-page: 2399 year: 2007 end-page: 2402 ident: b0205 article-title: Effects of transmutation elements on neutron irradiation hardening of tungsten publication-title: Mater. Trans. – volume: 198 start-page: 1 year: 2020 end-page: 9 ident: b0266 article-title: Trends in vacancy distribution and hardness of high temperature neutron irradiated single crystal tungsten publication-title: Acta Mate. – volume: 9 start-page: 1084 year: 2018 ident: b0150 article-title: Improving atomic displacement and replacement calculations with physically realistic damage models publication-title: Nat. Commun. – volume: 98 year: 2021 ident: b0195 article-title: Microstructure and hardening induced by neutron irradiation in single crystal, ITER specification and cold rolled tungsten publication-title: Int. J. Refractory Metals Hard Mater. – volume: 512 start-page: 450 year: 2018 end-page: 479 ident: b0155 article-title: Primary radiation damage: a review of current understanding and models publication-title: J. Nucl. Mater. – volume: 480 start-page: 235 year: 2016 end-page: 243 ident: b0055 article-title: Irradiation hardening of pure tungsten exposed to neutron irradiation publication-title: J. Nucl. Mater. – volume: 61 year: 2021 ident: b0100 article-title: Optimized design of a tungsten-copper functionally graded material monoblock for minimal von Mises stress meeting the material operational temperature window publication-title: Nucl. Fusion – volume: 53 start-page: 2145 year: 2012 end-page: 2150 ident: b0210 article-title: Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten publication-title: Mater. Trans. – volume: 12 start-page: 84 year: 2017 end-page: 90 ident: b0065 article-title: ELM divertor peak energy fluence scaling to ITER with data from JET, MAST, and ASDEX upgrade publication-title: Nucl. Mater. Energy – volume: 88 start-page: 1798 year: 2013 end-page: 1801 ident: b0090 article-title: ITER tungsten divertor design development and qualification program publication-title: Fus. Eng. Des. – volume: 467 start-page: 121 year: 2015 end-page: 134 ident: b0160 publication-title: J. Nucl. Mater. – volume: 555 year: 2021 ident: b0220 article-title: Understanding why dislocation loops are visible in transmission electron microscopy: the tungsten case publication-title: J. Nucl. Mater. – volume: 527 year: 2019 ident: b0125 article-title: The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions publication-title: J. Nucl. Mater. – volume: 46 start-page: 877 year: 2006 end-page: 883 ident: b0200 article-title: Microstructural development and irradiation hardening of W and W–(3–26) wt%Re alloys after high-temperature neutron irradiation to 0.15 dpa publication-title: Nucl. Fusion – volume: 507 start-page: 78 year: 2018 end-page: 86 ident: b0170 article-title: Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys publication-title: J. Nucl. Mater. – volume: 508 start-page: 609 year: 2018 end-page: 627 ident: b0050 article-title: Multiscale modeling of irradiation hardening: application to important nuclear materials publication-title: J. Nucl. Mater. – volume: 500 start-page: 15 year: 2018 end-page: 25 ident: b0120 article-title: Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities publication-title: J. Nucl. Mater. – reference: S. Van den Kerkhof, Thermomechanical analysis and optimal design of the ITER monoblock using functionally graded materials to handle extreme heat loads. PhD dissertation (KU Leuven, September 2021). – volume: 543 year: 2021 ident: b0260 article-title: Thermal diffusivity of irradiated tungsten and tungsten-rhenium alloys publication-title: J. Nucl. Mater. – volume: 360 start-page: 159 year: 2007 ident: b0135 article-title: Object kinetic Monte Carlo study of sink strengths publication-title: J. Nucl. Mater. – volume: 181 start-page: 109727 year: 2020 ident: b0268 article-title: Effects of cascade-induced dislocation structures on the long-term microstructural evolution in tungsten publication-title: Comp. Mate. Sci. – volume: 11 start-page: 7572 year: 2021 ident: b0180 article-title: New insights into microstructure of neutron-irradiated tungsten publication-title: Sci. Rep. – volume: 27 year: 2021 ident: b0085 article-title: Impact of ELM mitigation on the ITER monoblock thermal behavior and the tungsten recrystallization depth publication-title: Nucl. Mater. Energy – volume: 47 start-page: 678 year: 2005 end-page: 685 ident: b0255 article-title: EU development of high heat flux components publication-title: Fusion Sci. Technol. – volume: 232 year: 2022 ident: b0245 article-title: Thermal diffusivity recovery and defect annealing kinetics of self-ion implanted tungsten prob e d by insitu transient grating spectroscopy publication-title: Acta Mater. – volume: 9 start-page: 16215 year: 2019 ident: b0267 article-title: Assessment of hardening due to non-coherent precipitates in tungsten-rhenium alloys at the atomic scale publication-title: Sci. Rep. – volume: 21 year: 2014 ident: b0070 article-title: Edge-localized-modes in tokamaks publication-title: Phys. Plasm. – volume: 144 start-page: 355 year: 2018 end-page: 362 ident: b0140 article-title: Kinetic Monte Carlo model for 1-D migration in a field of strong traps: application to self-interstitial clusters in W-Re alloys publication-title: Comput. Mater. Sci. – volume: 125 start-page: 256 year: 2017 ident: 10.1016/j.commatsci.2022.112001_b0025 article-title: Fracture modes of ITER tungsten divertor monoblock under stationary thermal loads publication-title: Fus. Eng. Des. doi: 10.1016/j.fusengdes.2017.08.009 – volume: 61 year: 2021 ident: 10.1016/j.commatsci.2022.112001_b0100 article-title: Optimized design of a tungsten-copper functionally graded material monoblock for minimal von Mises stress meeting the material operational temperature window publication-title: Nucl. Fusion doi: 10.1088/1741-4326/abe7bb – volume: 507 start-page: 78 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0170 article-title: Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.04.031 – ident: 10.1016/j.commatsci.2022.112001_b0265 – volume: 508 start-page: 609 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0050 article-title: Multiscale modeling of irradiation hardening: application to important nuclear materials publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.06.020 – volume: 193 start-page: 270 year: 2020 ident: 10.1016/j.commatsci.2022.112001_b0240 article-title: Thermal diffusivity degradation and point defect density in self-ion implanted tungsten publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.03.034 – volume: 480 start-page: 235 year: 2016 ident: 10.1016/j.commatsci.2022.112001_b0055 article-title: Irradiation hardening of pure tungsten exposed to neutron irradiation publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2016.08.024 – volume: 12 start-page: 84 year: 2017 ident: 10.1016/j.commatsci.2022.112001_b0065 article-title: ELM divertor peak energy fluence scaling to ITER with data from JET, MAST, and ASDEX upgrade publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2017.04.014 – ident: 10.1016/j.commatsci.2022.112001_b0110 – volume: 144 start-page: 355 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0140 article-title: Kinetic Monte Carlo model for 1-D migration in a field of strong traps: application to self-interstitial clusters in W-Re alloys publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.12.024 – volume: 438 start-page: S48 year: 2013 ident: 10.1016/j.commatsci.2022.112001_b0075 article-title: A full tungsten divertor for ITER: Physics issues and design status publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.01.008 – volume: 88 start-page: 1798 year: 2013 ident: 10.1016/j.commatsci.2022.112001_b0090 article-title: ITER tungsten divertor design development and qualification program publication-title: Fus. Eng. Des. doi: 10.1016/j.fusengdes.2013.05.010 – volume: 127 start-page: 66 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0095 article-title: Design optimization of the ITER tungsten divertor vertical targets publication-title: Fus. Eng. Des. doi: 10.1016/j.fusengdes.2017.12.007 – volume: 360 start-page: 159 year: 2007 ident: 10.1016/j.commatsci.2022.112001_b0135 article-title: Object kinetic Monte Carlo study of sink strengths publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2006.10.002 – volume: 46 start-page: 877 year: 2006 ident: 10.1016/j.commatsci.2022.112001_b0200 article-title: Microstructural development and irradiation hardening of W and W–(3–26) wt%Re alloys after high-temperature neutron irradiation to 0.15 dpa publication-title: Nucl. Fusion doi: 10.1088/0029-5515/46/11/001 – volume: 47 start-page: 678 year: 2005 ident: 10.1016/j.commatsci.2022.112001_b0255 article-title: EU development of high heat flux components publication-title: Fusion Sci. Technol. doi: 10.13182/FST05-A764 – volume: 198 start-page: 1 year: 2020 ident: 10.1016/j.commatsci.2022.112001_b0266 article-title: Trends in vacancy distribution and hardness of high temperature neutron irradiated single crystal tungsten publication-title: Acta Mate. doi: 10.1016/j.actamat.2020.07.047 – volume: T171 year: 2020 ident: 10.1016/j.commatsci.2022.112001_b0105 article-title: Investigating the potential of FGMs through numerical minimization of thermal stresses publication-title: Phys. Scr. – volume: 467 start-page: 121 year: 2015 ident: 10.1016/j.commatsci.2022.112001_b0160 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.09.023 – volume: 20 year: 2019 ident: 10.1016/j.commatsci.2022.112001_b0005 article-title: Physics basis for the first ITER tungsten divertor publication-title: Nucl. Mater. Energy – volume: 88 start-page: 1858 year: 2013 ident: 10.1016/j.commatsci.2022.112001_b0015 article-title: Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading publication-title: Fus. Eng. Des. doi: 10.1016/j.fusengdes.2013.05.091 – volume: 27 year: 2022 ident: 10.1016/j.commatsci.2022.112001_b0190 article-title: Multiscale modelling in nuclear ferritic steels: from nano-sized defects to embrittlement publication-title: Mater. Today Phys. – volume: 90 start-page: 380 year: 2015 ident: 10.1016/j.commatsci.2022.112001_b0225 article-title: High temperature annealing of ion irradiated tungsten publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.067 – volume: 27 year: 2021 ident: 10.1016/j.commatsci.2022.112001_b0085 article-title: Impact of ELM mitigation on the ITER monoblock thermal behavior and the tungsten recrystallization depth publication-title: Nucl. Mater. Energy – volume: 555 year: 2021 ident: 10.1016/j.commatsci.2022.112001_b0220 article-title: Understanding why dislocation loops are visible in transmission electron microscopy: the tungsten case publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2021.153122 – volume: 54 start-page: 466 year: 2013 ident: 10.1016/j.commatsci.2022.112001_b0030 article-title: Neutron irradiation behavior of tungsten publication-title: Mater. Trans. doi: 10.2320/matertrans.MG201208 – volume: 48 start-page: 2399 year: 2007 ident: 10.1016/j.commatsci.2022.112001_b0205 article-title: Effects of transmutation elements on neutron irradiation hardening of tungsten publication-title: Mater. Trans. doi: 10.2320/matertrans.MAW200722 – volume: 232 year: 2022 ident: 10.1016/j.commatsci.2022.112001_b0245 article-title: Thermal diffusivity recovery and defect annealing kinetics of self-ion implanted tungsten prob e d by insitu transient grating spectroscopy publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117926 – volume: 562 year: 2022 ident: 10.1016/j.commatsci.2022.112001_b0130 article-title: On the equivalence of irradiation conditions on present and future facilities for fusion materials research and qualification: a computational study publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2022.153589 – volume: 543 year: 2021 ident: 10.1016/j.commatsci.2022.112001_b0260 article-title: Thermal diffusivity of irradiated tungsten and tungsten-rhenium alloys publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2020.152594 – volume: 98 year: 2021 ident: 10.1016/j.commatsci.2022.112001_b0195 article-title: Microstructure and hardening induced by neutron irradiation in single crystal, ITER specification and cold rolled tungsten publication-title: Int. J. Refractory Metals Hard Mater. doi: 10.1016/j.ijrmhm.2021.105522 – volume: 4 start-page: 551 year: 2012 ident: 10.1016/j.commatsci.2022.112001_b0040 article-title: Tungsten as a plasma-facing material publication-title: Comprehens. Nucl. Mater. doi: 10.1016/B978-0-08-056033-5.00118-X – ident: 10.1016/j.commatsci.2022.112001_b0080 – volume: 33 start-page: 50 year: 1975 ident: 10.1016/j.commatsci.2022.112001_b0145 publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(75)90035-7 – volume: 53 start-page: 2145 year: 2012 ident: 10.1016/j.commatsci.2022.112001_b0210 article-title: Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten publication-title: Mater. Trans. doi: 10.2320/matertrans.MBW201110 – volume: 9 start-page: 616 year: 2016 ident: 10.1016/j.commatsci.2022.112001_b0010 article-title: Use of tungsten material for the ITER divertor publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2016.07.003 – volume: 61 year: 2021 ident: 10.1016/j.commatsci.2022.112001_b0020 article-title: Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating publication-title: Nucl. Fusion doi: 10.1088/1741-4326/abe312 – volume: 88 start-page: 2006 year: 2013 ident: 10.1016/j.commatsci.2022.112001_b0045 publication-title: Fus. Eng. Des. doi: 10.1016/j.fusengdes.2013.02.156 – volume: 11 start-page: 7572 year: 2021 ident: 10.1016/j.commatsci.2022.112001_b0180 article-title: New insights into microstructure of neutron-irradiated tungsten publication-title: Sci. Rep. doi: 10.1038/s41598-021-86746-6 – volume: 20 year: 2019 ident: 10.1016/j.commatsci.2022.112001_b0215 article-title: On the mechanism of surface-parallel cracks formation under pulsed heat loads publication-title: Nucl. Mat. Energy – volume: 21 year: 2014 ident: 10.1016/j.commatsci.2022.112001_b0070 article-title: Edge-localized-modes in tokamaks publication-title: Phys. Plasm. doi: 10.1063/1.4894742 – volume: 500 start-page: 15 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0120 article-title: Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.12.014 – volume: 17 year: 2020 ident: 10.1016/j.commatsci.2022.112001_b0185 article-title: The dominant mechanisms for the formation of solute-rich clusters in low-Cu steels under irradiation publication-title: Mater. Today Energy – volume: 9 start-page: 1084 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0150 article-title: Improving atomic displacement and replacement calculations with physically realistic damage models publication-title: Nat. Commun. doi: 10.1038/s41467-018-03415-5 – volume: 524 start-page: 191 year: 2019 ident: 10.1016/j.commatsci.2022.112001_b0230 article-title: Effect of annealing on microstructure, texture and hardness of ITER-specification tungsten analyzed by EBSD, vickers micro-hardness and nano-indentation techniques publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2019.07.005 – volume: 181 start-page: 109727 year: 2020 ident: 10.1016/j.commatsci.2022.112001_b0268 article-title: Effects of cascade-induced dislocation structures on the long-term microstructural evolution in tungsten publication-title: Comp. Mate. Sci. doi: 10.1016/j.commatsci.2020.109727 – volume: 28 start-page: 1241 year: 1973 ident: 10.1016/j.commatsci.2022.112001_b0165 article-title: The effect of dislocation self-interaction on the orowan stress publication-title: Phil. Mag. doi: 10.1080/14786437308227997 – volume: 527 year: 2019 ident: 10.1016/j.commatsci.2022.112001_b0125 article-title: The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2019.151808 – volume: 9 start-page: 16215 year: 2019 ident: 10.1016/j.commatsci.2022.112001_b0267 article-title: Assessment of hardening due to non-coherent precipitates in tungsten-rhenium alloys at the atomic scale publication-title: Sci. Rep. doi: 10.1038/s41598-019-52521-x – volume: 165 start-page: 51 year: 2019 ident: 10.1016/j.commatsci.2022.112001_b0175 article-title: Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.11.032 – volume: 509 start-page: 152 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0250 article-title: Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.06.041 – volume: T167 year: 2016 ident: 10.1016/j.commatsci.2022.112001_b0235 publication-title: Phys. Scripta doi: 10.1088/0031-8949/2016/T167/014002 – volume: 493 start-page: 280 year: 2017 ident: 10.1016/j.commatsci.2022.112001_b0115 article-title: On the onset of void swelling in pure tungsten under neutron irradiation: an object kinetic Monte Carlo approach publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.06.008 – volume: 89 start-page: 1568 year: 2014 ident: 10.1016/j.commatsci.2022.112001_b0035 publication-title: Fus. Eng. Des. doi: 10.1016/j.fusengdes.2014.04.035 – volume: 438 start-page: S11 year: 2013 ident: 10.1016/j.commatsci.2022.112001_b0060 article-title: ELM mitigation techniques publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.01.283 – volume: 512 start-page: 450 year: 2018 ident: 10.1016/j.commatsci.2022.112001_b0155 article-title: Primary radiation damage: a review of current understanding and models publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.10.027 |
| SSID | ssj0016982 |
| Score | 2.3980386 |
| Snippet | We perform a combined study, coupling three computational methods, to assess the impact of neutron irradiation and temperature transients on the integrity of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112001 |
| SubjectTerms | Hardening and embrittlement Irradiation effects Kinetic Monte Carlo Temperature effects Tungsten |
| Title | On the microstructure evolution in tungsten ITER monoblocks: A computational study |
| URI | https://dx.doi.org/10.1016/j.commatsci.2022.112001 |
| Volume | 219 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0801 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: AKRWK dateStart: 19930301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywhjqO7STdqoqqgFSkQqVuUfyIVB5pBYWR387ZcapWDB3I6Pis6PPl7mx9d4fQtYQYXhgqAy0UgwNKwgJbBi5IInjSIhGFcSzfkRhO2P2UTxuoX-fCWFqlt_2VTXfW2o90PJqdxWzWeSKpzaUC_22v20KXTM5YbLsY3PysaB6hSF3DKDs5sLM3OF6wNsSFsDocFCm16TTEd4f546HWvM7gAO37cBH3qi86RA1THqG9tSKCx2j8WGKI4vC7pdZV5WC_Pgw2316p8Azewy8N21liMFRjDJo3l-DEXj-7uIeV6-vg7wSxKzd7giaD2-f-MPCdEgIVhXwZ6EJB3MEKTQul4liYSCjFeG45IXFiDw0kySNdcBnTPGY5VTIihmouSQ5QhNEpapbz0pwhzLnOZWyIgr1liuo0IanWTOUGhsGZt5Co0cmULyNuu1m8ZTVf7CVbwZpZWLMK1hYiK8FFVUlju0i3hj_bUIoM7P024fP_CF-gXdtX3uWu80vUhM0zVxB9LGXbqVcb7fTuHoajX3hc3AI |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YE11HFsJ-lWVVQFSpFKK3WzEtuRyiOtoDDy2zknTtWKoQMZHZ8V3V3uYX13h9B1CjG8MDT1tFAMEpSIebYNnBcF8MRZJDJToHz7ojti92M-rqF2VQtjYZXO9pc2vbDWbqXhuNmYTSaNZxLbWirw3_a6zbfF5JuM09BmYDc_C5yHL-JiYpTd7dntKyAvOBwCQzgeMkVKbT0NceNh_rioJbfT2UO7Ll7ErfKT9lHN5AdoZ6mL4CEaPOUYwjj8brF1ZT_Yrw-DzbfTKjyB9_BPgzxzDJZqgEH1pil4sdfPJm5hVQx2cJeCuOg3e4RGndthu-u5UQmeCnw-93SmIPBgmaaZUmEoTCCUYjyxoJAwslkDiZJAZzwNaRKyhKo0IIZqnpIEWOEHx2gjn-bmBGHOdZKGhigQLlNUxxGJtWYqMbAM3ryORMUdqVwfcTvO4k1WgLEXuWCrtGyVJVvriCwIZ2UrjfUkzYr9ckUrJBj8dcSn_yG-Qlvd4WNP9u76D2do2w6ZLwrZ-TnaAEGaCwhF5ulloWq_rKndlw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+microstructure+evolution+in+tungsten+ITER+monoblocks%3A+A+computational+study&rft.jtitle=Computational+materials+science&rft.au=Castin%2C+N.&rft.au=Van+den+Kerkhof%2C+S.&rft.au=Bonny%2C+G.&rft.au=Terentyev%2C+D.&rft.date=2023-02-25&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=219&rft_id=info:doi/10.1016%2Fj.commatsci.2022.112001&rft.externalDocID=S0927025622007121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |