P System–Based Clustering Methods Using NoSQL Databases
Models of computation are fundamental notions in computer science; consequently, they have been the subject of countless research papers, with numerous novel models proposed even in recent years. Amongst a multitude of different approaches, many of these methods draw inspiration from the biological...
Saved in:
Published in | Computation Vol. 9; no. 10; p. 102 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-3197 2079-3197 |
DOI | 10.3390/computation9100102 |
Cover
Abstract | Models of computation are fundamental notions in computer science; consequently, they have been the subject of countless research papers, with numerous novel models proposed even in recent years. Amongst a multitude of different approaches, many of these methods draw inspiration from the biological processes observed in nature. P systems, or membrane systems, make an analogy between the communication in computing and the flow of information that can be perceived in living organisms. These systems serve as a basis for various concepts, ranging from the fields of computational economics and robotics to the techniques of data clustering. In this paper, such utilization of these systems—membrane system–based clustering—is taken into focus. Considering the growing number of data stored worldwide, more and more data have to be handled by clustering algorithms too. To solve this issue, bringing these methods closer to the data, their main element provides several benefits. Database systems equip their users with, for instance, well-integrated security features and more direct control over the data itself. Our goal is if the type of the database management system is given, e.g., NoSQL, but the corporation or the research team can choose which specific database management system is used, then we give a perspective, how the algorithms written like this behave in such an environment, so that, based on this, a more substantiated decision can be made, meaning which database management system should be connected to the system. For this purpose, we discover the possibilities of a clustering algorithm based on P systems when used alongside NoSQL database systems, that are designed to manage big data. Variants over two competing databases, MongoDB and Redis, are evaluated and compared to identify the advantages and limitations of using such a solution in these systems. |
---|---|
AbstractList | Models of computation are fundamental notions in computer science; consequently, they have been the subject of countless research papers, with numerous novel models proposed even in recent years. Amongst a multitude of different approaches, many of these methods draw inspiration from the biological processes observed in nature. P systems, or membrane systems, make an analogy between the communication in computing and the flow of information that can be perceived in living organisms. These systems serve as a basis for various concepts, ranging from the fields of computational economics and robotics to the techniques of data clustering. In this paper, such utilization of these systems—membrane system–based clustering—is taken into focus. Considering the growing number of data stored worldwide, more and more data have to be handled by clustering algorithms too. To solve this issue, bringing these methods closer to the data, their main element provides several benefits. Database systems equip their users with, for instance, well-integrated security features and more direct control over the data itself. Our goal is if the type of the database management system is given, e.g., NoSQL, but the corporation or the research team can choose which specific database management system is used, then we give a perspective, how the algorithms written like this behave in such an environment, so that, based on this, a more substantiated decision can be made, meaning which database management system should be connected to the system. For this purpose, we discover the possibilities of a clustering algorithm based on P systems when used alongside NoSQL database systems, that are designed to manage big data. Variants over two competing databases, MongoDB and Redis, are evaluated and compared to identify the advantages and limitations of using such a solution in these systems. |
Author | Lehotay-Kéry, Péter Kiss, Attila Tarczali, Tamás |
Author_xml | – sequence: 1 givenname: Péter orcidid: 0000-0002-0884-4297 surname: Lehotay-Kéry fullname: Lehotay-Kéry, Péter – sequence: 2 givenname: Tamás orcidid: 0000-0001-9002-9189 surname: Tarczali fullname: Tarczali, Tamás – sequence: 3 givenname: Attila orcidid: 0000-0001-8174-6194 surname: Kiss fullname: Kiss, Attila |
BookMark | eNp9kEtOwzAQhi0EEqX0AqwisQ74GdtLKK9K5aXSteXGTknVxsV2Ft1xB27ISXAJQggkZuOZ8f_9M5oDsNu4xgJwhOAJIRKelm61bqOOtWskghBBvAN6GHKZEyT57o98HwxCWMAUEhGBYQ_Ih2yyCdGu3l_fznWwJhsu21T7uplntzY-OxOyadhWd27yOM4udNSzJAyHYK_Sy2AHX28fTK8un4Y3-fj-ejQ8G-clQSzmhghbUUwognqGtSyrwlBcMMqNIZRhgYVkXEDGZakLWElapC8qLeM8DaKkD0adr3F6oda-Xmm_UU7X6rPh_FxpH-tyaVViicRMUCwspYwKgWaoILpikmtsTfI67rzW3r20NkS1cK1v0vpqi5GEp1X7AHeq0rsQvK2-pyKothdXfy-eIPELKutOEb2ul_-hH6izia8 |
CitedBy_id | crossref_primary_10_32604_csse_2024_051851 crossref_primary_10_3390_genes13111966 crossref_primary_10_3233_JIFS_223804 |
Cites_doi | 10.1016/j.tcs.2006.11.023 10.5121/ijdms.2014.6301 10.1016/j.eswa.2020.114107 10.1109/TSMCA.2007.909595 10.1007/s11047-018-9702-1 10.1007/978-0-387-30164-8 10.1016/S0304-3975(02)00136-6 10.1007/s41965-020-00062-y 10.1007/3-540-36490-0_14 10.3390/sym9100203 10.1016/j.patrec.2015.08.008 10.1109/IC3TSN.2017.8284494 10.1007/s00450-016-0334-3 10.1109/PACRIM.2013.6625441 10.1145/2463676.2465296 10.1016/j.patrec.2012.10.014 10.1016/j.eswa.2020.113338 10.1109/TNN.2005.845141 10.1007/978-3-642-56196-2 10.1109/NBiS.2012.95 10.3390/pr8091199 10.1007/s41965-020-00051-1 10.1016/j.knosys.2017.03.024 10.1006/jcss.1999.1693 10.1016/j.asoc.2009.12.025 10.1016/j.asoc.2015.12.001 10.3390/pr9050733 10.1007/978-3-030-00265-7_25 10.1007/s11047-012-9320-2 10.3390/sym11111412 10.3390/pr9040690 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/computation9100102 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 2079-3197 |
ExternalDocumentID | oai_doaj_org_article_94639258428e4454881b163af597a2ed 10_3390_computation9100102 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c315t-d38ef423410ab2a9cf6d426547dd345282895780579ca60f94647d49e577aba43 |
IEDL.DBID | BENPR |
ISSN | 2079-3197 |
IngestDate | Wed Aug 27 00:47:10 EDT 2025 Fri Jul 25 04:13:31 EDT 2025 Tue Jul 01 01:46:39 EDT 2025 Thu Apr 24 23:01:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-d38ef423410ab2a9cf6d426547dd345282895780579ca60f94647d49e577aba43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9002-9189 0000-0001-8174-6194 0000-0002-0884-4297 |
OpenAccessLink | https://www.proquest.com/docview/2584363942?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2584363942 |
PQPubID | 2032414 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94639258428e4454881b163af597a2ed proquest_journals_2584363942 crossref_primary_10_3390_computation9100102 crossref_citationtrail_10_3390_computation9100102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Computation |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | (ref_29) 2016; 41 Vaszil (ref_23) 2020; 2 Cienciala (ref_26) 2020; 2 (ref_10) 2021; 166 ref_14 Margenstern (ref_22) 2007; 372 ref_36 Zhang (ref_16) 2012; 11 ref_12 ref_33 ref_31 ref_30 Xu (ref_5) 2005; 16 ref_19 ref_18 Wang (ref_32) 2020; 2020 Punia (ref_38) 2014; 3 ref_37 Zhang (ref_17) 2020; 53 Nola (ref_25) 2008; 82 Jiang (ref_34) 2014; 10 ref_24 Abramova (ref_39) 2014; 6 ref_45 ref_44 ref_21 Gessert (ref_40) 2017; 32 ref_43 Rozenberg (ref_13) 2002; 287 ref_20 ref_42 Das (ref_8) 2007; 38 ref_41 Karaboga (ref_7) 2010; 11 ref_3 ref_2 Berciano (ref_15) 2013; 34 (ref_1) 2000; 61 ref_28 ref_9 Peng (ref_35) 2015; 68 Khishe (ref_11) 2020; 149 Bie (ref_27) 2019; 18 ref_4 ref_6 Pedregosa (ref_46) 2011; 12 |
References_xml | – volume: 372 start-page: 152 year: 2007 ident: ref_22 article-title: On small universal antiport P systems publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2006.11.023 – volume: 6 start-page: 1 year: 2014 ident: ref_39 article-title: Experimental evaluation of NoSQL databases publication-title: Int. J. Database Manag. Syst. doi: 10.5121/ijdms.2014.6301 – volume: 166 start-page: 114107 year: 2021 ident: ref_10 article-title: Red fox optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114107 – volume: 38 start-page: 218 year: 2007 ident: ref_8 article-title: Automatic clustering using an improved differential evolution algorithm publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/TSMCA.2007.909595 – volume: 18 start-page: 635 year: 2019 ident: ref_27 article-title: A membrane computing framework for self-reconfigurable robots publication-title: Nat. Comput. doi: 10.1007/s11047-018-9702-1 – ident: ref_33 doi: 10.1007/978-0-387-30164-8 – ident: ref_3 – volume: 287 start-page: 73 year: 2002 ident: ref_13 article-title: A guide to membrane computing publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(02)00136-6 – volume: 2 start-page: 341 year: 2020 ident: ref_23 article-title: Description of membrane systems with time Petri nets: Promoters/inhibitors, membrane dissolution, and priorities publication-title: J. Membr. Comput. doi: 10.1007/s41965-020-00062-y – ident: ref_24 doi: 10.1007/3-540-36490-0_14 – ident: ref_9 doi: 10.3390/sym9100203 – volume: 68 start-page: 34 year: 2015 ident: ref_35 article-title: An automatic clustering algorithm inspired by membrane computing publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.08.008 – ident: ref_41 doi: 10.1109/IC3TSN.2017.8284494 – volume: 32 start-page: 353 year: 2017 ident: ref_40 article-title: NoSQL database systems: A survey and decision guidance publication-title: Comput. Sci.-Res. Dev. doi: 10.1007/s00450-016-0334-3 – ident: ref_2 doi: 10.1109/PACRIM.2013.6625441 – ident: ref_43 doi: 10.1145/2463676.2465296 – ident: ref_37 – ident: ref_14 – volume: 34 start-page: 846 year: 2013 ident: ref_15 article-title: Segmenting images with gradient-based edge detection using membrane computing publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.10.014 – ident: ref_18 – ident: ref_44 – volume: 149 start-page: 113338 year: 2020 ident: ref_11 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 16 start-page: 645 year: 2005 ident: ref_5 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – ident: ref_12 doi: 10.1007/978-3-642-56196-2 – volume: 53 start-page: 1 year: 2020 ident: ref_17 article-title: An overview of hardware implementation of membrane computing models publication-title: ACM Comput. Surv. (CSUR) – ident: ref_42 doi: 10.1109/NBiS.2012.95 – ident: ref_6 – ident: ref_28 doi: 10.3390/pr8091199 – ident: ref_4 – volume: 2 start-page: 269 year: 2020 ident: ref_26 article-title: P colonies and reaction systems publication-title: J. Membr. Comput. doi: 10.1007/s41965-020-00051-1 – ident: ref_30 doi: 10.1016/j.knosys.2017.03.024 – volume: 12 start-page: 2825 year: 2011 ident: ref_46 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 108 year: 2000 ident: ref_1 article-title: Computing with Membranes publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1999.1693 – volume: 10 start-page: 753 year: 2014 ident: ref_34 article-title: A novel clustering algorithm based on P systems publication-title: Int. J. Innov. Comput. Inf. Control. IJICIC – volume: 11 start-page: 652 year: 2010 ident: ref_7 article-title: A novel clustering approach: Artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.025 – volume: 82 start-page: 29 year: 2008 ident: ref_25 article-title: Editing configurations of P systems publication-title: Fundam. Inform. – volume: 41 start-page: 192 year: 2016 ident: ref_29 article-title: Automatic clustering using nature-inspired metaheuristics: A survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.001 – ident: ref_36 – ident: ref_45 – ident: ref_19 doi: 10.3390/pr9050733 – volume: 2020 start-page: 5097589 year: 2020 ident: ref_32 article-title: An Extended clustering membrane system based on particle swarm optimization and cell-like P system with active membranes publication-title: Math. Probl. Eng. – volume: 3 start-page: 16 year: 2014 ident: ref_38 article-title: Implementing Information System Using MongoDB and Redis publication-title: Int. J. Adv. Trends Comput. Sci. Eng. – ident: ref_31 doi: 10.1007/978-3-030-00265-7_25 – volume: 11 start-page: 701 year: 2012 ident: ref_16 article-title: A membrane algorithm with quantum-inspired subalgorithms and its application to image processing publication-title: Nat. Comput. doi: 10.1007/s11047-012-9320-2 – ident: ref_21 doi: 10.3390/sym11111412 – ident: ref_20 doi: 10.3390/pr9040690 |
SSID | ssj0000913820 |
Score | 2.1775692 |
Snippet | Models of computation are fundamental notions in computer science; consequently, they have been the subject of countless research papers, with numerous novel... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 102 |
SubjectTerms | Algorithms Big Data Biological activity Clustering Data base management systems data clustering Evolution Experiments Heuristic Information flow Mathematical models membrane computing Membranes NoSQL Optimization P systems particle swarm optimization Robotics Scientific papers unsupervised learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQJxgQLSAKBXlgAKGojuMk9kgLVYVoBYJK3SLbcaaqRSTd-Qf-kC_h7LhVUSVYWBPbSS7ne--iyzuELhOZMqJoHqiUMCuqrQJBqQmALEvKgWJQbT_oj8bJcMIepvF0o9WXrQmr5YFrw3UFAwylAJOUGwZrceBZwCFkAUxYUpPb6EsE2UimXAwWVluP1H_JRJDXd7VrkuCeVoROSe0HEjnB_q147EBmcID2PTvEt_VdNdGOmbfQ3mgtrVq2UNPvxhJfecno60MknnAtPf718dkDXMpxf7a0EggATHjkmkSX2FUH4PHi5fkR38lKWgArj9BkcP_aHwa-KUKgozCugjzipgAOxEIiFZVCF0kOKBuzNM8jFrsMKraNClKhZUIKsB-cYsLEaQoLs-gYNeaLuTlBWIMNCy45sA7FqAxVIpQODUsIlVxw1kbhykCZ9orhtnHFLIPMwRo12zZqG92s57zVehm_ju5Zu69HWq1rdwA8IPMekP3lAW3UWb21zG_AMrPjI5jH6Ol_XOMM7VJbzOKq-DqoUb0vzTmwkUpdOMf7BvHV2gY priority: 102 providerName: Directory of Open Access Journals |
Title | P System–Based Clustering Methods Using NoSQL Databases |
URI | https://www.proquest.com/docview/2584363942 https://doaj.org/article/94639258428e4454881b163af597a2ed |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27TsMwFL2CssCAeIpCqTwwgFBE4jiJPSBEgYIQrXhKbJFjOyxVC6Td-Qf-kC_h2nWKEBJr7ETJ9eMcO9fnAOylMmNhQXVQZCGzotpFICg1AZJlSTlSDKrshn6vn149sevn5HkO-vVZGJtWWc-JbqLWI2X3yI8oImWMcMroyetbYF2j7N_V2kJDemsFfewkxuZhgVpX5QYsdC76t_ezXRergomYNz09E-N6_0g58wQXBRE5hbVfCOWE_P_M0w58uiuw7FkjOZ028yrMmeEaLPVmkqvVGqz6UVqRfS8lfbAO4pZMJcm_Pj47iFeanA0mVhoBAYv0nHl0RVzWAOmPHu5uyLkcSwts1QY8dS8ez64Cb5YQqDhKxoGOuSmRG7EolAWVQpWpRvRNWKZ1zBK3skqsgUEmlEzDUrAUi5gwSZbhg1m8CY3haGi2gKgyESWXHNlIwaiMilQUKjIsDankgrMmRHWAcuWVxK2hxSDHFYUNav43qE04nN3zOtXR-Ld2x8Z9VtNqYLsLo_eX3A-pHL8AyR12C8oNw17GkYEju5T49pmkRjehVbda7gdmlf90o-3_i3dgkdr0FZe314LG-H1idpF_jIs2zPPuZdt3rbZbxX8DFJvbnA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTuQwEC0xcJjhgNhG06w-MBIjFJE4zuIDQjSLmqG7BQxI3DLewgV1A2mEuPEP_A8fw5dQdjuNEBI3rrETJeVyvWen_ApgLRUZCyXVgcxCZkW1ZcApNQGSZUFzpBhU2Q39TjdtnbO_F8nFGDzXZ2FsWmUdE12g1n1l98g3KSJljHDK6Pb1TWCrRtm_q3UJDeFLK-gtJzHmD3YcmYd7XMJVW4d7ON6_KT3YP9ttBb7KQKDiKBkEOs5NiaSCRaGQVHBVphphK2GZ1jFL3JIkscr_GVciDUvOUmxi3CRZJqRgMT73G0wg7YhxVk0097vHp6NdHqu6iRg7PK0TxzzcVK5Yg7M6j5yi2ztEdIUDPuCCA7uDaZjyLJXsDN1qBsZMbxYmOyOJ12oWZnxUqMi6l67-Mwf8mAwl0F8en5qIj5rsXt1ZKQYESNJxxaor4rIUSLf_76RN9sRAWCCt5uH8S8z2E8Z7_Z75BUSVCS9zkSP7kYyKSKZcqsiwNKQi5zlrQFQbqFBeudwW0LgqcAVjjVp8NGoDNkb3XA91Oz7t3bR2H_W0mtvuQv_2svBTuMAvQDKJbkhzw9Crc2T8yGYFvn0mqNENWKpHrfCBoCre3Hbh8-ZV-N4667SL9mH3aBF-UJs643IGl2B8cHtnlpH7DOSKdzAC_7_ap18BGC0UzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RKqH2UJU_dVsKPlCpCEWbOE5iHxACtlv-dgUCJG6p7Ti9oF1KFlW99R36NjwOT8KMkyyqkLhxjZ0oGY_n--yMvwFYT3UmQsOLwGShIFFtEyjOXYBkWXOJFINb2tAfDNP9C3F4mVzOwF17FobSKtuY6AN1Mba0R97liJQxwqng3bJJizjp9bevfwVUQYr-tLblNGoXOXJ_fuPyrdo66OFYf-G8_-18bz9oKgwENo6SSVDE0pVIKEQUasO1smVaIGQlIiuKWCR-OZKQ6n-mrE7DUokUm4RySZZpo0WMz30Fr6nUC80o2f8-3d8hvU1E1_qcThyrsGt9mQZvbxV5Lbf_sNCXDHiCCB7m-u_hXcNP2U7tUPMw40YL8HYwFXetFmC-iQcV-9qIVm8sgjphtfj5_d9_u4iMBdu7uiURBoRGNvBlqivm8xPYcHx2esx6eqIJQqsluHgRoy3D7Gg8ch-A2TJRpdQSeY8RXEcmVcZGTqQh11JJ0YGoNVBuG81yKp1xlePahYyaPzVqBzan91zXih3P9t4lu097ktq2vzC--Zk3kzfHL0AaiQ7IpRPozxK5PvJYjW-fae6KDqy0o5Y3IaDKHx324_PNazCHnpwfHwyPPsEbTjkzPllwBWYnN7fuM5KeiVn13sXgx0u78wOJHBJp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P+System%E2%80%93Based+Clustering+Methods+Using+NoSQL+Databases&rft.jtitle=Computation&rft.au=Lehotay-K%C3%A9ry%2C+P%C3%A9ter&rft.au=Tarczali%2C+Tam%C3%A1s&rft.au=Kiss%2C+Attila&rft.date=2021-10-01&rft.issn=2079-3197&rft.eissn=2079-3197&rft.volume=9&rft.issue=10&rft.spage=102&rft_id=info:doi/10.3390%2Fcomputation9100102&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_computation9100102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon |