On applying AI-driven flight data analysis for operational spacecraft model-based diagnostics

This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment currently used operational S/C health monitoring and diagnostics systems. It captures the growing general interest in the usage of such techni...

Full description

Saved in:
Bibliographic Details
Published inAnnual reviews in control Vol. 49; pp. 197 - 211
Main Authors Tipaldi, Massimo, Feruglio, Lorenzo, Denis, Pierre, D’Angelo, Gianni
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2020
Subjects
Online AccessGet full text
ISSN1367-5788
DOI10.1016/j.arcontrol.2020.04.012

Cover

Abstract This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment currently used operational S/C health monitoring and diagnostics systems. It captures the growing general interest in the usage of such techniques in the Space engineering domain and applications. Jointly with the AI approach, the operational usage of S/C simulation models (referred to as “discipline models”) is also explored. During S/C development and testing activities, significant efforts are made by the discipline experts to build such models. However, using discipline-specific knowledge to support complex S/C operational activities (e.g., anomaly root cause analysis) remains a challenging task. Based on the current needs of Space Agencies and Industry and by exploiting the advances in AI-based solutions and technologies, this paper proposes an operational S/C model-based diagnostics framework, which can serve as basis for future developments. Such framework combines AI-based techniques, S/C flight data information, and discipline models. Three main needs are addressed: S/C anomaly root cause analysis, S/C prediction behavior, and discipline model refinement. Concrete operational case studies from the Project for On-Board Autonomy (PROBA) satellite family are presented to show the applicability of the proposed framework.
AbstractList This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment currently used operational S/C health monitoring and diagnostics systems. It captures the growing general interest in the usage of such techniques in the Space engineering domain and applications. Jointly with the AI approach, the operational usage of S/C simulation models (referred to as “discipline models”) is also explored. During S/C development and testing activities, significant efforts are made by the discipline experts to build such models. However, using discipline-specific knowledge to support complex S/C operational activities (e.g., anomaly root cause analysis) remains a challenging task. Based on the current needs of Space Agencies and Industry and by exploiting the advances in AI-based solutions and technologies, this paper proposes an operational S/C model-based diagnostics framework, which can serve as basis for future developments. Such framework combines AI-based techniques, S/C flight data information, and discipline models. Three main needs are addressed: S/C anomaly root cause analysis, S/C prediction behavior, and discipline model refinement. Concrete operational case studies from the Project for On-Board Autonomy (PROBA) satellite family are presented to show the applicability of the proposed framework.
Author Denis, Pierre
Tipaldi, Massimo
D’Angelo, Gianni
Feruglio, Lorenzo
Author_xml – sequence: 1
  givenname: Massimo
  surname: Tipaldi
  fullname: Tipaldi, Massimo
  email: mtipaldi@unisannio.it, massimo.tipaldi@intelligentia.it
  organization: University of Sannio, Department of Engineering, P.zza Roma, 82100 Benevento, Italy
– sequence: 2
  givenname: Lorenzo
  surname: Feruglio
  fullname: Feruglio, Lorenzo
  email: papers@aikospace.com
  organization: Aiko S.r.l., Corso Castelfidardo 30/A, 10129 Torino, Italy
– sequence: 3
  givenname: Pierre
  surname: Denis
  fullname: Denis, Pierre
  email: pierre.denis@spacebel.be
  organization: Spacebel s.a., Ildefonse Vandammestraat 7, 1560 Hoeilaart, Belgium
– sequence: 4
  givenname: Gianni
  surname: D’Angelo
  fullname: D’Angelo, Gianni
  email: giadangelo@unisa.it
  organization: University of Salerno, Department of Computer Science, Fisciano, Salerno, (Italy)
BookMark eNqNkM1KAzEUhbOoYFt9BvMCMyaZ3y5clOJPodCNLiXcSW5qyjQZklDo2zu14sKNri4c-A7nfjMycd4hIXec5Zzx-n6fQ1DepeD7XDDBclbmjIsJmfKibrKqadtrMotxzxgTgldT8r51FIahP1m3o8t1poM9oqOmt7uPRDUkoOCgP0UbqfGB-gEDJOvHjMYBFKoAJtGD19hnHUTUVFvYOR-TVfGGXBnoI95-3zl5e3p8Xb1km-3zerXcZKrgVco63lUgdNUVi1J0CAvVQVVDi2XTVAZqJpSuSqMWugWmjdLIzaIsANoaGG-LYk4eLr0q-BgDGqls-pqZAthecibPfuRe_viRZz-SlXL0M_LNL34I9gDh9A9yeSFxfO9oMcioLDqF2gZUSWpv_-z4BNHAjOs
CitedBy_id crossref_primary_10_1016_j_est_2022_106348
crossref_primary_10_1016_j_arcontrol_2022_07_004
crossref_primary_10_3390_inventions9060113
crossref_primary_10_1109_TAI_2022_3162189
crossref_primary_10_3390_app12052545
crossref_primary_10_1016_j_jii_2024_100721
crossref_primary_10_1017_aer_2025_2
crossref_primary_10_3233_JHS_200639
crossref_primary_10_1016_j_asr_2020_12_031
crossref_primary_10_1145_3564240
crossref_primary_10_2514_1_I010881
crossref_primary_10_1134_S0005117921080014
crossref_primary_10_2514_1_I011232
Cites_doi 10.1016/j.jss.2012.04.075
10.1109/MCOM.2017.1700066
10.2514/1.I010587
10.1007/s10462-020-09825-6
10.1016/j.arcontrol.2018.03.001
10.1371/journal.pone.0194889
10.1109/TAES.2009.5259178
10.1109/MCOM.2019.1800155
10.1109/TKDE.2010.235
10.1109/JSTARS.2015.2438893
10.1016/j.ins.2019.02.015
10.1016/j.sigpro.2013.12.026
10.1016/j.ymssp.2017.11.024
10.1109/MAES.2019.2915456
10.1016/j.actaastro.2015.04.018
10.1162/neco.1997.9.8.1735
10.1109/JSYST.2017.2720682
10.1145/3394486.3406704
10.1109/TSMCB.2004.833335
10.1016/j.conengprac.2009.04.011
10.1016/j.ins.2019.07.067
10.1016/j.robot.2017.04.005
10.1016/j.measurement.2018.01.014
10.1109/COMST.2019.2904897
10.2514/1.I010386
10.1016/j.knosys.2006.10.008
10.2514/1.I010307
10.1080/01431161.2014.883098
10.1109/TASE.2018.2876611
10.1609/aimag.v35i4.2553
10.1016/j.ymssp.2017.05.039
10.1016/j.arcontrol.2006.09.003
10.1109/TCST.2009.2026285
10.1016/j.arcontrol.2012.09.012
10.1016/j.ymssp.2018.05.050
10.1016/j.actaastro.2004.09.011
10.3390/rs8050399
10.1007/s00500-017-2512-z
10.1016/j.arcontrol.2018.04.001
10.1016/j.arcontrol.2016.09.008
10.2478/v10006-012-0007-8
10.1109/TIE.2015.2417501
10.1109/JSYST.2018.2793665
10.1109/TAES.2018.2876586
10.2514/1.A34124
10.1109/TAC.2016.2566804
10.1016/j.asr.2018.07.019
10.1109/ACCESS.2019.2912200
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.arcontrol.2020.04.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 211
ExternalDocumentID 10_1016_j_arcontrol_2020_04_012
S1367578820300213
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
UHS
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c315t-b1b5a2d5b3942bea9cba56a8e4775fa602cd54fc9d8a0dfcde1f943aa86a01833
IEDL.DBID .~1
ISSN 1367-5788
IngestDate Thu Apr 24 22:58:46 EDT 2025
Wed Oct 29 21:13:10 EDT 2025
Fri Feb 23 02:48:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Discipline models
Spacecraft flight data
Artificial intelligence
Spacecraft operations
Model-based diagnostics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-b1b5a2d5b3942bea9cba56a8e4775fa602cd54fc9d8a0dfcde1f943aa86a01833
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_arcontrol_2020_04_012
crossref_primary_10_1016_j_arcontrol_2020_04_012
elsevier_sciencedirect_doi_10_1016_j_arcontrol_2020_04_012
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Annual reviews in control
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References ECSS-E-ST-40C: Space engineering - Software (bib0002) 2009
Segù, M., Loquercio, A., & Scaramuzza, D. (2019). A general framework for uncertainty estimation in deep learning. ArXiv e-prints.
MXNet (2019b). Open source machine learning commons for Earth observations.
Wang, Sun, Liu, Cao, Wang (bib0104) 2018
ESATAN-TMS Thermal user manual (bib0005) 2013
Holdaway (bib0049) 2000
ECSS-E-ST-70-41C: Space engineering - Telemetry and telecommand packet utilization (bib0006) 2016
Marzat, Piet-Lahanier, Damongeot, Walter (bib0072) 2012; 226
Tidriri, Chatti, Verron, Tiplica (bib0099) 2016; 42
Fernández, Yue, Weber (bib0032) 2017
Pimentel, Clifton, Clifton, Tarassenko (bib0089) 2014; 99
Mess, Dannemann, Greif (bib0073) 2019
Penedones, Sousa, Donati, J. (bib0086) 2008
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv e-prints.
D’Angelo, Palmieri, Rampone (bib0025) 2019; 486
Pesaresi, Syrris, Julea (bib0087) 2016; 8
Rabideau, Knight, Chien, Fukunaga, Govindjee (bib0091) 1999; 440
Ghallab, Nau, Traverso (bib0039) 2004
Barua, Sinha, Khorasani (bib0013) 2009; 45
Srivastava, Saini, Gupta (bib0098) 2019
ESA-Earth-Online (2017). Antarctica acquisitions by proba-v.
.
Chandola, Banerjee, Kumar (bib0021) 2012; 24
Claessens, Vrancken, Mellab, Santandrea (bib0024) 2010
O’Meara, Schlag, Wickler (bib0082) 2018
Gilmore (bib0040) 2002
Fang, Shi, Dong, Fan, Ren (bib0031) 2017
Chien, Bue, Castillo-Rogez, Gharibian, Knight, Schaffer (bib0022) 2014
Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. ArXiv e-prints.
Chaieb, Wegerson, Kading, Straub, Marsh, Whalen (bib0018) 2015
van de Ven, Marselis, Shaukat (bib0102) 2018
Hochreiter, Schmidhuber (bib0048) 1997; 9
Wang (bib0105) 2005
ECSS-S-ST-00-01C: Glossary of terms (bib0004) 2012
Yin (bib0108) 2019
Sharma, Ventura, D’Amico (bib0095) 2018; 55
A.Viscio, N.Viola, Fusaro, Basso (bib0011) 2015; 114
Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. ArXiv e-prints.
ECSS-E-ST-70-11C: Space engineering - Space segment operability (bib0001) 2008
Giovannini, Aubry, Panetto, Dassisti, Haouzi (bib0041) 2012; 35
Nikora, Srivastava, Fesq, Chung, Kolcio (bib0080) 2018
M.Tipaldi, Glielmo (bib0075) 2018; 12
Ibrahim, Ahmed, Zeidan, Ziedan (bib0053) 2018; 55
Girimonte, Izzo (bib0042) 2007
Grastien, Haslum, Thiebaux (bib0045) 2011
de Lafontaine, Buijs, Vuilleumier, Mellab, den Braembussche (bib0061) 1999
Fillery, Stanton (bib0034) 2011
Wertz, Larson (bib0107) 1999
Jorgensen, Denver, Betto, den Braembussche (bib0055) 2005; 56
NAVISP Programmes (2018). Artificial intelligence / machine learning sensor fusion for autonomous vessel navigation.
Gao, Cecati, Ding (bib0037) 2015; 62
Proba2-Science-Center (2012). LYRA temperature evolution.
Gonzalez, Jimenez, Lopez, G. (bib0043) 2017; 55
Eickhoff (bib0028) 2012
Barsalou (bib0012) 2014
Zolghadri (bib0112) 2018; 14
Justus, Brennan, Bonner, McGough (bib0056) 2018
D’Angelo, Pilla, Dean, Rampone (bib0026) 2018; 22
Zoppi, M.Tipaldi, A. Di Cerbo (bib0113) 2018; 122
Chien, Doubleday, Thompson, Wagstaff, Bellardo, Francis, Piug-Suari (bib0023) 2017; 14
Mille (bib0074) 2006; 30
Khargonekar, Dahleh (bib0060) 2018; 45
Gentil, Montmain, Combastel (bib0038) 2004; 34
Afri, Andrieu, Bako, Dufour (bib0008) 2017; 62
D’Angelo, Tipaldi, Palmieri, Glielmo (bib0027) 2019; 504
Feruglio, Corpino (bib0033) 2017; 93
Francois, Santandrea, Mellab, Vrancken, Versluys (bib0036) 2014; 35
MXNet (2019a). Mxnet - a scalable deep learning framework.
Bermyn (bib0014) 2008
Franchi, Feruglio, Mozzillo, Corpino (bib0035) 2018; 98
Riabov, Sohrabi, Sow, Turaga, Udrea, Vu (bib0093) 2015
Smith, Sherwood, Govindjee, Yan, Rabideau, Chien (bib0097) 1998
Hundman, Constantinou, Laporte, Colwell, Soderstrom (bib0051) 2018
Kashyap (bib0057) 2018
Nardone, Santone, Tipaldi, Liuzza, Gliemo (bib0078) 2019; 13
Marshall, Ferguson, Assadzadeh (bib0068) 2018
Goodloe, Pike (bib0044) 2010
Makridakis, Spiliotis, Assimakopoulos (bib0067) 2018; 13
Martínez-Heras, Donati, Sousa, Fischer (bib0071) 2012
Zhang, Patras, Haddadi (bib0109) 2019; 21
Shrestha, Mahmood (bib0096) 2019; 7
Adamski, Spencer-Jones, Kbidy (bib0007) 2018
Van Wesel, Goodloe (bib0101) 2017
Lee, Cho, Kim (bib0062) 2008; 21
Haslum, Grastien (bib0047) 2011
Chandiok, Chaturvedi (bib0020) 2015
Martínez-Heras, Donati (bib0070) 2018
Gu, Gowda, Jayanna, Boumghar, Lucas, Bernardi, Dengel (bib0046) 2019
Khan, Yairi (bib0059) 2018; 107
Olive (bib0081) 2012; 22
Zhang, Wang, Sun, Zhang, Shao (bib0110) 2018; 62
Martínez-Heras, Donati (bib0069) 2014; 35
Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. ArXiv e-prints.
Zhao, Yan, Chen, Mao, Wang, Gao (bib0111) 2019; 115
Bishop (bib0015) 2006
Hwang, Kim, Kim, Seah (bib0052) 2010; 18
Lpez (bib0066) 2013
Caffe (2019). Caffe.
Patton, Uppal, Simani, Polle (bib0085) 2010; 18
Pacheco, Garcia (bib0083) 2012; 85
Li, Chen, Jin, Shi, Goh, Ng (bib0063) 2019
Tipaldi, Bruenjes (bib0100) 2015; 12
Arroyo, Schulze, Christiansen, Faya, Thornhill (bib0009) 2014
European Space Agency (2019). GSTP element 1 develop compendia 2019.
Wander, Forstner (bib0103) 2012
Wen, Fan, Chen, Chen, Chen (bib0106) 2019
Petković, Boumghar, Breskvar, Džeroski, Kocev, Levatić (bib0088) 2019; 34
Inc., G. (2019). Tensorflow.
Li, Zhou, Hu, Spanos (bib0064) 2019; 16
Hua, Zhao, Li, Chen, Liu, Zhang (bib0050) 2019; 57
Liu, Feld, Xue, Garcke, Soddemann (bib0065) 2015; 8
ARTES Programmes (2018). Machine learning and artificial intelligence for satellite communications.
Carlton, Morgan, Lohmeyer, Caho (bib0017) 2018; 15
ECSS-E-TM-10-21A: Space engineering - System modeling and simulation (bib0003) 2010
Mille (10.1016/j.arcontrol.2020.04.012_bib0074) 2006; 30
Bishop (10.1016/j.arcontrol.2020.04.012_bib0015) 2006
Wang (10.1016/j.arcontrol.2020.04.012_bib0104) 2018
Liu (10.1016/j.arcontrol.2020.04.012_bib0065) 2015; 8
Grastien (10.1016/j.arcontrol.2020.04.012_bib0045) 2011
A.Viscio (10.1016/j.arcontrol.2020.04.012_bib0011) 2015; 114
Gu (10.1016/j.arcontrol.2020.04.012_bib0046) 2019
Ibrahim (10.1016/j.arcontrol.2020.04.012_bib0053) 2018; 55
de Lafontaine (10.1016/j.arcontrol.2020.04.012_bib0061) 1999
Zoppi (10.1016/j.arcontrol.2020.04.012_bib0113) 2018; 122
Srivastava (10.1016/j.arcontrol.2020.04.012_bib0098) 2019
Mess (10.1016/j.arcontrol.2020.04.012_bib0073) 2019
10.1016/j.arcontrol.2020.04.012_bib0058
10.1016/j.arcontrol.2020.04.012_bib0054
Khan (10.1016/j.arcontrol.2020.04.012_bib0059) 2018; 107
Bermyn (10.1016/j.arcontrol.2020.04.012_bib0014) 2008
Holdaway (10.1016/j.arcontrol.2020.04.012_bib0049) 2000
Ghallab (10.1016/j.arcontrol.2020.04.012_bib0039) 2004
Lee (10.1016/j.arcontrol.2020.04.012_bib0062) 2008; 21
10.1016/j.arcontrol.2020.04.012_bib0029
Adamski (10.1016/j.arcontrol.2020.04.012_bib0007) 2018
Rabideau (10.1016/j.arcontrol.2020.04.012_bib0091) 1999; 440
Carlton (10.1016/j.arcontrol.2020.04.012_bib0017) 2018; 15
Zhao (10.1016/j.arcontrol.2020.04.012_bib0111) 2019; 115
Zhang (10.1016/j.arcontrol.2020.04.012_bib0110) 2018; 62
Pacheco (10.1016/j.arcontrol.2020.04.012_bib0083) 2012; 85
Feruglio (10.1016/j.arcontrol.2020.04.012_bib0033) 2017; 93
Chien (10.1016/j.arcontrol.2020.04.012_bib0022) 2014
Hua (10.1016/j.arcontrol.2020.04.012_bib0050) 2019; 57
D’Angelo (10.1016/j.arcontrol.2020.04.012_bib0026) 2018; 22
Wander (10.1016/j.arcontrol.2020.04.012_bib0103) 2012
Barsalou (10.1016/j.arcontrol.2020.04.012_bib0012) 2014
Gao (10.1016/j.arcontrol.2020.04.012_bib0037) 2015; 62
Martínez-Heras (10.1016/j.arcontrol.2020.04.012_bib0071) 2012
Pesaresi (10.1016/j.arcontrol.2020.04.012_bib0087) 2016; 8
Fang (10.1016/j.arcontrol.2020.04.012_bib0031) 2017
ECSS-E-ST-70-41C: Space engineering - Telemetry and telecommand packet utilization (10.1016/j.arcontrol.2020.04.012_bib0006) 2016
ECSS-E-ST-70-11C: Space engineering - Space segment operability (10.1016/j.arcontrol.2020.04.012_bib0001) 2008
Makridakis (10.1016/j.arcontrol.2020.04.012_bib0067) 2018; 13
Petković (10.1016/j.arcontrol.2020.04.012_bib0088) 2019; 34
Van Wesel (10.1016/j.arcontrol.2020.04.012_bib0101) 2017
Chandola (10.1016/j.arcontrol.2020.04.012_bib0021) 2012; 24
10.1016/j.arcontrol.2020.04.012_bib0030
Franchi (10.1016/j.arcontrol.2020.04.012_bib0035) 2018; 98
Wen (10.1016/j.arcontrol.2020.04.012_bib0106) 2019
Gilmore (10.1016/j.arcontrol.2020.04.012_bib0040) 2002
Riabov (10.1016/j.arcontrol.2020.04.012_bib0093) 2015
Eickhoff (10.1016/j.arcontrol.2020.04.012_bib0028) 2012
Nardone (10.1016/j.arcontrol.2020.04.012_bib0078) 2019; 13
Yin (10.1016/j.arcontrol.2020.04.012_bib0108) 2019
Kashyap (10.1016/j.arcontrol.2020.04.012_bib0057) 2018
M.Tipaldi (10.1016/j.arcontrol.2020.04.012_bib0075) 2018; 12
Giovannini (10.1016/j.arcontrol.2020.04.012_bib0041) 2012; 35
Khargonekar (10.1016/j.arcontrol.2020.04.012_bib0060) 2018; 45
Girimonte (10.1016/j.arcontrol.2020.04.012_bib0042) 2007
Barua (10.1016/j.arcontrol.2020.04.012_bib0013) 2009; 45
Justus (10.1016/j.arcontrol.2020.04.012_bib0056) 2018
Gentil (10.1016/j.arcontrol.2020.04.012_bib0038) 2004; 34
ESATAN-TMS Thermal user manual (10.1016/j.arcontrol.2020.04.012_bib0005) 2013
Goodloe (10.1016/j.arcontrol.2020.04.012_bib0044) 2010
Hwang (10.1016/j.arcontrol.2020.04.012_bib0052) 2010; 18
Jorgensen (10.1016/j.arcontrol.2020.04.012_bib0055) 2005; 56
Martínez-Heras (10.1016/j.arcontrol.2020.04.012_bib0070) 2018
10.1016/j.arcontrol.2020.04.012_bib0084
D’Angelo (10.1016/j.arcontrol.2020.04.012_bib0025) 2019; 486
Pimentel (10.1016/j.arcontrol.2020.04.012_bib0089) 2014; 99
Martínez-Heras (10.1016/j.arcontrol.2020.04.012_bib0069) 2014; 35
ECSS-S-ST-00-01C: Glossary of terms (10.1016/j.arcontrol.2020.04.012_bib0004) 2012
Smith (10.1016/j.arcontrol.2020.04.012_bib0097) 1998
O’Meara (10.1016/j.arcontrol.2020.04.012_bib0082) 2018
Tidriri (10.1016/j.arcontrol.2020.04.012_bib0099) 2016; 42
Olive (10.1016/j.arcontrol.2020.04.012_bib0081) 2012; 22
Penedones (10.1016/j.arcontrol.2020.04.012_bib0086) 2008
Marshall (10.1016/j.arcontrol.2020.04.012_bib0068) 2018
Patton (10.1016/j.arcontrol.2020.04.012_bib0085) 2010; 18
10.1016/j.arcontrol.2020.04.012_bib0019
10.1016/j.arcontrol.2020.04.012_bib0016
Arroyo (10.1016/j.arcontrol.2020.04.012_bib0009) 2014
Nikora (10.1016/j.arcontrol.2020.04.012_bib0080) 2018
Haslum (10.1016/j.arcontrol.2020.04.012_bib0047) 2011
Li (10.1016/j.arcontrol.2020.04.012_bib0063) 2019
10.1016/j.arcontrol.2020.04.012_bib0010
10.1016/j.arcontrol.2020.04.012_bib0094
10.1016/j.arcontrol.2020.04.012_bib0092
10.1016/j.arcontrol.2020.04.012_bib0090
Zhang (10.1016/j.arcontrol.2020.04.012_bib0109) 2019; 21
D’Angelo (10.1016/j.arcontrol.2020.04.012_bib0027) 2019; 504
Gonzalez (10.1016/j.arcontrol.2020.04.012_bib0043) 2017; 55
Afri (10.1016/j.arcontrol.2020.04.012_bib0008) 2017; 62
Chandiok (10.1016/j.arcontrol.2020.04.012_bib0020) 2015
ECSS-E-ST-40C: Space engineering - Software (10.1016/j.arcontrol.2020.04.012_bib0002) 2009
Hundman (10.1016/j.arcontrol.2020.04.012_bib0051) 2018
Wang (10.1016/j.arcontrol.2020.04.012_bib0105) 2005
Sharma (10.1016/j.arcontrol.2020.04.012_bib0095) 2018; 55
Lpez (10.1016/j.arcontrol.2020.04.012_bib0066) 2013
Hochreiter (10.1016/j.arcontrol.2020.04.012_sbref0043) 1997; 9
Fillery (10.1016/j.arcontrol.2020.04.012_bib0034) 2011
van de Ven (10.1016/j.arcontrol.2020.04.012_bib0102) 2018
Tipaldi (10.1016/j.arcontrol.2020.04.012_bib0100) 2015; 12
ECSS-E-TM-10-21A: Space engineering - System modeling and simulation (10.1016/j.arcontrol.2020.04.012_bib0003) 2010
Wertz (10.1016/j.arcontrol.2020.04.012_bib0107) 1999
Marzat (10.1016/j.arcontrol.2020.04.012_bib0072) 2012; 226
Chien (10.1016/j.arcontrol.2020.04.012_bib0023) 2017; 14
Francois (10.1016/j.arcontrol.2020.04.012_bib0036) 2014; 35
Zolghadri (10.1016/j.arcontrol.2020.04.012_bib0112) 2018; 14
Chaieb (10.1016/j.arcontrol.2020.04.012_bib0018) 2015
Claessens (10.1016/j.arcontrol.2020.04.012_bib0024) 2010
10.1016/j.arcontrol.2020.04.012_bib0079
10.1016/j.arcontrol.2020.04.012_bib0076
10.1016/j.arcontrol.2020.04.012_bib0077
Shrestha (10.1016/j.arcontrol.2020.04.012_bib0096) 2019; 7
Fernández (10.1016/j.arcontrol.2020.04.012_bib0032) 2017
Li (10.1016/j.arcontrol.2020.04.012_bib0064) 2019; 16
References_xml – year: 2004
  ident: bib0039
  article-title: Automated planning: Theory and practice
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib0068
  article-title: Using model based systems engineering structures for onboard spacecraft electronics
  publication-title: Proceedings of the ieee aerospace conference
– volume: 35
  start-page: 309
  year: 2012
  end-page: 317
  ident: bib0041
  article-title: Ontology-based system for supporting manufacturing sustainability
  publication-title: Annual Reviews in Control
– start-page: 235
  year: 2007
  end-page: 253
  ident: bib0042
  article-title: Artificial intelligence for space applications
  publication-title: Schuster a.j. (eds) intelligent computing everywhere
– year: 2018
  ident: bib0082
  article-title: Applications of deep learning neural networks to satellite telemetry monitoring
  publication-title: Proceedings of the 2018 spaceops conference
– volume: 486
  start-page: 31
  year: 2019
  end-page: 51
  ident: bib0025
  article-title: Detecting unfair recommendations in trust-based pervasive environments
  publication-title: Information Sciences
– volume: 56
  start-page: 153
  year: 2005
  end-page: 159
  ident: bib0055
  article-title: The PROBA satellite star tracker performance
  publication-title: Acta Astronautica
– volume: 35
  start-page: 37
  year: 2014
  end-page: 46
  ident: bib0069
  article-title: Enhanced telemetry monitoring with novelty detection
  publication-title: AI Magazine
– year: 2018
  ident: bib0007
  article-title: Practical aspects of anomaly detection algorithms in satellite operations
  publication-title: Proceedings of the 2018 spaceops conference
– year: 2019
  ident: bib0073
  article-title: Techniques of artificial intelligence for space applications - A survey
  publication-title: European workshop on-board data processing
– volume: 55
  start-page: 1414
  year: 2018
  end-page: 1429
  ident: bib0095
  article-title: Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous
  publication-title: Journal of Spacecraft and Rockets
– reference: European Space Agency (2019). GSTP element 1 develop compendia 2019.
– reference: NAVISP Programmes (2018). Artificial intelligence / machine learning sensor fusion for autonomous vessel navigation.
– volume: 8
  start-page: 399
  year: 2016
  ident: bib0087
  article-title: A new method for Earth observation data analytics based on symbolic machine learning
  publication-title: Remote Sensing
– volume: 62
  start-page: 3768
  year: 2015
  end-page: 3774
  ident: bib0037
  article-title: A survey of fault diagnosis and fault-tolerant techniques–part II: Fault diagnosis with knowledge-based and hybrid/active approaches
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 1
  year: 2008
  end-page: 11
  ident: bib0086
  article-title: Predicting venus express thermal power consumption
  publication-title: Proceedings of the 2008 spaceops conference
– volume: 8
  start-page: 2306
  year: 2015
  end-page: 2317
  ident: bib0065
  article-title: Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– year: 2008
  ident: bib0014
  article-title: PROBA spacecraft family - small mission solutions for emerging applications
  publication-title: Proceedings of the 59th iac (international astronautical congress)
– volume: 504
  start-page: 501
  year: 2019
  end-page: 519
  ident: bib0027
  article-title: A data-driven approximate dynamic programming approach based on association rule learning: Spacecraft autonomy as a case study
  publication-title: Information Sciences
– reference: Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. ArXiv e-prints.
– volume: 15
  start-page: 239
  year: 2018
  end-page: 252
  ident: bib0017
  article-title: Telemetry fault-detection algorithms: Applications for spacecraft monitoring and space environment sensing
  publication-title: Journal of Aerospace Information Systems
– volume: 22
  start-page: 99
  year: 2012
  end-page: 107
  ident: bib0081
  article-title: FDI(R) for satellites: How to deal with high availability and robustness in the space domain?
  publication-title: International Journal of Applied Mathematics and Computer Science
– volume: 62
  start-page: 2620
  year: 2018
  end-page: 2630
  ident: bib0110
  article-title: Multi-spacecraft attitude cooperative control using model-based event-triggered methodology
  publication-title: Advances in Space Research
– year: 1998
  ident: bib0097
  article-title: Representing spacecraft mission planning knowledge in ASPEN
  publication-title: Proceedings of the artificial intelligence planning systems workshop on knowledge acquisition
– volume: 12
  start-page: 235
  year: 2015
  end-page: 256
  ident: bib0100
  article-title: Survey on fault detection, isolation, and recovery strategies in the space domain
  publication-title: Journal of Aerospace Information Systems
– reference: ARTES Programmes (2018). Machine learning and artificial intelligence for satellite communications.
– start-page: 282
  year: 2015
  end-page: 290
  ident: bib0093
  article-title: Planning-based reasoning for automated large-scale data analysis
  publication-title: Proceedings of the twenty-fifth international conference on automated planning and scheduling (ICAPS)
– volume: 30
  start-page: 223
  year: 2006
  end-page: 232
  ident: bib0074
  article-title: From case-based reasoning to traces-based reasoning
  publication-title: Annual reviews in control
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0020
  article-title: Machine learning techniques for cognitive decision making
  publication-title: 2015 IEEE workshop on computational intelligence: Theories, applications and future directions (WCI)
– volume: 14
  start-page: 307
  year: 2017
  end-page: 315
  ident: bib0023
  article-title: Onboard autonomy on the intelligent payload experiment cubesat mission
  publication-title: Journal of Aerospace Information Systems
– volume: 55
  start-page: 126
  year: 2017
  end-page: 131
  ident: bib0043
  article-title: Root cause analysis of network failures using machine learning and summarization techniques
  publication-title: IEEE Communications Magazine
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib0047
  article-title: Diagnosis as planning: Two case studies
  publication-title: Proceedings of the scheduling and planning applications workshop
– start-page: 703
  year: 2019
  end-page: 716
  ident: bib0063
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
  publication-title: International conference on artificial neural networks
– start-page: 97
  year: 2018
  end-page: 104
  ident: bib0104
  article-title: Financial markets prediction with deep learning
  publication-title: 2018 17th IEEE international conference on machine learning and applications (icmla)
– year: 2016
  ident: bib0006
– year: 2012
  ident: bib0071
  article-title: DrMUST - a data mining approach for anomaly investigation
  publication-title: Proceedings of the 2012 spaceops conference
– year: 2010
  ident: bib0024
  article-title: PROBA-V a multispectral Earth observation mission based on small satellite technology spacecraft family - small mission solutions for emerging applications
  publication-title: Proceedings of the symposium on small satellite systems and services (4s)
– volume: 99
  start-page: 215
  year: 2014
  end-page: 249
  ident: bib0089
  article-title: A review of novelty detection
  publication-title: Signal Processing
– year: 2017
  ident: bib0101
  article-title: Challenges in the verification of reinforcement learning algorithms
– volume: 13
  start-page: 1
  year: 2018
  end-page: 26
  ident: bib0067
  article-title: Statistical and machine learning forecasting methods: Concerns and ways forward
  publication-title: PloS One
– start-page: 3456
  year: 2014
  end-page: 3464
  ident: bib0009
  article-title: Derivation of diagnostic models based on formalized process knowledge
  publication-title: Proceedings of the 19th world congress the international federation of automatic control
– year: 2012
  ident: bib0028
  article-title: Onboard computers, onboard software and satellite operations: an introduction
– reference: MXNet (2019b). Open source machine learning commons for Earth observations.
– volume: 7
  start-page: 53040
  year: 2019
  end-page: 53065
  ident: bib0096
  article-title: Review of deep learning algorithms and architectures
  publication-title: IEEE Access
– year: 2009
  ident: bib0002
– volume: 114
  start-page: 79
  year: 2015
  end-page: 92
  ident: bib0011
  article-title: Methodology for requirements definition of complex space missions and systems
  publication-title: Acta Astronautica
– volume: 16
  start-page: 1412
  year: 2019
  end-page: 1425
  ident: bib0064
  article-title: Identifying unseen faults for smart buildings by incorporating expert knowledge with data
  publication-title: IEEE Transactions on Automation Science and Engineering
– year: 2005
  ident: bib0105
  article-title: Support vector machines: Theory and applications
– start-page: 70
  year: 2017
  end-page: 75
  ident: bib0032
  article-title: Telemetry anomaly detection system using machine learning to streamline mission operations
  publication-title: Proceedings of the 6th international conference on space mission challenges for information technology (smc-it)
– volume: 34
  start-page: 46
  year: 2019
  end-page: 60
  ident: bib0088
  article-title: Machine learning for predicting thermal power consumption of the Mars express spacecraft
  publication-title: IEEE Aerospace and Electronic Systems Magazine
– year: 2010
  ident: bib0044
  article-title: Monitoring distributed real-time systems: A survey and future directions
– year: 2013
  ident: bib0066
  article-title: Case-Based reasoning: A concise introduction
– volume: 85
  start-page: 2171
  year: 2012
  end-page: 2181
  ident: bib0083
  article-title: A systematic literature review of stakeholder identification methods in requirements elicitation
  publication-title: Journal of Systems and Software
– volume: 14
  start-page: 41
  year: 2018
  end-page: 51
  ident: bib0112
  article-title: On flight operational issues management: Past, present and future
  publication-title: Annual reviews in control
– year: 2018
  ident: bib0057
  article-title: Machine learning for decision makers: Cognitive computing fundamentals for better decision making
– reference: MXNet (2019a). Mxnet - a scalable deep learning framework.
– start-page: 60
  year: 2011
  end-page: 67
  ident: bib0045
  article-title: Exhaustive diagnosis of discrete event systems through exploration of the hypothesis space
  publication-title: Proceedings of the international workshop on principles of diagnosis (dx-11)
– volume: 12
  start-page: 3893
  year: 2018
  end-page: 3905
  ident: bib0075
  article-title: A survey on model-based mission planning and execution for autonomous spacecraft
  publication-title: IEEE Systems Journal
– year: 2018
  ident: bib0070
  article-title: Novelty detection with deep learning
  publication-title: Proceedings of the 2018 spaceops conference
– volume: 13
  start-page: 1018
  year: 2019
  end-page: 1029
  ident: bib0078
  article-title: Model checking techniques applied to satellite operational mode management
  publication-title: IEEE Systems Journal
– volume: 93
  start-page: 52
  year: 2017
  end-page: 60
  ident: bib0033
  article-title: Neural networks to increase the autonomy of interplanetary nanosatellite missions
  publication-title: Robotics and Autonomous Systems
– volume: 22
  start-page: 2421
  year: 2018
  end-page: 2427
  ident: bib0026
  article-title: Toward a soft computing-based correlation between oxygen toxicity seizures and hyperoxic hyperpnea
  publication-title: Soft Computing
– year: 2010
  ident: bib0003
– year: 2017
  ident: bib0031
  article-title: Spacecraft power system fault diagnosis based on DNN
  publication-title: 2017 prognostics and system health management conference (phm-harbin)
– reference: Proba2-Science-Center (2012). LYRA temperature evolution.
– start-page: 81
  year: 2019
  end-page: 86
  ident: bib0098
  article-title: Comparison of various machine learning techniques and its uses in different fields
  publication-title: 2019 3rd international conference on electronics, communication and aerospace technology (iceca)
– volume: 107
  start-page: 241
  year: 2018
  end-page: 265
  ident: bib0059
  article-title: A review on the application of deep learning in system health management
  publication-title: Mechanical Systems and Signal Processing
– reference: Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. ArXiv e-prints.
– start-page: 1
  year: 2014
  end-page: 7
  ident: bib0022
  article-title: Agile science: Using onboard autonomy for primitive bodies and deep space exploration
  publication-title: Spaceops 2014 conference
– start-page: 47
  year: 2015
  end-page: 52
  ident: bib0018
  article-title: The openorbiter cubesat as a system-of-systems (SoS) and how sos engineering (SoSE) aids cubesat design
  publication-title: 10th system of systems engineering conference (SOSE)
– year: 2018
  ident: bib0056
  article-title: Predicting the Computational Cost of Deep Learning Models
  publication-title: 2018 IEEE international conference on big data, big data
– reference: Caffe (2019). Caffe.
– volume: 34
  start-page: 2207
  year: 2004
  end-page: 2221
  ident: bib0038
  article-title: Combining FDI and AI approaches within causal-model-based diagnosis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 440
  start-page: 99
  year: 1999
  ident: bib0091
  article-title: Iterative repair planning for spacecraft operations using the ASPEN system
  publication-title: Proceedings of the artificial intelligence, robotics and automation in space
– volume: 21
  start-page: 2224
  year: 2019
  end-page: 2287
  ident: bib0109
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Communications Surveys Tutorials
– volume: 122
  start-page: 473
  year: 2018
  end-page: 483
  ident: bib0113
  article-title: Cross-model verification of the electrical power subsystem in space projects
  publication-title: Measurement
– year: 2008
  ident: bib0001
– start-page: 1803
  year: 2019
  end-page: 1810
  ident: bib0106
  article-title: A survey on named entity recognition
  publication-title: International conference in communications, signal processing, and systems
– reference: ESA-Earth-Online (2017). Antarctica acquisitions by proba-v.
– start-page: 439
  year: 2019
  end-page: 454
  ident: bib0046
  article-title: The added value of advanced feature engineering and selection for machine learning models in spacecraft behavior prediction
  publication-title: Space operations: Inspiring humankind’s future
– volume: 18
  start-page: 636
  year: 2010
  end-page: 653
  ident: bib0052
  article-title: A survey of fault detection, isolation, and reconfiguration methods
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 57
  start-page: 114
  year: 2019
  end-page: 119
  ident: bib0050
  article-title: Deep learning with long short-term memory for time series prediction
  publication-title: IEEE Communications Magazine
– year: 2002
  ident: bib0040
  article-title: Spacecraft thermal control handbook, volume i: fundamental technologies
– volume: 98
  start-page: 1034
  year: 2018
  end-page: 1055
  ident: bib0035
  article-title: Model predictive and reallocation problem for cubesat fault recovery and attitude control
  publication-title: Mechanical Systems and Signal Processing
– volume: 45
  start-page: 983
  year: 2009
  end-page: 1002
  ident: bib0013
  article-title: A diagnostic tree approach for fault cause identification in the attitude control subsystem of satellites
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– start-page: 20
  year: 2019
  end-page: 27
  ident: bib0108
  article-title: Research on Knowledge Mining Algorithm of Spacecraft Fault Diagnosis System
  publication-title: Communications, signal processing, and systems: Proceedings of the 8th international conference on communications, signal processing, and systems
– volume: 226
  start-page: 1329
  year: 2012
  end-page: 1360
  ident: bib0072
  article-title: Model-based fault diagnosis for aerospace systems: A survey
  publication-title: Journal of Aerospace Engineering
– year: 2013
  ident: bib0005
– volume: 9
  year: 1997
  ident: bib0048
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 35
  start-page: 2548
  year: 2014
  end-page: 2564
  ident: bib0036
  article-title: The PROBA-V mission: the space segment
  publication-title: International Journal of Remote Sensing
– volume: 45
  start-page: 1
  year: 2018
  end-page: 4
  ident: bib0060
  article-title: Advancing systems and control research in the era of ml and ai
  publication-title: Annual Reviews in Control
– reference: Inc., G. (2019). Tensorflow.
– reference: Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. ArXiv e-prints.
– start-page: 1
  year: 2012
  end-page: 9
  ident: bib0103
  article-title: Innovative fault detection, isolation and recovery strategies on-board spacecraft: State of the art and research challenges
  publication-title: Proceedings of the deutscher luftund raumfahrtkongress (2012)
– start-page: 1
  year: 2000
  end-page: 7
  ident: bib0049
  article-title: The history and continuing quest to reduce the costs of spacecraft ground stations and operations
  publication-title: Reducing the cost of spacecraft ground systems and operations
– volume: 42
  start-page: 63
  year: 2016
  end-page: 81
  ident: bib0099
  article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges
  publication-title: Annual Reviews in Control
– year: 2006
  ident: bib0015
  article-title: Pattern recognition and machine learning (information science and statistics)
– volume: 55
  start-page: 1816
  year: 2018
  end-page: 1827
  ident: bib0053
  article-title: Machine learning methods for spacecraft telemetry mining
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– start-page: 1
  year: 2018
  end-page: 14
  ident: bib0080
  article-title: Assurance of model-based fault diagnosis
  publication-title: 2018 IEEE aerospace conference
– reference: Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv e-prints.
– start-page: 387
  year: 2018
  end-page: 395
  ident: bib0051
  article-title: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding
  publication-title: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining
– reference: Segù, M., Loquercio, A., & Scaramuzza, D. (2019). A general framework for uncertainty estimation in deep learning. ArXiv e-prints.
– year: 2018
  ident: bib0102
  article-title: Testing in the digital age - AI makes the difference
– year: 1999
  ident: bib0061
  article-title: Development of the PROBA attitude control and navigation software
  publication-title: Proceedings of the 4th ESA international conference on spacecraft guidance
– volume: 24
  start-page: 823
  year: 2012
  end-page: 839
  ident: bib0021
  article-title: Anomaly detection for discrete sequences: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2014
  ident: bib0012
  article-title: Root cause analysis: A step-by-step guide to using the right tool at the right time
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: bib0111
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mechanical Systems and Signal Processing
– volume: 18
  start-page: 1093
  year: 2010
  end-page: 1109
  ident: bib0085
  article-title: Robust FDI applied to thruster faults of a satellite system
  publication-title: Control Engineering Practice
– volume: 21
  start-page: 38
  year: 2008
  end-page: 51
  ident: bib0062
  article-title: An expert system using an extended AND–OR graph
  publication-title: Knowledge-Based Systems
– start-page: 439
  year: 2011
  end-page: 466
  ident: bib0034
  article-title: Telemetry, command, data handling and processing
  publication-title: Spacecraft systems engineering
– reference: .
– year: 1999
  ident: bib0107
  article-title: Space mission analysis and design, 3rd ed.
– year: 2012
  ident: bib0004
– volume: 62
  start-page: 973
  year: 2017
  end-page: 980
  ident: bib0008
  article-title: State and parameter estimation: A nonlinear Luenberger observer approach
  publication-title: IEEE Transactions on Automatic Control
– volume: 85
  start-page: 2171
  issue: 9
  year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0083
  article-title: A systematic literature review of stakeholder identification methods in requirements elicitation
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2012.04.075
– year: 1998
  ident: 10.1016/j.arcontrol.2020.04.012_bib0097
  article-title: Representing spacecraft mission planning knowledge in ASPEN
– volume: 55
  start-page: 126
  issue: 9
  year: 2017
  ident: 10.1016/j.arcontrol.2020.04.012_bib0043
  article-title: Root cause analysis of network failures using machine learning and summarization techniques
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2017.1700066
– volume: 15
  start-page: 239
  issue: 5
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0017
  article-title: Telemetry fault-detection algorithms: Applications for spacecraft monitoring and space environment sensing
  publication-title: Journal of Aerospace Information Systems
  doi: 10.2514/1.I010587
– year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0028
– ident: 10.1016/j.arcontrol.2020.04.012_bib0077
– ident: 10.1016/j.arcontrol.2020.04.012_bib0058
  doi: 10.1007/s10462-020-09825-6
– volume: 14
  start-page: 41
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0112
  article-title: On flight operational issues management: Past, present and future
  publication-title: Annual reviews in control
  doi: 10.1016/j.arcontrol.2018.03.001
– ident: 10.1016/j.arcontrol.2020.04.012_bib0092
– ident: 10.1016/j.arcontrol.2020.04.012_bib0054
– start-page: 1
  year: 2000
  ident: 10.1016/j.arcontrol.2020.04.012_bib0049
  article-title: The history and continuing quest to reduce the costs of spacecraft ground stations and operations
– volume: 13
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0067
  article-title: Statistical and machine learning forecasting methods: Concerns and ways forward
  publication-title: PloS One
  doi: 10.1371/journal.pone.0194889
– volume: 45
  start-page: 983
  issue: 3
  year: 2009
  ident: 10.1016/j.arcontrol.2020.04.012_bib0013
  article-title: A diagnostic tree approach for fault cause identification in the attitude control subsystem of satellites
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2009.5259178
– volume: 57
  start-page: 114
  issue: 6
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0050
  article-title: Deep learning with long short-term memory for time series prediction
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2019.1800155
– start-page: 1803
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0106
  article-title: A survey on named entity recognition
– year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0004
– volume: 24
  start-page: 823
  issue: 5
  year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0021
  article-title: Anomaly detection for discrete sequences: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.235
– year: 2004
  ident: 10.1016/j.arcontrol.2020.04.012_bib0039
– start-page: 3456
  year: 2014
  ident: 10.1016/j.arcontrol.2020.04.012_bib0009
  article-title: Derivation of diagnostic models based on formalized process knowledge
– volume: 8
  start-page: 2306
  issue: 5
  year: 2015
  ident: 10.1016/j.arcontrol.2020.04.012_bib0065
  article-title: Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2015.2438893
– start-page: 47
  year: 2015
  ident: 10.1016/j.arcontrol.2020.04.012_bib0018
  article-title: The openorbiter cubesat as a system-of-systems (SoS) and how sos engineering (SoSE) aids cubesat design
– volume: 486
  start-page: 31
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0025
  article-title: Detecting unfair recommendations in trust-based pervasive environments
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.02.015
– volume: 99
  start-page: 215
  year: 2014
  ident: 10.1016/j.arcontrol.2020.04.012_bib0089
  article-title: A review of novelty detection
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2013.12.026
– year: 2017
  ident: 10.1016/j.arcontrol.2020.04.012_bib0101
– year: 2005
  ident: 10.1016/j.arcontrol.2020.04.012_bib0105
– year: 2010
  ident: 10.1016/j.arcontrol.2020.04.012_bib0024
  article-title: PROBA-V a multispectral Earth observation mission based on small satellite technology spacecraft family - small mission solutions for emerging applications
– volume: 107
  start-page: 241
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0059
  article-title: A review on the application of deep learning in system health management
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.11.024
– volume: 34
  start-page: 46
  issue: 7
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0088
  article-title: Machine learning for predicting thermal power consumption of the Mars express spacecraft
  publication-title: IEEE Aerospace and Electronic Systems Magazine
  doi: 10.1109/MAES.2019.2915456
– year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0082
  article-title: Applications of deep learning neural networks to satellite telemetry monitoring
– volume: 114
  start-page: 79
  year: 2015
  ident: 10.1016/j.arcontrol.2020.04.012_bib0011
  article-title: Methodology for requirements definition of complex space missions and systems
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2015.04.018
– volume: 9
  year: 1997
  ident: 10.1016/j.arcontrol.2020.04.012_sbref0043
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0056
  article-title: Predicting the Computational Cost of Deep Learning Models
– volume: 12
  start-page: 3893
  issue: 4
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0075
  article-title: A survey on model-based mission planning and execution for autonomous spacecraft
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2017.2720682
– year: 2010
  ident: 10.1016/j.arcontrol.2020.04.012_bib0003
– year: 2013
  ident: 10.1016/j.arcontrol.2020.04.012_bib0066
– year: 2009
  ident: 10.1016/j.arcontrol.2020.04.012_bib0002
– year: 2008
  ident: 10.1016/j.arcontrol.2020.04.012_bib0014
  article-title: PROBA spacecraft family - small mission solutions for emerging applications
– ident: 10.1016/j.arcontrol.2020.04.012_bib0090
– ident: 10.1016/j.arcontrol.2020.04.012_bib0079
– ident: 10.1016/j.arcontrol.2020.04.012_bib0019
  doi: 10.1145/3394486.3406704
– volume: 34
  start-page: 2207
  issue: 5
  year: 2004
  ident: 10.1016/j.arcontrol.2020.04.012_bib0038
  article-title: Combining FDI and AI approaches within causal-model-based diagnosis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2004.833335
– start-page: 1
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0068
  article-title: Using model based systems engineering structures for onboard spacecraft electronics
– volume: 18
  start-page: 1093
  issue: 9
  year: 2010
  ident: 10.1016/j.arcontrol.2020.04.012_bib0085
  article-title: Robust FDI applied to thruster faults of a satellite system
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2009.04.011
– year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0007
  article-title: Practical aspects of anomaly detection algorithms in satellite operations
– start-page: 235
  year: 2007
  ident: 10.1016/j.arcontrol.2020.04.012_bib0042
  article-title: Artificial intelligence for space applications
– year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0073
  article-title: Techniques of artificial intelligence for space applications - A survey
– year: 2010
  ident: 10.1016/j.arcontrol.2020.04.012_bib0044
– year: 2014
  ident: 10.1016/j.arcontrol.2020.04.012_bib0012
– year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0057
– start-page: 282
  year: 2015
  ident: 10.1016/j.arcontrol.2020.04.012_bib0093
  article-title: Planning-based reasoning for automated large-scale data analysis
– year: 2017
  ident: 10.1016/j.arcontrol.2020.04.012_bib0031
  article-title: Spacecraft power system fault diagnosis based on DNN
– start-page: 20
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0108
  article-title: Research on Knowledge Mining Algorithm of Spacecraft Fault Diagnosis System
– ident: 10.1016/j.arcontrol.2020.04.012_bib0076
– volume: 440
  start-page: 99
  year: 1999
  ident: 10.1016/j.arcontrol.2020.04.012_bib0091
  article-title: Iterative repair planning for spacecraft operations using the ASPEN system
– volume: 504
  start-page: 501
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0027
  article-title: A data-driven approximate dynamic programming approach based on association rule learning: Spacecraft autonomy as a case study
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.07.067
– volume: 93
  start-page: 52
  year: 2017
  ident: 10.1016/j.arcontrol.2020.04.012_bib0033
  article-title: Neural networks to increase the autonomy of interplanetary nanosatellite missions
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2017.04.005
– volume: 122
  start-page: 473
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0113
  article-title: Cross-model verification of the electrical power subsystem in space projects
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.01.014
– start-page: 1
  year: 2011
  ident: 10.1016/j.arcontrol.2020.04.012_bib0047
  article-title: Diagnosis as planning: Two case studies
– year: 2002
  ident: 10.1016/j.arcontrol.2020.04.012_bib0040
– year: 2006
  ident: 10.1016/j.arcontrol.2020.04.012_bib0015
– start-page: 703
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0063
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
– volume: 21
  start-page: 2224
  issue: 3
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0109
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Communications Surveys Tutorials
  doi: 10.1109/COMST.2019.2904897
– volume: 14
  start-page: 307
  issue: 6
  year: 2017
  ident: 10.1016/j.arcontrol.2020.04.012_bib0023
  article-title: Onboard autonomy on the intelligent payload experiment cubesat mission
  publication-title: Journal of Aerospace Information Systems
  doi: 10.2514/1.I010386
– volume: 21
  start-page: 38
  issue: 1
  year: 2008
  ident: 10.1016/j.arcontrol.2020.04.012_bib0062
  article-title: An expert system using an extended AND–OR graph
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2006.10.008
– year: 1999
  ident: 10.1016/j.arcontrol.2020.04.012_bib0061
  article-title: Development of the PROBA attitude control and navigation software
– volume: 12
  start-page: 235
  issue: 2
  year: 2015
  ident: 10.1016/j.arcontrol.2020.04.012_bib0100
  article-title: Survey on fault detection, isolation, and recovery strategies in the space domain
  publication-title: Journal of Aerospace Information Systems
  doi: 10.2514/1.I010307
– year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0102
– volume: 35
  start-page: 2548
  issue: 7
  year: 2014
  ident: 10.1016/j.arcontrol.2020.04.012_bib0036
  article-title: The PROBA-V mission: the space segment
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2014.883098
– start-page: 70
  year: 2017
  ident: 10.1016/j.arcontrol.2020.04.012_bib0032
  article-title: Telemetry anomaly detection system using machine learning to streamline mission operations
– volume: 16
  start-page: 1412
  issue: 3
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0064
  article-title: Identifying unseen faults for smart buildings by incorporating expert knowledge with data
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2018.2876611
– start-page: 1
  year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0103
  article-title: Innovative fault detection, isolation and recovery strategies on-board spacecraft: State of the art and research challenges
– start-page: 60
  year: 2011
  ident: 10.1016/j.arcontrol.2020.04.012_bib0045
  article-title: Exhaustive diagnosis of discrete event systems through exploration of the hypothesis space
– year: 1999
  ident: 10.1016/j.arcontrol.2020.04.012_bib0107
– volume: 35
  start-page: 37
  issue: 4
  year: 2014
  ident: 10.1016/j.arcontrol.2020.04.012_bib0069
  article-title: Enhanced telemetry monitoring with novelty detection
  publication-title: AI Magazine
  doi: 10.1609/aimag.v35i4.2553
– start-page: 97
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0104
  article-title: Financial markets prediction with deep learning
– volume: 226
  start-page: 1329
  issue: 10
  year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0072
  article-title: Model-based fault diagnosis for aerospace systems: A survey
  publication-title: Journal of Aerospace Engineering
– volume: 98
  start-page: 1034
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0035
  article-title: Model predictive and reallocation problem for cubesat fault recovery and attitude control
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.05.039
– volume: 30
  start-page: 223
  issue: 2
  year: 2006
  ident: 10.1016/j.arcontrol.2020.04.012_bib0074
  article-title: From case-based reasoning to traces-based reasoning
  publication-title: Annual reviews in control
  doi: 10.1016/j.arcontrol.2006.09.003
– volume: 18
  start-page: 636
  issue: 3
  year: 2010
  ident: 10.1016/j.arcontrol.2020.04.012_bib0052
  article-title: A survey of fault detection, isolation, and reconfiguration methods
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2009.2026285
– start-page: 439
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0046
  article-title: The added value of advanced feature engineering and selection for machine learning models in spacecraft behavior prediction
– volume: 35
  start-page: 309
  issue: 2
  year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0041
  article-title: Ontology-based system for supporting manufacturing sustainability
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2012.09.012
– ident: 10.1016/j.arcontrol.2020.04.012_bib0084
– start-page: 1
  year: 2015
  ident: 10.1016/j.arcontrol.2020.04.012_bib0020
  article-title: Machine learning techniques for cognitive decision making
– start-page: 1
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0080
  article-title: Assurance of model-based fault diagnosis
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0111
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 56
  start-page: 153
  issue: 1–2
  year: 2005
  ident: 10.1016/j.arcontrol.2020.04.012_bib0055
  article-title: The PROBA satellite star tracker performance
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2004.09.011
– ident: 10.1016/j.arcontrol.2020.04.012_bib0029
– volume: 8
  start-page: 399
  issue: 5
  year: 2016
  ident: 10.1016/j.arcontrol.2020.04.012_bib0087
  article-title: A new method for Earth observation data analytics based on symbolic machine learning
  publication-title: Remote Sensing
  doi: 10.3390/rs8050399
– start-page: 81
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0098
  article-title: Comparison of various machine learning techniques and its uses in different fields
– ident: 10.1016/j.arcontrol.2020.04.012_bib0094
– year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0071
  article-title: DrMUST - a data mining approach for anomaly investigation
– volume: 22
  start-page: 2421
  issue: 7
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0026
  article-title: Toward a soft computing-based correlation between oxygen toxicity seizures and hyperoxic hyperpnea
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2512-z
– ident: 10.1016/j.arcontrol.2020.04.012_bib0010
– volume: 45
  start-page: 1
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0060
  article-title: Advancing systems and control research in the era of ml and ai
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2018.04.001
– volume: 42
  start-page: 63
  year: 2016
  ident: 10.1016/j.arcontrol.2020.04.012_bib0099
  article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2016.09.008
– start-page: 1
  year: 2008
  ident: 10.1016/j.arcontrol.2020.04.012_bib0086
  article-title: Predicting venus express thermal power consumption
– volume: 22
  start-page: 99
  issue: 1
  year: 2012
  ident: 10.1016/j.arcontrol.2020.04.012_bib0081
  article-title: FDI(R) for satellites: How to deal with high availability and robustness in the space domain?
  publication-title: International Journal of Applied Mathematics and Computer Science
  doi: 10.2478/v10006-012-0007-8
– year: 2008
  ident: 10.1016/j.arcontrol.2020.04.012_bib0001
– ident: 10.1016/j.arcontrol.2020.04.012_bib0016
– ident: 10.1016/j.arcontrol.2020.04.012_bib0030
– start-page: 439
  year: 2011
  ident: 10.1016/j.arcontrol.2020.04.012_bib0034
  article-title: Telemetry, command, data handling and processing
– year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0070
  article-title: Novelty detection with deep learning
– start-page: 1
  year: 2014
  ident: 10.1016/j.arcontrol.2020.04.012_bib0022
  article-title: Agile science: Using onboard autonomy for primitive bodies and deep space exploration
– volume: 62
  start-page: 3768
  issue: 6
  year: 2015
  ident: 10.1016/j.arcontrol.2020.04.012_bib0037
  article-title: A survey of fault diagnosis and fault-tolerant techniques–part II: Fault diagnosis with knowledge-based and hybrid/active approaches
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2015.2417501
– year: 2013
  ident: 10.1016/j.arcontrol.2020.04.012_bib0005
– volume: 13
  start-page: 1018
  issue: 1
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0078
  article-title: Model checking techniques applied to satellite operational mode management
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2018.2793665
– volume: 55
  start-page: 1816
  issue: 4
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0053
  article-title: Machine learning methods for spacecraft telemetry mining
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2018.2876586
– volume: 55
  start-page: 1414
  issue: 6
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0095
  article-title: Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous
  publication-title: Journal of Spacecraft and Rockets
  doi: 10.2514/1.A34124
– start-page: 387
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0051
  article-title: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding
– volume: 62
  start-page: 973
  issue: 2
  year: 2017
  ident: 10.1016/j.arcontrol.2020.04.012_bib0008
  article-title: State and parameter estimation: A nonlinear Luenberger observer approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2566804
– volume: 62
  start-page: 2620
  issue: 9
  year: 2018
  ident: 10.1016/j.arcontrol.2020.04.012_bib0110
  article-title: Multi-spacecraft attitude cooperative control using model-based event-triggered methodology
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2018.07.019
– year: 2016
  ident: 10.1016/j.arcontrol.2020.04.012_bib0006
– volume: 7
  start-page: 53040
  year: 2019
  ident: 10.1016/j.arcontrol.2020.04.012_bib0096
  article-title: Review of deep learning algorithms and architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
SSID ssj0002215
Score 2.397867
SecondaryResourceType review_article
Snippet This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 197
SubjectTerms Artificial intelligence
Discipline models
Model-based diagnostics
Spacecraft flight data
Spacecraft operations
Title On applying AI-driven flight data analysis for operational spacecraft model-based diagnostics
URI https://dx.doi.org/10.1016/j.arcontrol.2020.04.012
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1367-5788
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002215
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1367-5788
  databaseCode: ACRLP
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002215
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1367-5788
  databaseCode: AIKHN
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002215
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 1367-5788
  databaseCode: .~1
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002215
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1367-5788
  databaseCode: AKRWK
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002215
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz34FtfHkoPXuG2apI23RZRdRT2osBcp0zxAkd1lWa_-djNtuq4gePDYkoEwncw3Sb98Q8hZkUqQhTaM69SGDYpyrLAcmPBKV1I7BbVOwd29GjyLm5EcrZDL9i4M0ipj7m9yep2t45te9GZv-vrae0SxsRBvAcIyRCpU_BQixy4G55_fNA_O6y4GOJjh6B8crxBLDSE8bBR5Umuepvx3hFpCnettshnLRdpvZrRDVtx4l2y1rRhoXJm7ZGNJV3CPvDyMKf6ZxitMtD9kdoY5jfp33IlTJIVSiGIkNBStdDJ1s3goSEOGMaGUBD-ndZcchjhnqW0oeSjqvE-er6-eLgcs9lFgJkvlnFVpJYFbWWVa8MqBNhVIBYUTeS49qIQbK4U32haQWG-sS70WGUChIAlLPjsgq-PJ2B0S6kKBlgConIfSw3gPVeEV90UwzHKneYeo1neliSLj2OvivWzZZG_lwuklOr1MRBmc3iHJwnDa6Gz8bXLRfpzyR8iUAQ3-Mj76j_ExWcen5iTmhKzOZx_uNNQm86pbB1-XrPWHt4P7L3525xs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5WPagH3-LbHLzGbdMmbbyJKLu66kEFLxKmeYAi67KsV3-7SZvqCoIHr20HynQy80365RuAozLlyEupKZOp8Q2KsLQ0DGnuhKy4tAJrnYLrG9F7yC8f-WMHztqzMIFWGXN_k9PrbB2vdKM3u6Pn5-5dEBvz8eZLWBYqVTYDczlnRejAjj--eR6M1WMMwtM0PP6D5OWDqWGE-06RJbXoacp-L1FTZediBZYiXiSnzSutQscO12C5ncVA4tJcg8UpYcF1eLodkvBrOpxhIqd9asYhqRH3GlpxElihBKMaCfGolbyN7DjuChKfYrTHkugmpB6TQ0OhM8Q0nLyg6rwBDxfn92c9GgcpUJ2lfEKrtOLIDK8ymbPKotQVcoGlzYuCOxQJ04bnTktTYmKcNjZ1Ms8QS4GJX_PZJswO34Z2C4j1CC1BFAXz2EM7h1XpBHOlN8wKK9k2iNZ3SkeV8TDs4lW1dLIX9eV0FZyuklx5p29D8mU4aoQ2_jY5aT-O-hEzypeDv4x3_mN8CPO9--uBGvRvrnZhIdxptmX2YHYyfrf7HqhMqoM6ED8B5rXosA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+applying+AI-driven+flight+data+analysis+for+operational+spacecraft+model-based+diagnostics&rft.jtitle=Annual+reviews+in+control&rft.au=Tipaldi%2C+Massimo&rft.au=Feruglio%2C+Lorenzo&rft.au=Denis%2C+Pierre&rft.au=D%E2%80%99Angelo%2C+Gianni&rft.date=2020&rft.issn=1367-5788&rft.volume=49&rft.spage=197&rft.epage=211&rft_id=info:doi/10.1016%2Fj.arcontrol.2020.04.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_arcontrol_2020_04_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-5788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-5788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-5788&client=summon