Decentralized proximal splitting algorithms for composite constrained convex optimization

•Consider a class of decentralized convex optimization problems with local feasible sets, equality and inequality constraints.•Integrate the inequality constraints into local cost function by means of suitable barrier function terms, and avoid the unapproximable property of proximal functions with r...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 359; no. 14; pp. 7482 - 7509
Main Authors Zheng, Lifeng, Ran, Liang, Li, Huaqing, Feng, Liping, Wang, Zheng, Lü, Qingguo, Xia, Dawen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Online AccessGet full text
ISSN0016-0032
1879-2693
DOI10.1016/j.jfranklin.2022.07.053

Cover

Abstract •Consider a class of decentralized convex optimization problems with local feasible sets, equality and inequality constraints.•Integrate the inequality constraints into local cost function by means of suitable barrier function terms, and avoid the unapproximable property of proximal functions with respect to inequality sets.•Propose a synchronous full-decentralized primal-dual proximal splitting algorithm and its randomized version that removes the global clock coordinator, both of which enjoy private uncoordinated step-sizes. This paper concentrates on a class of decentralized convex optimization problems subject to local feasible sets, equality and inequality constraints, where the global objective function consists of a sum of locally smooth convex functions and non-smooth regularization terms. To address this problem, a synchronous full-decentralized primal-dual proximal splitting algorithm (Syn-FdPdPs) is presented, which avoids the unapproximable property of the proximal operator with respect to inequality constraints via logarithmic barrier functions. Following the proposed decentralized protocol, each agent carries out local information exchange without any global coordination and weight balancing strategies introduced in most consensus algorithms. In addition, a randomized version of the proposed algorithm (Rand-FdPdPs) is conducted through subsets of activated agents, which further removes the global clock coordinator. Theoretically, with the help of asymmetric forward-backward-adjoint (AFBA) splitting technique, the convergence results of the proposed algorithms are provided under the same local step-size conditions. Finally, the effectiveness and practicability of the proposed algorithms are demonstrated by numerical simulations on the least-square and least absolute deviation problems.
AbstractList •Consider a class of decentralized convex optimization problems with local feasible sets, equality and inequality constraints.•Integrate the inequality constraints into local cost function by means of suitable barrier function terms, and avoid the unapproximable property of proximal functions with respect to inequality sets.•Propose a synchronous full-decentralized primal-dual proximal splitting algorithm and its randomized version that removes the global clock coordinator, both of which enjoy private uncoordinated step-sizes. This paper concentrates on a class of decentralized convex optimization problems subject to local feasible sets, equality and inequality constraints, where the global objective function consists of a sum of locally smooth convex functions and non-smooth regularization terms. To address this problem, a synchronous full-decentralized primal-dual proximal splitting algorithm (Syn-FdPdPs) is presented, which avoids the unapproximable property of the proximal operator with respect to inequality constraints via logarithmic barrier functions. Following the proposed decentralized protocol, each agent carries out local information exchange without any global coordination and weight balancing strategies introduced in most consensus algorithms. In addition, a randomized version of the proposed algorithm (Rand-FdPdPs) is conducted through subsets of activated agents, which further removes the global clock coordinator. Theoretically, with the help of asymmetric forward-backward-adjoint (AFBA) splitting technique, the convergence results of the proposed algorithms are provided under the same local step-size conditions. Finally, the effectiveness and practicability of the proposed algorithms are demonstrated by numerical simulations on the least-square and least absolute deviation problems.
Author Lü, Qingguo
Li, Huaqing
Xia, Dawen
Wang, Zheng
Feng, Liping
Zheng, Lifeng
Ran, Liang
Author_xml – sequence: 1
  givenname: Lifeng
  surname: Zheng
  fullname: Zheng, Lifeng
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
– sequence: 2
  givenname: Liang
  surname: Ran
  fullname: Ran, Liang
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
– sequence: 3
  givenname: Huaqing
  orcidid: 0000-0001-6310-8965
  surname: Li
  fullname: Li, Huaqing
  email: huaqingli@swu.edu.cn
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
– sequence: 4
  givenname: Liping
  surname: Feng
  fullname: Feng, Liping
  organization: Department of Computer Science, Xinzhou Teachers University, Xinzhou 034000, PR China
– sequence: 5
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney NSW 2052, Australia
– sequence: 6
  givenname: Qingguo
  surname:
  fullname: Lü, Qingguo
  organization: College of Computer Science, Chongqing University, Chongqing 400044, PR China
– sequence: 7
  givenname: Dawen
  surname: Xia
  fullname: Xia, Dawen
  organization: College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, PR China
BookMark eNqNkMtOwzAQRS1UJNrCN5AfSPAjry5YVOUpVWLTDSvLsZ0yIbEj26pKvx6XIhZsYDUz0pzR3DNDE2ONRuia4IxgUt50Wdc6Yd57MBnFlGa4ynDBztCU1NUipeWCTdAUx9UUY0Yv0Mz7Lo4VwXiKXu-01CY40cNBq2R0dg-D6BM_9hACmG0i-q11EN4Gn7TWJdIOo_UQdOyMjyCYyMV-p_eJHQMMcBABrLlE563ovb76rnO0ebjfrJ7S9cvj82q5TiUjRUibIpcLWWsmakWLoqFNSRWmRLSK0ConmNW1apQgZUFUyUqSy1LUMQlpmW5zNke3p7PSWe-dbrmE8PXA8beeE8yPmnjHfzTxoyaOKx41Rb76xY8uGnAf_yCXJ1LHdDvQjnsJ2kitwGkZuLLw541PF7OM9Q
CitedBy_id crossref_primary_10_1016_j_jfranklin_2023_07_006
crossref_primary_10_1016_j_jfranklin_2023_08_015
crossref_primary_10_1016_j_jfranklin_2023_06_004
Cites_doi 10.1016/j.jfranklin.2021.07.015
10.1017/S096249291600009X
10.1109/MSP.2014.2377273
10.1109/TAC.2015.2512043
10.1109/TAC.2016.2582040
10.1109/TSP.2015.2461520
10.1109/TAC.2019.2960265
10.1016/j.jfranklin.2020.04.004
10.1137/140971233
10.1109/TAC.2017.2730481
10.1109/TAC.2008.2009515
10.1007/s10589-017-9909-6
10.1109/TAC.2020.3011358
10.1016/j.jfranklin.2018.04.021
10.1016/j.automatica.2017.06.011
10.1109/JAS.2021.1003904
10.1137/14096668X
10.1016/j.jfranklin.2019.07.018
10.1109/TAC.2016.2607023
10.1109/TAC.2014.2365073
10.1016/j.neunet.2019.10.008
10.1016/j.neunet.2017.05.004
10.1109/JAS.2021.1003874
10.1109/TSMCB.2011.2160394
10.1109/TSP.2010.2055862
10.1007/s10107-018-1281-5
10.1007/s10107-011-0472-0
10.1109/TAC.2019.2906924
10.1016/j.jfranklin.2018.07.044
10.1137/16M1084316
10.1109/TSP.2019.2926022
10.1016/j.jfranklin.2019.03.021
ContentType Journal Article
Copyright 2022 The Franklin Institute
Copyright_xml – notice: 2022 The Franklin Institute
DBID AAYXX
CITATION
DOI 10.1016/j.jfranklin.2022.07.053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
EndPage 7509
ExternalDocumentID 10_1016_j_jfranklin_2022_07_053
S0016003222005269
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AGQPQ
AHPAA
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c315t-b54c9c8e3a8d255b2b62d021afd127410388dbda1651d63614c6a80031f3ef43
IEDL.DBID .~1
ISSN 0016-0032
IngestDate Thu Apr 24 23:05:41 EDT 2025
Wed Oct 01 05:27:00 EDT 2025
Fri Feb 23 02:38:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-b54c9c8e3a8d255b2b62d021afd127410388dbda1651d63614c6a80031f3ef43
ORCID 0000-0001-6310-8965
PageCount 28
ParticipantIDs crossref_citationtrail_10_1016_j_jfranklin_2022_07_053
crossref_primary_10_1016_j_jfranklin_2022_07_053
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2022_07_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of the Franklin Institute
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Smith, Forte, Ma, Takác, Jordan, Jaggi (bib0001) 2016; 18
Li, Shi, Yan (bib0021) 2019; 67
Boyd, Vandenberghe (bib0035) 2006; 51
Robbins, Siegmund (bib0041) 1985
Li, Liao, Huang, Zhu (bib0009) 2015; 60
Yuan, Xu, Zhao (bib0039) 2011; 41
Xu, Zhu, Soh, Xie (bib0013) 2018; 63
Bauschke, Combettes (bib0036) 2011
Ren, Li, Xi, Shao (bib0030) 2021; 8
Chambolle, Pock (bib0027) 2016; 25
Parikh, Stephen (bib0031) 2014; 1
Combettes, Pesquet (bib0043) 2015; 25
Meng, Lin, Shamash (bib0007) 2021; 8
Bertsekas (bib0019) 2011; 129
Nedić, Ozdaglar (bib0010) 2009; 54
Zhang, Heusdens (bib0032) 2015
Liu, Qiu, Xie (bib0011) 2017; 83
Mateos, Bazerque, Giannakis (bib0026) 2010; 58
Niu, Wang, Wang, Xia, Li (bib0012) 2019; 356
Notarnicola, Notarstefano (bib0022) 2017; 62
Nedić, Olshevsky, Wei (bib0015) 2017; 27
Latafat, Freris, Patrinos (bib0033) 2019; 64
Cichocki, Unbehauen (bib0040) 1992; 39
Jiang, Yan, Xia, Guo, Fu, Li (bib0004) 2019; 356
Wang, He, Huang, Li, Zhang (bib0005) 2017; 93
Shao, Wang, Wang, Liu (bib0006) 2020; 357
Shi, Ling, Wu, Yin (bib0020) 2015; 63
Davis, Yin (bib0018) 2016
Alghunaim, Yuan, Sayed (bib0023) 2020; 65
Feller, Ebenbauer (bib0037) 2017; 62
Rabbat, Nowak (bib0003) 2004
Wang, Li, Yan (bib0002) 2018; 355
Komodakis, Pesquet (bib0034) 2015; 32
Xu, Sun, Tian, Scutari (bib0024) 2019
Shi, Ling, Wu, Yin (bib0014) 2015; 25
Bellavia, Gondzio, Porcelli (bib0038) 2019; 178
Bianchi, Hachem, Iutzeler (bib0042) 2016; 61
Shi, Yang (bib0016) 2019; 356
Bastianello, Carli, Schenato, Todescato (bib0017) 2021; 66
Zhao, Liu (bib0029) 2020; 122
Latafat, Patrinos (bib0025) 2017; 68
Nesterov, Nemirovskii (bib0028) 1994
Wang, Xu, Yuan, Chu, Zhang (bib0008) 2021
Latafat (10.1016/j.jfranklin.2022.07.053_bib0025) 2017; 68
Shi (10.1016/j.jfranklin.2022.07.053_bib0014) 2015; 25
Nedić (10.1016/j.jfranklin.2022.07.053_bib0010) 2009; 54
Feller (10.1016/j.jfranklin.2022.07.053_bib0037) 2017; 62
Bertsekas (10.1016/j.jfranklin.2022.07.053_bib0019) 2011; 129
Xu (10.1016/j.jfranklin.2022.07.053_bib0013) 2018; 63
Rabbat (10.1016/j.jfranklin.2022.07.053_bib0003) 2004
Yuan (10.1016/j.jfranklin.2022.07.053_bib0039) 2011; 41
Wang (10.1016/j.jfranklin.2022.07.053_bib0008) 2021
Bauschke (10.1016/j.jfranklin.2022.07.053_sbref0036) 2011
Nedić (10.1016/j.jfranklin.2022.07.053_bib0015) 2017; 27
Alghunaim (10.1016/j.jfranklin.2022.07.053_bib0023) 2020; 65
Li (10.1016/j.jfranklin.2022.07.053_bib0009) 2015; 60
Davis (10.1016/j.jfranklin.2022.07.053_bib0018) 2016
Ren (10.1016/j.jfranklin.2022.07.053_bib0030) 2021; 8
Komodakis (10.1016/j.jfranklin.2022.07.053_bib0034) 2015; 32
Liu (10.1016/j.jfranklin.2022.07.053_bib0011) 2017; 83
Shi (10.1016/j.jfranklin.2022.07.053_bib0016) 2019; 356
Chambolle (10.1016/j.jfranklin.2022.07.053_bib0027) 2016; 25
Combettes (10.1016/j.jfranklin.2022.07.053_bib0043) 2015; 25
Wang (10.1016/j.jfranklin.2022.07.053_bib0002) 2018; 355
Wang (10.1016/j.jfranklin.2022.07.053_bib0005) 2017; 93
Shi (10.1016/j.jfranklin.2022.07.053_bib0020) 2015; 63
Cichocki (10.1016/j.jfranklin.2022.07.053_bib0040) 1992; 39
Mateos (10.1016/j.jfranklin.2022.07.053_bib0026) 2010; 58
Smith (10.1016/j.jfranklin.2022.07.053_bib0001) 2016; 18
Jiang (10.1016/j.jfranklin.2022.07.053_bib0004) 2019; 356
Zhang (10.1016/j.jfranklin.2022.07.053_bib0032) 2015
Bastianello (10.1016/j.jfranklin.2022.07.053_bib0017) 2021; 66
Shao (10.1016/j.jfranklin.2022.07.053_bib0006) 2020; 357
Robbins (10.1016/j.jfranklin.2022.07.053_bib0041) 1985
Parikh (10.1016/j.jfranklin.2022.07.053_bib0031) 2014; 1
Bellavia (10.1016/j.jfranklin.2022.07.053_bib0038) 2019; 178
Nesterov (10.1016/j.jfranklin.2022.07.053_bib0028) 1994
Li (10.1016/j.jfranklin.2022.07.053_bib0021) 2019; 67
Latafat (10.1016/j.jfranklin.2022.07.053_bib0033) 2019; 64
Niu (10.1016/j.jfranklin.2022.07.053_bib0012) 2019; 356
Notarnicola (10.1016/j.jfranklin.2022.07.053_bib0022) 2017; 62
Xu (10.1016/j.jfranklin.2022.07.053_bib0024) 2019
Zhao (10.1016/j.jfranklin.2022.07.053_bib0029) 2020; 122
Boyd (10.1016/j.jfranklin.2022.07.053_sbref0035) 2006; 51
Bianchi (10.1016/j.jfranklin.2022.07.053_bib0042) 2016; 61
Meng (10.1016/j.jfranklin.2022.07.053_bib0007) 2021; 8
References_xml – volume: 93
  start-page: 126
  year: 2017
  end-page: 136
  ident: bib0005
  article-title: Collective neurodynamic optimization for economic emission dispatch problem considering valve point effect in microgrid
  publication-title: Neural Netw.
– volume: 129
  start-page: 163
  year: 2011
  ident: bib0019
  article-title: Incremental proximal methods for large scale convex optimization
  publication-title: Math. Program.
– volume: 60
  start-page: 1998
  year: 2015
  end-page: 2003
  ident: bib0009
  article-title: Event-triggering sampling based leader-following consensus in second-Order multi-agent systems
  publication-title: IEEE Trans. Automat. Control
– start-page: 111
  year: 1985
  end-page: 135
  ident: bib0041
  article-title: A convergence theorem for non-negative almost supermartingales and some applications
  publication-title: Herbert Robbins Selected Papers
– volume: 356
  start-page: 10315
  year: 2019
  end-page: 10334
  ident: bib0004
  article-title: Distributed fusion in wireless sensor networks based on a novel event-triggered strategy
  publication-title: J. Franklin Inst.
– year: 2021
  ident: bib0008
  article-title: Cooperative convex optimization with subgradient delays using push-sum distributed dual averaging
  publication-title: J. Franklin Inst.
– volume: 25
  start-page: 944
  year: 2015
  end-page: 966
  ident: bib0014
  article-title: EXTRA: an exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM J. Optim.
– volume: 356
  start-page: 5353
  year: 2019
  end-page: 5377
  ident: bib0016
  article-title: Multi-cluster distributed optimization via random sleep strategy
  publication-title: J. Franklin Inst.
– start-page: 20
  year: 2004
  end-page: 27
  ident: bib0003
  article-title: Distributed optimization in sensor networks
  publication-title: Third International Symposium on Information Processing in Sensor Networks
– start-page: 115
  year: 2016
  end-page: 163
  ident: bib0018
  article-title: Convergence rate analysis of several splitting schemes
– volume: 32
  start-page: 31
  year: 2015
  end-page: 54
  ident: bib0034
  article-title: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems
  publication-title: IEEE Signal Process. Mag.
– volume: 25
  start-page: 161
  year: 2016
  end-page: 319
  ident: bib0027
  article-title: An introduction to continuous optimization for imaging
  publication-title: Acta Numer.
– volume: 63
  start-page: 6013
  year: 2015
  end-page: 6023
  ident: bib0020
  article-title: A proximal gradient algorithm for decentralized composite optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 1451
  year: 2021
  end-page: 1464
  ident: bib0030
  article-title: Distributed subgradient algorithm for multi-agent optimization with dynamic stepsize
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 27
  start-page: 2597
  year: 2017
  end-page: 2633
  ident: bib0015
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM J. Optim.
– volume: 8
  start-page: 606
  year: 2021
  end-page: 616
  ident: bib0007
  article-title: Distributed cooperative control of battery energy storage systems in DC microgrids
  publication-title: IEEE/CAA J. Autom. Sin.
– start-page: 485
  year: 2019
  end-page: 489
  ident: bib0024
  article-title: A unified contraction analysis of a class of distributed algorithms for composite optimization
  publication-title: 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
– volume: 62
  start-page: 1223
  year: 2017
  end-page: 1238
  ident: bib0037
  article-title: Relaxed logarithmic barrier function based model predictive control of linear systems
  publication-title: IEEE Trans. Automat. Control
– year: 1994
  ident: bib0028
  article-title: Interior-Point Polynomial Algorithms in Convex programming
– volume: 58
  start-page: 5262
  year: 2010
  end-page: 5276
  ident: bib0026
  article-title: Distributed sparse linear regression
  publication-title: IEEE Trans. Signal Process.
– volume: 65
  start-page: 4554
  year: 2020
  end-page: 4567
  ident: bib0023
  article-title: A proximal diffusion strategy for multiagent optimization with sparse affine constraints
  publication-title: IEEE Trans. Automat. Control
– start-page: 3571
  year: 2015
  end-page: 3575
  ident: bib0032
  article-title: Bi-alternating direction method of multipliers over graphs
  publication-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 67
  start-page: 4494
  year: 2019
  end-page: 4506
  ident: bib0021
  article-title: A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates
  publication-title: IEEE Trans. Signal Process.
– volume: 356
  start-page: 9763
  year: 2019
  end-page: 9787
  ident: bib0012
  article-title: Primal-dual stochastic distributed algorithm for constrained convex optimization
  publication-title: J. Franklin Inst.
– volume: 25
  start-page: 1221
  year: 2015
  end-page: 1248
  ident: bib0043
  article-title: Stochastic Quasi-Fejér block-coordinate fixed point iterations with random sweeping
  publication-title: SIAM J. Optim.
– volume: 355
  start-page: 7664
  year: 2018
  end-page: 7690
  ident: bib0002
  article-title: Multi-subspace factor analysis integrated with support vector data description for multimode process monitoring
  publication-title: J. Franklin Inst.
– volume: 63
  start-page: 434
  year: 2018
  end-page: 448
  ident: bib0013
  article-title: Convergence of asynchronous distributed gradient methods over stochastic networks
  publication-title: IEEE Trans. Automat. Control
– volume: 122
  start-page: 144
  year: 2020
  end-page: 151
  ident: bib0029
  article-title: A consensus algorithm based on collective neurodynamic system for distributed optimization with linear and bound constraints
  publication-title: Neural Netw.
– volume: 64
  start-page: 4050
  year: 2019
  end-page: 4065
  ident: bib0033
  article-title: A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization
  publication-title: IEEE Trans. Automat. Control
– volume: 62
  start-page: 2095
  year: 2017
  end-page: 2106
  ident: bib0022
  article-title: Asynchronous distributed optimization via randomized dual proximal gradient
  publication-title: IEEE Trans. Automat. Control
– volume: 66
  start-page: 2620
  year: 2021
  end-page: 2635
  ident: bib0017
  article-title: Asynchronous distributed optimization over lossy networks via relaxed ADMM: stability and linear convergence
  publication-title: IEEE Trans. Automat. Control
– volume: 68
  start-page: 57
  year: 2017
  end-page: 93
  ident: bib0025
  article-title: Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators
  publication-title: Comput. Optim. Appl.
– volume: 83
  start-page: 162
  year: 2017
  end-page: 169
  ident: bib0011
  article-title: Convergence rate analysis of distributed optimization with projected subgradient algorithm
  publication-title: Automatica
– volume: 18
  start-page: 230
  year: 2016
  ident: bib0001
  article-title: CoCoA: a general framework for communication-efficient distributed optimization
  publication-title: J. Mach. Learn. Res.
– volume: 178
  start-page: 109
  year: 2019
  end-page: 143
  ident: bib0038
  article-title: An inexact dual logarithmic barrier method for solving sparse semidefinite programs
  publication-title: Math. Program.
– volume: 357
  start-page: 6241
  year: 2020
  end-page: 6256
  ident: bib0006
  article-title: Distributed algorithm for resource allocation problems under persistent attacks
  publication-title: J. Franklin Inst.
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: bib0010
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Automat. Control
– volume: 61
  start-page: 2947
  year: 2016
  end-page: 2957
  ident: bib0042
  article-title: A coordinate descent primal-dual algorithm and application to distributed asynchronous optimization
  publication-title: IEEE Trans. Automat. Control
– volume: 39
  start-page: 619
  year: 1992
  end-page: 633
  ident: bib0040
  article-title: Neural networks for solving systems of linear equations. II. Minimax and least absolute value problems
  publication-title: IEEE Trans. Circuits Syst. II
– volume: 1
  start-page: 123
  year: 2014
  end-page: 231
  ident: bib0031
  article-title: Proximal algorithms
  publication-title: Foundations Trends Optim.
– year: 2011
  ident: bib0036
  article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– volume: 41
  start-page: 1715
  year: 2011
  end-page: 1724
  ident: bib0039
  article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Trans. Syst. Man Cybern.Part B
– volume: 51
  year: 2006
  ident: bib0035
  article-title: Convex optimization
  publication-title: IEEE Trans. Automat. Control
– year: 2021
  ident: 10.1016/j.jfranklin.2022.07.053_bib0008
  article-title: Cooperative convex optimization with subgradient delays using push-sum distributed dual averaging
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2021.07.015
– start-page: 485
  year: 2019
  ident: 10.1016/j.jfranklin.2022.07.053_bib0024
  article-title: A unified contraction analysis of a class of distributed algorithms for composite optimization
– volume: 25
  start-page: 161
  year: 2016
  ident: 10.1016/j.jfranklin.2022.07.053_bib0027
  article-title: An introduction to continuous optimization for imaging
  publication-title: Acta Numer.
  doi: 10.1017/S096249291600009X
– volume: 32
  start-page: 31
  issue: 6
  year: 2015
  ident: 10.1016/j.jfranklin.2022.07.053_bib0034
  article-title: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2377273
– volume: 61
  start-page: 2947
  issue: 10
  year: 2016
  ident: 10.1016/j.jfranklin.2022.07.053_bib0042
  article-title: A coordinate descent primal-dual algorithm and application to distributed asynchronous optimization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2015.2512043
– volume: 62
  start-page: 1223
  issue: 3
  year: 2017
  ident: 10.1016/j.jfranklin.2022.07.053_bib0037
  article-title: Relaxed logarithmic barrier function based model predictive control of linear systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2016.2582040
– volume: 63
  start-page: 6013
  issue: 22
  year: 2015
  ident: 10.1016/j.jfranklin.2022.07.053_bib0020
  article-title: A proximal gradient algorithm for decentralized composite optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2461520
– volume: 65
  start-page: 4554
  issue: 11
  year: 2020
  ident: 10.1016/j.jfranklin.2022.07.053_bib0023
  article-title: A proximal diffusion strategy for multiagent optimization with sparse affine constraints
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2019.2960265
– volume: 357
  start-page: 6241
  issue: 10
  year: 2020
  ident: 10.1016/j.jfranklin.2022.07.053_bib0006
  article-title: Distributed algorithm for resource allocation problems under persistent attacks
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.04.004
– year: 1994
  ident: 10.1016/j.jfranklin.2022.07.053_bib0028
– volume: 25
  start-page: 1221
  issue: 2
  year: 2015
  ident: 10.1016/j.jfranklin.2022.07.053_bib0043
  article-title: Stochastic Quasi-Fejér block-coordinate fixed point iterations with random sweeping
  publication-title: SIAM J. Optim.
  doi: 10.1137/140971233
– volume: 39
  start-page: 619
  issue: 9
  year: 1992
  ident: 10.1016/j.jfranklin.2022.07.053_bib0040
  article-title: Neural networks for solving systems of linear equations. II. Minimax and least absolute value problems
  publication-title: IEEE Trans. Circuits Syst. II
– volume: 63
  start-page: 434
  issue: 2
  year: 2018
  ident: 10.1016/j.jfranklin.2022.07.053_bib0013
  article-title: Convergence of asynchronous distributed gradient methods over stochastic networks
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2017.2730481
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.jfranklin.2022.07.053_bib0010
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 68
  start-page: 57
  issue: 1
  year: 2017
  ident: 10.1016/j.jfranklin.2022.07.053_bib0025
  article-title: Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9909-6
– volume: 66
  start-page: 2620
  issue: 6
  year: 2021
  ident: 10.1016/j.jfranklin.2022.07.053_bib0017
  article-title: Asynchronous distributed optimization over lossy networks via relaxed ADMM: stability and linear convergence
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2020.3011358
– volume: 356
  start-page: 10315
  issue: 17
  year: 2019
  ident: 10.1016/j.jfranklin.2022.07.053_bib0004
  article-title: Distributed fusion in wireless sensor networks based on a novel event-triggered strategy
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2018.04.021
– start-page: 111
  year: 1985
  ident: 10.1016/j.jfranklin.2022.07.053_bib0041
  article-title: A convergence theorem for non-negative almost supermartingales and some applications
– start-page: 3571
  year: 2015
  ident: 10.1016/j.jfranklin.2022.07.053_bib0032
  article-title: Bi-alternating direction method of multipliers over graphs
– volume: 18
  start-page: 230
  year: 2016
  ident: 10.1016/j.jfranklin.2022.07.053_bib0001
  article-title: CoCoA: a general framework for communication-efficient distributed optimization
  publication-title: J. Mach. Learn. Res.
– volume: 83
  start-page: 162
  year: 2017
  ident: 10.1016/j.jfranklin.2022.07.053_bib0011
  article-title: Convergence rate analysis of distributed optimization with projected subgradient algorithm
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.06.011
– volume: 8
  start-page: 1451
  issue: 8
  year: 2021
  ident: 10.1016/j.jfranklin.2022.07.053_bib0030
  article-title: Distributed subgradient algorithm for multi-agent optimization with dynamic stepsize
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1003904
– volume: 25
  start-page: 944
  issue: 2
  year: 2015
  ident: 10.1016/j.jfranklin.2022.07.053_bib0014
  article-title: EXTRA: an exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/14096668X
– volume: 356
  start-page: 9763
  issue: 16
  year: 2019
  ident: 10.1016/j.jfranklin.2022.07.053_bib0012
  article-title: Primal-dual stochastic distributed algorithm for constrained convex optimization
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.07.018
– volume: 62
  start-page: 2095
  issue: 5
  year: 2017
  ident: 10.1016/j.jfranklin.2022.07.053_bib0022
  article-title: Asynchronous distributed optimization via randomized dual proximal gradient
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2016.2607023
– volume: 51
  issue: 11
  year: 2006
  ident: 10.1016/j.jfranklin.2022.07.053_sbref0035
  article-title: Convex optimization
  publication-title: IEEE Trans. Automat. Control
– volume: 60
  start-page: 1998
  issue: 7
  year: 2015
  ident: 10.1016/j.jfranklin.2022.07.053_bib0009
  article-title: Event-triggering sampling based leader-following consensus in second-Order multi-agent systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2365073
– volume: 122
  start-page: 144
  year: 2020
  ident: 10.1016/j.jfranklin.2022.07.053_bib0029
  article-title: A consensus algorithm based on collective neurodynamic system for distributed optimization with linear and bound constraints
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.10.008
– volume: 93
  start-page: 126
  year: 2017
  ident: 10.1016/j.jfranklin.2022.07.053_bib0005
  article-title: Collective neurodynamic optimization for economic emission dispatch problem considering valve point effect in microgrid
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.05.004
– volume: 8
  start-page: 606
  issue: 3
  year: 2021
  ident: 10.1016/j.jfranklin.2022.07.053_bib0007
  article-title: Distributed cooperative control of battery energy storage systems in DC microgrids
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1003874
– volume: 41
  start-page: 1715
  issue: 6
  year: 2011
  ident: 10.1016/j.jfranklin.2022.07.053_bib0039
  article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Trans. Syst. Man Cybern.Part B
  doi: 10.1109/TSMCB.2011.2160394
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  ident: 10.1016/j.jfranklin.2022.07.053_bib0026
  article-title: Distributed sparse linear regression
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2055862
– volume: 178
  start-page: 109
  issue: 3
  year: 2019
  ident: 10.1016/j.jfranklin.2022.07.053_bib0038
  article-title: An inexact dual logarithmic barrier method for solving sparse semidefinite programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1281-5
– volume: 129
  start-page: 163
  issue: 2
  year: 2011
  ident: 10.1016/j.jfranklin.2022.07.053_bib0019
  article-title: Incremental proximal methods for large scale convex optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0472-0
– volume: 64
  start-page: 4050
  issue: 10
  year: 2019
  ident: 10.1016/j.jfranklin.2022.07.053_bib0033
  article-title: A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2019.2906924
– volume: 355
  start-page: 7664
  issue: 15
  year: 2018
  ident: 10.1016/j.jfranklin.2022.07.053_bib0002
  article-title: Multi-subspace factor analysis integrated with support vector data description for multimode process monitoring
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2018.07.044
– volume: 27
  start-page: 2597
  issue: 4
  year: 2017
  ident: 10.1016/j.jfranklin.2022.07.053_bib0015
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1084316
– volume: 1
  start-page: 123
  issue: 3
  year: 2014
  ident: 10.1016/j.jfranklin.2022.07.053_bib0031
  article-title: Proximal algorithms
  publication-title: Foundations Trends Optim.
– start-page: 20
  year: 2004
  ident: 10.1016/j.jfranklin.2022.07.053_bib0003
  article-title: Distributed optimization in sensor networks
– year: 2011
  ident: 10.1016/j.jfranklin.2022.07.053_sbref0036
– volume: 67
  start-page: 4494
  issue: 17
  year: 2019
  ident: 10.1016/j.jfranklin.2022.07.053_bib0021
  article-title: A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2926022
– volume: 356
  start-page: 5353
  year: 2019
  ident: 10.1016/j.jfranklin.2022.07.053_bib0016
  article-title: Multi-cluster distributed optimization via random sleep strategy
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.03.021
– start-page: 115
  year: 2016
  ident: 10.1016/j.jfranklin.2022.07.053_bib0018
SSID ssj0017100
Score 2.3378124
Snippet •Consider a class of decentralized convex optimization problems with local feasible sets, equality and inequality constraints.•Integrate the inequality...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 7482
Title Decentralized proximal splitting algorithms for composite constrained convex optimization
URI https://dx.doi.org/10.1016/j.jfranklin.2022.07.053
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GD14rWubNG29jemYijtNmKeQJql27Ittgnjwb_e9Nh0OhB28taWvhF-T90F-7xdCrjOPxynlUJZozl1mPOkmPJKuorHUkYKlnmC_83Of917Y4zAc1kin6oVBWqX1_aVPL7y1fdKyaLbmeY49vj5Ea9wpKERLsImPsQhPMbj5XtM8fFSvKb0xVM7w9gbHa5TZk9GhUAyCUsWT_h2hfkWd7gHZt-mi0y5HdEhqZnpE9n6JCB6T1ztjGZb5l9EO8lLyCdgsIb0sSM2OHL_NFvnqfbJ0IEV1kEWOVC0DV6gfK-Fb2ino55_ODFzIxPZmnpBB937Q6bn2wASA1g9XbhoylajYUBlrKBXSIOWBhiAuM-2jTA0qv-hUS5-HvuYUIrPiMsZ1nVGTMXpK6tPZ1JwRh2acM51AdagYU1kkTaxDSSWWh5qlQYPwCiOhrJg4jncsKtbYSKzBFQiu8CIB4DaItzacl3oa201uq58gNqaGAK-_zfj8P8YXZBfvSkrZJamvFh_mCnKQVdosJlmT7LQfnnr9H2Cv33o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTlmYE1tIkdJ2FDhapA26lIZbKc2IFUfakNEmLgt3OXOFUrITGwRUkusi723X3yd58JuU4aPIgoB1iiOLeZbkg75L60YxpI5cew1EPsd-72ePuFPQ28QYU0y14YpFWa2F_E9Dxamzt14836LE2xx9eBbI07BbloSbhBNpnn-ojAbr6XPA8H5WuKcAzQGV5fI3kNE3M0OiBF1y1kPOnvKWol7bT2yK6pF627Ykj7pKInB2RnRUXwkLzea0OxTL-0spCYko7BZgH1Zc5qtuTobTpPs_fxwoIa1UIaOXK1NFyhgKyEbykr559_WlOIIWPTnHlE-q2HfrNtmxMTwLeOl9mRx-IwDjSVgQKsELkRdxVkcZkoB3VqUPpFRUo63HMUp5CaYy4DXNgJ1Qmjx6Q6mU70CbFowjlTIcDDmLE48aUOlCepRHyoWOTWCC99JGKjJo7jHYmSNjYUS-cKdK5o-AKcWyONpeGsENT42-S2_AlibW4ICPt_GZ_-x_iKbLX73Y7oPPaez8g2Pin4Zeekms0_9AUUJFl0mU-4H6U24Q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+proximal+splitting+algorithms+for+composite+constrained+convex+optimization&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Zheng%2C+Lifeng&rft.au=Ran%2C+Liang&rft.au=Li%2C+Huaqing&rft.au=Feng%2C+Liping&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0016-0032&rft.eissn=1879-2693&rft.volume=359&rft.issue=14&rft.spage=7482&rft.epage=7509&rft_id=info:doi/10.1016%2Fj.jfranklin.2022.07.053&rft.externalDocID=S0016003222005269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon