Clock auto-synchronization method for BESIII ETOF upgrade
An automatic clock synchronization method implemented in a field programmable gate array (FPGA) is proposed in this paper. It is developed for the clock system which will be applied in the end-cap time of flight (ETOF) upgrade of the Beijing Spectrometer (BESIII). In this design, an FPGA is used to...
Saved in:
| Published in | Chinese physics C Vol. 39; no. 12; pp. 57 - 61 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1137 0254-3052 |
| DOI | 10.1088/1674-1137/39/12/126102 |
Cover
| Summary: | An automatic clock synchronization method implemented in a field programmable gate array (FPGA) is proposed in this paper. It is developed for the clock system which will be applied in the end-cap time of flight (ETOF) upgrade of the Beijing Spectrometer (BESIII). In this design, an FPGA is used to automatically monitor the synchronization circuit and deal with signals coming from the external clock synchronization circuit. By testing different delay time of the detection signal and analyzing the signal state returned~ the synchronization windows can be found automatically by the FPGA. The new clock system not only retains low clock jitter which is less than 20ps root mean square (RMS), but also demonstrates automatic synchronization to the beam bunches. So far, the clock auto-synchronizing function has been working successfully under a series of tests. It will greatly simplify the system initialization and maintenance in the future. |
|---|---|
| Bibliography: | BESIII, endcap time-of-flight, clock synchronization 11-5641/O4 An automatic clock synchronization method implemented in a field programmable gate array (FPGA) is proposed in this paper. It is developed for the clock system which will be applied in the end-cap time of flight (ETOF) upgrade of the Beijing Spectrometer (BESIII). In this design, an FPGA is used to automatically monitor the synchronization circuit and deal with signals coming from the external clock synchronization circuit. By testing different delay time of the detection signal and analyzing the signal state returned~ the synchronization windows can be found automatically by the FPGA. The new clock system not only retains low clock jitter which is less than 20ps root mean square (RMS), but also demonstrates automatic synchronization to the beam bunches. So far, the clock auto-synchronizing function has been working successfully under a series of tests. It will greatly simplify the system initialization and maintenance in the future. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-1137 0254-3052 |
| DOI: | 10.1088/1674-1137/39/12/126102 |