On applying AI-driven flight data analysis for operational spacecraft model-based diagnostics
This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment currently used operational S/C health monitoring and diagnostics systems. It captures the growing general interest in the usage of such techni...
Saved in:
| Published in | Annual reviews in control Vol. 49; pp. 197 - 211 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-5788 |
| DOI | 10.1016/j.arcontrol.2020.04.012 |
Cover
| Abstract | This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment currently used operational S/C health monitoring and diagnostics systems. It captures the growing general interest in the usage of such techniques in the Space engineering domain and applications.
Jointly with the AI approach, the operational usage of S/C simulation models (referred to as “discipline models”) is also explored. During S/C development and testing activities, significant efforts are made by the discipline experts to build such models. However, using discipline-specific knowledge to support complex S/C operational activities (e.g., anomaly root cause analysis) remains a challenging task.
Based on the current needs of Space Agencies and Industry and by exploiting the advances in AI-based solutions and technologies, this paper proposes an operational S/C model-based diagnostics framework, which can serve as basis for future developments. Such framework combines AI-based techniques, S/C flight data information, and discipline models. Three main needs are addressed: S/C anomaly root cause analysis, S/C prediction behavior, and discipline model refinement. Concrete operational case studies from the Project for On-Board Autonomy (PROBA) satellite family are presented to show the applicability of the proposed framework. |
|---|---|
| AbstractList | This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment currently used operational S/C health monitoring and diagnostics systems. It captures the growing general interest in the usage of such techniques in the Space engineering domain and applications.
Jointly with the AI approach, the operational usage of S/C simulation models (referred to as “discipline models”) is also explored. During S/C development and testing activities, significant efforts are made by the discipline experts to build such models. However, using discipline-specific knowledge to support complex S/C operational activities (e.g., anomaly root cause analysis) remains a challenging task.
Based on the current needs of Space Agencies and Industry and by exploiting the advances in AI-based solutions and technologies, this paper proposes an operational S/C model-based diagnostics framework, which can serve as basis for future developments. Such framework combines AI-based techniques, S/C flight data information, and discipline models. Three main needs are addressed: S/C anomaly root cause analysis, S/C prediction behavior, and discipline model refinement. Concrete operational case studies from the Project for On-Board Autonomy (PROBA) satellite family are presented to show the applicability of the proposed framework. |
| Author | Denis, Pierre Tipaldi, Massimo D’Angelo, Gianni Feruglio, Lorenzo |
| Author_xml | – sequence: 1 givenname: Massimo surname: Tipaldi fullname: Tipaldi, Massimo email: mtipaldi@unisannio.it, massimo.tipaldi@intelligentia.it organization: University of Sannio, Department of Engineering, P.zza Roma, 82100 Benevento, Italy – sequence: 2 givenname: Lorenzo surname: Feruglio fullname: Feruglio, Lorenzo email: papers@aikospace.com organization: Aiko S.r.l., Corso Castelfidardo 30/A, 10129 Torino, Italy – sequence: 3 givenname: Pierre surname: Denis fullname: Denis, Pierre email: pierre.denis@spacebel.be organization: Spacebel s.a., Ildefonse Vandammestraat 7, 1560 Hoeilaart, Belgium – sequence: 4 givenname: Gianni surname: D’Angelo fullname: D’Angelo, Gianni email: giadangelo@unisa.it organization: University of Salerno, Department of Computer Science, Fisciano, Salerno, (Italy) |
| BookMark | eNqNkM1KAzEUhbOoYFt9BvMCMyaZ3y5clOJPodCNLiXcSW5qyjQZklDo2zu14sKNri4c-A7nfjMycd4hIXec5Zzx-n6fQ1DepeD7XDDBclbmjIsJmfKibrKqadtrMotxzxgTgldT8r51FIahP1m3o8t1poM9oqOmt7uPRDUkoOCgP0UbqfGB-gEDJOvHjMYBFKoAJtGD19hnHUTUVFvYOR-TVfGGXBnoI95-3zl5e3p8Xb1km-3zerXcZKrgVco63lUgdNUVi1J0CAvVQVVDi2XTVAZqJpSuSqMWugWmjdLIzaIsANoaGG-LYk4eLr0q-BgDGqls-pqZAthecibPfuRe_viRZz-SlXL0M_LNL34I9gDh9A9yeSFxfO9oMcioLDqF2gZUSWpv_-z4BNHAjOs |
| CitedBy_id | crossref_primary_10_1016_j_est_2022_106348 crossref_primary_10_1016_j_arcontrol_2022_07_004 crossref_primary_10_3390_inventions9060113 crossref_primary_10_1109_TAI_2022_3162189 crossref_primary_10_3390_app12052545 crossref_primary_10_1016_j_jii_2024_100721 crossref_primary_10_1017_aer_2025_2 crossref_primary_10_3233_JHS_200639 crossref_primary_10_1016_j_asr_2020_12_031 crossref_primary_10_1145_3564240 crossref_primary_10_2514_1_I010881 crossref_primary_10_1134_S0005117921080014 crossref_primary_10_2514_1_I011232 |
| Cites_doi | 10.1016/j.jss.2012.04.075 10.1109/MCOM.2017.1700066 10.2514/1.I010587 10.1007/s10462-020-09825-6 10.1016/j.arcontrol.2018.03.001 10.1371/journal.pone.0194889 10.1109/TAES.2009.5259178 10.1109/MCOM.2019.1800155 10.1109/TKDE.2010.235 10.1109/JSTARS.2015.2438893 10.1016/j.ins.2019.02.015 10.1016/j.sigpro.2013.12.026 10.1016/j.ymssp.2017.11.024 10.1109/MAES.2019.2915456 10.1016/j.actaastro.2015.04.018 10.1162/neco.1997.9.8.1735 10.1109/JSYST.2017.2720682 10.1145/3394486.3406704 10.1109/TSMCB.2004.833335 10.1016/j.conengprac.2009.04.011 10.1016/j.ins.2019.07.067 10.1016/j.robot.2017.04.005 10.1016/j.measurement.2018.01.014 10.1109/COMST.2019.2904897 10.2514/1.I010386 10.1016/j.knosys.2006.10.008 10.2514/1.I010307 10.1080/01431161.2014.883098 10.1109/TASE.2018.2876611 10.1609/aimag.v35i4.2553 10.1016/j.ymssp.2017.05.039 10.1016/j.arcontrol.2006.09.003 10.1109/TCST.2009.2026285 10.1016/j.arcontrol.2012.09.012 10.1016/j.ymssp.2018.05.050 10.1016/j.actaastro.2004.09.011 10.3390/rs8050399 10.1007/s00500-017-2512-z 10.1016/j.arcontrol.2018.04.001 10.1016/j.arcontrol.2016.09.008 10.2478/v10006-012-0007-8 10.1109/TIE.2015.2417501 10.1109/JSYST.2018.2793665 10.1109/TAES.2018.2876586 10.2514/1.A34124 10.1109/TAC.2016.2566804 10.1016/j.asr.2018.07.019 10.1109/ACCESS.2019.2912200 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.arcontrol.2020.04.012 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EndPage | 211 |
| ExternalDocumentID | 10_1016_j_arcontrol_2020_04_012 S1367578820300213 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H UHS XPP ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c315t-b1b5a2d5b3942bea9cba56a8e4775fa602cd54fc9d8a0dfcde1f943aa86a01833 |
| IEDL.DBID | .~1 |
| ISSN | 1367-5788 |
| IngestDate | Thu Apr 24 22:58:46 EDT 2025 Wed Oct 29 21:13:10 EDT 2025 Fri Feb 23 02:48:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Discipline models Spacecraft flight data Artificial intelligence Spacecraft operations Model-based diagnostics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c315t-b1b5a2d5b3942bea9cba56a8e4775fa602cd54fc9d8a0dfcde1f943aa86a01833 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_arcontrol_2020_04_012 crossref_primary_10_1016_j_arcontrol_2020_04_012 elsevier_sciencedirect_doi_10_1016_j_arcontrol_2020_04_012 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Annual reviews in control |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | ECSS-E-ST-40C: Space engineering - Software (bib0002) 2009 Segù, M., Loquercio, A., & Scaramuzza, D. (2019). A general framework for uncertainty estimation in deep learning. ArXiv e-prints. MXNet (2019b). Open source machine learning commons for Earth observations. Wang, Sun, Liu, Cao, Wang (bib0104) 2018 ESATAN-TMS Thermal user manual (bib0005) 2013 Holdaway (bib0049) 2000 ECSS-E-ST-70-41C: Space engineering - Telemetry and telecommand packet utilization (bib0006) 2016 Marzat, Piet-Lahanier, Damongeot, Walter (bib0072) 2012; 226 Tidriri, Chatti, Verron, Tiplica (bib0099) 2016; 42 Fernández, Yue, Weber (bib0032) 2017 Pimentel, Clifton, Clifton, Tarassenko (bib0089) 2014; 99 Mess, Dannemann, Greif (bib0073) 2019 Penedones, Sousa, Donati, J. (bib0086) 2008 Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv e-prints. D’Angelo, Palmieri, Rampone (bib0025) 2019; 486 Pesaresi, Syrris, Julea (bib0087) 2016; 8 Rabideau, Knight, Chien, Fukunaga, Govindjee (bib0091) 1999; 440 Ghallab, Nau, Traverso (bib0039) 2004 Barua, Sinha, Khorasani (bib0013) 2009; 45 Srivastava, Saini, Gupta (bib0098) 2019 ESA-Earth-Online (2017). Antarctica acquisitions by proba-v. . Chandola, Banerjee, Kumar (bib0021) 2012; 24 Claessens, Vrancken, Mellab, Santandrea (bib0024) 2010 O’Meara, Schlag, Wickler (bib0082) 2018 Gilmore (bib0040) 2002 Fang, Shi, Dong, Fan, Ren (bib0031) 2017 Chien, Bue, Castillo-Rogez, Gharibian, Knight, Schaffer (bib0022) 2014 Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. ArXiv e-prints. Chaieb, Wegerson, Kading, Straub, Marsh, Whalen (bib0018) 2015 van de Ven, Marselis, Shaukat (bib0102) 2018 Hochreiter, Schmidhuber (bib0048) 1997; 9 Wang (bib0105) 2005 ECSS-S-ST-00-01C: Glossary of terms (bib0004) 2012 Yin (bib0108) 2019 Sharma, Ventura, D’Amico (bib0095) 2018; 55 A.Viscio, N.Viola, Fusaro, Basso (bib0011) 2015; 114 Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. ArXiv e-prints. ECSS-E-ST-70-11C: Space engineering - Space segment operability (bib0001) 2008 Giovannini, Aubry, Panetto, Dassisti, Haouzi (bib0041) 2012; 35 Nikora, Srivastava, Fesq, Chung, Kolcio (bib0080) 2018 M.Tipaldi, Glielmo (bib0075) 2018; 12 Ibrahim, Ahmed, Zeidan, Ziedan (bib0053) 2018; 55 Girimonte, Izzo (bib0042) 2007 Grastien, Haslum, Thiebaux (bib0045) 2011 de Lafontaine, Buijs, Vuilleumier, Mellab, den Braembussche (bib0061) 1999 Fillery, Stanton (bib0034) 2011 Wertz, Larson (bib0107) 1999 Jorgensen, Denver, Betto, den Braembussche (bib0055) 2005; 56 NAVISP Programmes (2018). Artificial intelligence / machine learning sensor fusion for autonomous vessel navigation. Gao, Cecati, Ding (bib0037) 2015; 62 Proba2-Science-Center (2012). LYRA temperature evolution. Gonzalez, Jimenez, Lopez, G. (bib0043) 2017; 55 Eickhoff (bib0028) 2012 Barsalou (bib0012) 2014 Zolghadri (bib0112) 2018; 14 Justus, Brennan, Bonner, McGough (bib0056) 2018 D’Angelo, Pilla, Dean, Rampone (bib0026) 2018; 22 Zoppi, M.Tipaldi, A. Di Cerbo (bib0113) 2018; 122 Chien, Doubleday, Thompson, Wagstaff, Bellardo, Francis, Piug-Suari (bib0023) 2017; 14 Mille (bib0074) 2006; 30 Khargonekar, Dahleh (bib0060) 2018; 45 Gentil, Montmain, Combastel (bib0038) 2004; 34 Afri, Andrieu, Bako, Dufour (bib0008) 2017; 62 D’Angelo, Tipaldi, Palmieri, Glielmo (bib0027) 2019; 504 Feruglio, Corpino (bib0033) 2017; 93 Francois, Santandrea, Mellab, Vrancken, Versluys (bib0036) 2014; 35 MXNet (2019a). Mxnet - a scalable deep learning framework. Bermyn (bib0014) 2008 Franchi, Feruglio, Mozzillo, Corpino (bib0035) 2018; 98 Riabov, Sohrabi, Sow, Turaga, Udrea, Vu (bib0093) 2015 Smith, Sherwood, Govindjee, Yan, Rabideau, Chien (bib0097) 1998 Hundman, Constantinou, Laporte, Colwell, Soderstrom (bib0051) 2018 Kashyap (bib0057) 2018 Nardone, Santone, Tipaldi, Liuzza, Gliemo (bib0078) 2019; 13 Marshall, Ferguson, Assadzadeh (bib0068) 2018 Goodloe, Pike (bib0044) 2010 Makridakis, Spiliotis, Assimakopoulos (bib0067) 2018; 13 Martínez-Heras, Donati, Sousa, Fischer (bib0071) 2012 Zhang, Patras, Haddadi (bib0109) 2019; 21 Shrestha, Mahmood (bib0096) 2019; 7 Adamski, Spencer-Jones, Kbidy (bib0007) 2018 Van Wesel, Goodloe (bib0101) 2017 Lee, Cho, Kim (bib0062) 2008; 21 Haslum, Grastien (bib0047) 2011 Chandiok, Chaturvedi (bib0020) 2015 Martínez-Heras, Donati (bib0070) 2018 Gu, Gowda, Jayanna, Boumghar, Lucas, Bernardi, Dengel (bib0046) 2019 Khan, Yairi (bib0059) 2018; 107 Olive (bib0081) 2012; 22 Zhang, Wang, Sun, Zhang, Shao (bib0110) 2018; 62 Martínez-Heras, Donati (bib0069) 2014; 35 Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. ArXiv e-prints. Zhao, Yan, Chen, Mao, Wang, Gao (bib0111) 2019; 115 Bishop (bib0015) 2006 Hwang, Kim, Kim, Seah (bib0052) 2010; 18 Lpez (bib0066) 2013 Caffe (2019). Caffe. Patton, Uppal, Simani, Polle (bib0085) 2010; 18 Pacheco, Garcia (bib0083) 2012; 85 Li, Chen, Jin, Shi, Goh, Ng (bib0063) 2019 Tipaldi, Bruenjes (bib0100) 2015; 12 Arroyo, Schulze, Christiansen, Faya, Thornhill (bib0009) 2014 European Space Agency (2019). GSTP element 1 develop compendia 2019. Wander, Forstner (bib0103) 2012 Wen, Fan, Chen, Chen, Chen (bib0106) 2019 Petković, Boumghar, Breskvar, Džeroski, Kocev, Levatić (bib0088) 2019; 34 Inc., G. (2019). Tensorflow. Li, Zhou, Hu, Spanos (bib0064) 2019; 16 Hua, Zhao, Li, Chen, Liu, Zhang (bib0050) 2019; 57 Liu, Feld, Xue, Garcke, Soddemann (bib0065) 2015; 8 ARTES Programmes (2018). Machine learning and artificial intelligence for satellite communications. Carlton, Morgan, Lohmeyer, Caho (bib0017) 2018; 15 ECSS-E-TM-10-21A: Space engineering - System modeling and simulation (bib0003) 2010 Mille (10.1016/j.arcontrol.2020.04.012_bib0074) 2006; 30 Bishop (10.1016/j.arcontrol.2020.04.012_bib0015) 2006 Wang (10.1016/j.arcontrol.2020.04.012_bib0104) 2018 Liu (10.1016/j.arcontrol.2020.04.012_bib0065) 2015; 8 Grastien (10.1016/j.arcontrol.2020.04.012_bib0045) 2011 A.Viscio (10.1016/j.arcontrol.2020.04.012_bib0011) 2015; 114 Gu (10.1016/j.arcontrol.2020.04.012_bib0046) 2019 Ibrahim (10.1016/j.arcontrol.2020.04.012_bib0053) 2018; 55 de Lafontaine (10.1016/j.arcontrol.2020.04.012_bib0061) 1999 Zoppi (10.1016/j.arcontrol.2020.04.012_bib0113) 2018; 122 Srivastava (10.1016/j.arcontrol.2020.04.012_bib0098) 2019 Mess (10.1016/j.arcontrol.2020.04.012_bib0073) 2019 10.1016/j.arcontrol.2020.04.012_bib0058 10.1016/j.arcontrol.2020.04.012_bib0054 Khan (10.1016/j.arcontrol.2020.04.012_bib0059) 2018; 107 Bermyn (10.1016/j.arcontrol.2020.04.012_bib0014) 2008 Holdaway (10.1016/j.arcontrol.2020.04.012_bib0049) 2000 Ghallab (10.1016/j.arcontrol.2020.04.012_bib0039) 2004 Lee (10.1016/j.arcontrol.2020.04.012_bib0062) 2008; 21 10.1016/j.arcontrol.2020.04.012_bib0029 Adamski (10.1016/j.arcontrol.2020.04.012_bib0007) 2018 Rabideau (10.1016/j.arcontrol.2020.04.012_bib0091) 1999; 440 Carlton (10.1016/j.arcontrol.2020.04.012_bib0017) 2018; 15 Zhao (10.1016/j.arcontrol.2020.04.012_bib0111) 2019; 115 Zhang (10.1016/j.arcontrol.2020.04.012_bib0110) 2018; 62 Pacheco (10.1016/j.arcontrol.2020.04.012_bib0083) 2012; 85 Feruglio (10.1016/j.arcontrol.2020.04.012_bib0033) 2017; 93 Chien (10.1016/j.arcontrol.2020.04.012_bib0022) 2014 Hua (10.1016/j.arcontrol.2020.04.012_bib0050) 2019; 57 D’Angelo (10.1016/j.arcontrol.2020.04.012_bib0026) 2018; 22 Wander (10.1016/j.arcontrol.2020.04.012_bib0103) 2012 Barsalou (10.1016/j.arcontrol.2020.04.012_bib0012) 2014 Gao (10.1016/j.arcontrol.2020.04.012_bib0037) 2015; 62 Martínez-Heras (10.1016/j.arcontrol.2020.04.012_bib0071) 2012 Pesaresi (10.1016/j.arcontrol.2020.04.012_bib0087) 2016; 8 Fang (10.1016/j.arcontrol.2020.04.012_bib0031) 2017 ECSS-E-ST-70-41C: Space engineering - Telemetry and telecommand packet utilization (10.1016/j.arcontrol.2020.04.012_bib0006) 2016 ECSS-E-ST-70-11C: Space engineering - Space segment operability (10.1016/j.arcontrol.2020.04.012_bib0001) 2008 Makridakis (10.1016/j.arcontrol.2020.04.012_bib0067) 2018; 13 Petković (10.1016/j.arcontrol.2020.04.012_bib0088) 2019; 34 Van Wesel (10.1016/j.arcontrol.2020.04.012_bib0101) 2017 Chandola (10.1016/j.arcontrol.2020.04.012_bib0021) 2012; 24 10.1016/j.arcontrol.2020.04.012_bib0030 Franchi (10.1016/j.arcontrol.2020.04.012_bib0035) 2018; 98 Wen (10.1016/j.arcontrol.2020.04.012_bib0106) 2019 Gilmore (10.1016/j.arcontrol.2020.04.012_bib0040) 2002 Riabov (10.1016/j.arcontrol.2020.04.012_bib0093) 2015 Eickhoff (10.1016/j.arcontrol.2020.04.012_bib0028) 2012 Nardone (10.1016/j.arcontrol.2020.04.012_bib0078) 2019; 13 Yin (10.1016/j.arcontrol.2020.04.012_bib0108) 2019 Kashyap (10.1016/j.arcontrol.2020.04.012_bib0057) 2018 M.Tipaldi (10.1016/j.arcontrol.2020.04.012_bib0075) 2018; 12 Giovannini (10.1016/j.arcontrol.2020.04.012_bib0041) 2012; 35 Khargonekar (10.1016/j.arcontrol.2020.04.012_bib0060) 2018; 45 Girimonte (10.1016/j.arcontrol.2020.04.012_bib0042) 2007 Barua (10.1016/j.arcontrol.2020.04.012_bib0013) 2009; 45 Justus (10.1016/j.arcontrol.2020.04.012_bib0056) 2018 Gentil (10.1016/j.arcontrol.2020.04.012_bib0038) 2004; 34 ESATAN-TMS Thermal user manual (10.1016/j.arcontrol.2020.04.012_bib0005) 2013 Goodloe (10.1016/j.arcontrol.2020.04.012_bib0044) 2010 Hwang (10.1016/j.arcontrol.2020.04.012_bib0052) 2010; 18 Jorgensen (10.1016/j.arcontrol.2020.04.012_bib0055) 2005; 56 Martínez-Heras (10.1016/j.arcontrol.2020.04.012_bib0070) 2018 10.1016/j.arcontrol.2020.04.012_bib0084 D’Angelo (10.1016/j.arcontrol.2020.04.012_bib0025) 2019; 486 Pimentel (10.1016/j.arcontrol.2020.04.012_bib0089) 2014; 99 Martínez-Heras (10.1016/j.arcontrol.2020.04.012_bib0069) 2014; 35 ECSS-S-ST-00-01C: Glossary of terms (10.1016/j.arcontrol.2020.04.012_bib0004) 2012 Smith (10.1016/j.arcontrol.2020.04.012_bib0097) 1998 O’Meara (10.1016/j.arcontrol.2020.04.012_bib0082) 2018 Tidriri (10.1016/j.arcontrol.2020.04.012_bib0099) 2016; 42 Olive (10.1016/j.arcontrol.2020.04.012_bib0081) 2012; 22 Penedones (10.1016/j.arcontrol.2020.04.012_bib0086) 2008 Marshall (10.1016/j.arcontrol.2020.04.012_bib0068) 2018 Patton (10.1016/j.arcontrol.2020.04.012_bib0085) 2010; 18 10.1016/j.arcontrol.2020.04.012_bib0019 10.1016/j.arcontrol.2020.04.012_bib0016 Arroyo (10.1016/j.arcontrol.2020.04.012_bib0009) 2014 Nikora (10.1016/j.arcontrol.2020.04.012_bib0080) 2018 Haslum (10.1016/j.arcontrol.2020.04.012_bib0047) 2011 Li (10.1016/j.arcontrol.2020.04.012_bib0063) 2019 10.1016/j.arcontrol.2020.04.012_bib0010 10.1016/j.arcontrol.2020.04.012_bib0094 10.1016/j.arcontrol.2020.04.012_bib0092 10.1016/j.arcontrol.2020.04.012_bib0090 Zhang (10.1016/j.arcontrol.2020.04.012_bib0109) 2019; 21 D’Angelo (10.1016/j.arcontrol.2020.04.012_bib0027) 2019; 504 Gonzalez (10.1016/j.arcontrol.2020.04.012_bib0043) 2017; 55 Afri (10.1016/j.arcontrol.2020.04.012_bib0008) 2017; 62 Chandiok (10.1016/j.arcontrol.2020.04.012_bib0020) 2015 ECSS-E-ST-40C: Space engineering - Software (10.1016/j.arcontrol.2020.04.012_bib0002) 2009 Hundman (10.1016/j.arcontrol.2020.04.012_bib0051) 2018 Wang (10.1016/j.arcontrol.2020.04.012_bib0105) 2005 Sharma (10.1016/j.arcontrol.2020.04.012_bib0095) 2018; 55 Lpez (10.1016/j.arcontrol.2020.04.012_bib0066) 2013 Hochreiter (10.1016/j.arcontrol.2020.04.012_sbref0043) 1997; 9 Fillery (10.1016/j.arcontrol.2020.04.012_bib0034) 2011 van de Ven (10.1016/j.arcontrol.2020.04.012_bib0102) 2018 Tipaldi (10.1016/j.arcontrol.2020.04.012_bib0100) 2015; 12 ECSS-E-TM-10-21A: Space engineering - System modeling and simulation (10.1016/j.arcontrol.2020.04.012_bib0003) 2010 Wertz (10.1016/j.arcontrol.2020.04.012_bib0107) 1999 Marzat (10.1016/j.arcontrol.2020.04.012_bib0072) 2012; 226 Chien (10.1016/j.arcontrol.2020.04.012_bib0023) 2017; 14 Francois (10.1016/j.arcontrol.2020.04.012_bib0036) 2014; 35 Zolghadri (10.1016/j.arcontrol.2020.04.012_bib0112) 2018; 14 Chaieb (10.1016/j.arcontrol.2020.04.012_bib0018) 2015 Claessens (10.1016/j.arcontrol.2020.04.012_bib0024) 2010 10.1016/j.arcontrol.2020.04.012_bib0079 10.1016/j.arcontrol.2020.04.012_bib0076 10.1016/j.arcontrol.2020.04.012_bib0077 Shrestha (10.1016/j.arcontrol.2020.04.012_bib0096) 2019; 7 Fernández (10.1016/j.arcontrol.2020.04.012_bib0032) 2017 Li (10.1016/j.arcontrol.2020.04.012_bib0064) 2019; 16 |
| References_xml | – year: 2004 ident: bib0039 article-title: Automated planning: Theory and practice – start-page: 1 year: 2018 end-page: 9 ident: bib0068 article-title: Using model based systems engineering structures for onboard spacecraft electronics publication-title: Proceedings of the ieee aerospace conference – volume: 35 start-page: 309 year: 2012 end-page: 317 ident: bib0041 article-title: Ontology-based system for supporting manufacturing sustainability publication-title: Annual Reviews in Control – start-page: 235 year: 2007 end-page: 253 ident: bib0042 article-title: Artificial intelligence for space applications publication-title: Schuster a.j. (eds) intelligent computing everywhere – year: 2018 ident: bib0082 article-title: Applications of deep learning neural networks to satellite telemetry monitoring publication-title: Proceedings of the 2018 spaceops conference – volume: 486 start-page: 31 year: 2019 end-page: 51 ident: bib0025 article-title: Detecting unfair recommendations in trust-based pervasive environments publication-title: Information Sciences – volume: 56 start-page: 153 year: 2005 end-page: 159 ident: bib0055 article-title: The PROBA satellite star tracker performance publication-title: Acta Astronautica – volume: 35 start-page: 37 year: 2014 end-page: 46 ident: bib0069 article-title: Enhanced telemetry monitoring with novelty detection publication-title: AI Magazine – year: 2018 ident: bib0007 article-title: Practical aspects of anomaly detection algorithms in satellite operations publication-title: Proceedings of the 2018 spaceops conference – year: 2019 ident: bib0073 article-title: Techniques of artificial intelligence for space applications - A survey publication-title: European workshop on-board data processing – volume: 55 start-page: 1414 year: 2018 end-page: 1429 ident: bib0095 article-title: Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous publication-title: Journal of Spacecraft and Rockets – reference: European Space Agency (2019). GSTP element 1 develop compendia 2019. – reference: NAVISP Programmes (2018). Artificial intelligence / machine learning sensor fusion for autonomous vessel navigation. – volume: 8 start-page: 399 year: 2016 ident: bib0087 article-title: A new method for Earth observation data analytics based on symbolic machine learning publication-title: Remote Sensing – volume: 62 start-page: 3768 year: 2015 end-page: 3774 ident: bib0037 article-title: A survey of fault diagnosis and fault-tolerant techniques–part II: Fault diagnosis with knowledge-based and hybrid/active approaches publication-title: IEEE Transactions on Industrial Electronics – start-page: 1 year: 2008 end-page: 11 ident: bib0086 article-title: Predicting venus express thermal power consumption publication-title: Proceedings of the 2008 spaceops conference – volume: 8 start-page: 2306 year: 2015 end-page: 2317 ident: bib0065 article-title: Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – year: 2008 ident: bib0014 article-title: PROBA spacecraft family - small mission solutions for emerging applications publication-title: Proceedings of the 59th iac (international astronautical congress) – volume: 504 start-page: 501 year: 2019 end-page: 519 ident: bib0027 article-title: A data-driven approximate dynamic programming approach based on association rule learning: Spacecraft autonomy as a case study publication-title: Information Sciences – reference: Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. ArXiv e-prints. – volume: 15 start-page: 239 year: 2018 end-page: 252 ident: bib0017 article-title: Telemetry fault-detection algorithms: Applications for spacecraft monitoring and space environment sensing publication-title: Journal of Aerospace Information Systems – volume: 22 start-page: 99 year: 2012 end-page: 107 ident: bib0081 article-title: FDI(R) for satellites: How to deal with high availability and robustness in the space domain? publication-title: International Journal of Applied Mathematics and Computer Science – volume: 62 start-page: 2620 year: 2018 end-page: 2630 ident: bib0110 article-title: Multi-spacecraft attitude cooperative control using model-based event-triggered methodology publication-title: Advances in Space Research – year: 1998 ident: bib0097 article-title: Representing spacecraft mission planning knowledge in ASPEN publication-title: Proceedings of the artificial intelligence planning systems workshop on knowledge acquisition – volume: 12 start-page: 235 year: 2015 end-page: 256 ident: bib0100 article-title: Survey on fault detection, isolation, and recovery strategies in the space domain publication-title: Journal of Aerospace Information Systems – reference: ARTES Programmes (2018). Machine learning and artificial intelligence for satellite communications. – start-page: 282 year: 2015 end-page: 290 ident: bib0093 article-title: Planning-based reasoning for automated large-scale data analysis publication-title: Proceedings of the twenty-fifth international conference on automated planning and scheduling (ICAPS) – volume: 30 start-page: 223 year: 2006 end-page: 232 ident: bib0074 article-title: From case-based reasoning to traces-based reasoning publication-title: Annual reviews in control – start-page: 1 year: 2015 end-page: 6 ident: bib0020 article-title: Machine learning techniques for cognitive decision making publication-title: 2015 IEEE workshop on computational intelligence: Theories, applications and future directions (WCI) – volume: 14 start-page: 307 year: 2017 end-page: 315 ident: bib0023 article-title: Onboard autonomy on the intelligent payload experiment cubesat mission publication-title: Journal of Aerospace Information Systems – volume: 55 start-page: 126 year: 2017 end-page: 131 ident: bib0043 article-title: Root cause analysis of network failures using machine learning and summarization techniques publication-title: IEEE Communications Magazine – start-page: 1 year: 2011 end-page: 8 ident: bib0047 article-title: Diagnosis as planning: Two case studies publication-title: Proceedings of the scheduling and planning applications workshop – start-page: 703 year: 2019 end-page: 716 ident: bib0063 article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks publication-title: International conference on artificial neural networks – start-page: 97 year: 2018 end-page: 104 ident: bib0104 article-title: Financial markets prediction with deep learning publication-title: 2018 17th IEEE international conference on machine learning and applications (icmla) – year: 2016 ident: bib0006 – year: 2012 ident: bib0071 article-title: DrMUST - a data mining approach for anomaly investigation publication-title: Proceedings of the 2012 spaceops conference – year: 2010 ident: bib0024 article-title: PROBA-V a multispectral Earth observation mission based on small satellite technology spacecraft family - small mission solutions for emerging applications publication-title: Proceedings of the symposium on small satellite systems and services (4s) – volume: 99 start-page: 215 year: 2014 end-page: 249 ident: bib0089 article-title: A review of novelty detection publication-title: Signal Processing – year: 2017 ident: bib0101 article-title: Challenges in the verification of reinforcement learning algorithms – volume: 13 start-page: 1 year: 2018 end-page: 26 ident: bib0067 article-title: Statistical and machine learning forecasting methods: Concerns and ways forward publication-title: PloS One – start-page: 3456 year: 2014 end-page: 3464 ident: bib0009 article-title: Derivation of diagnostic models based on formalized process knowledge publication-title: Proceedings of the 19th world congress the international federation of automatic control – year: 2012 ident: bib0028 article-title: Onboard computers, onboard software and satellite operations: an introduction – reference: MXNet (2019b). Open source machine learning commons for Earth observations. – volume: 7 start-page: 53040 year: 2019 end-page: 53065 ident: bib0096 article-title: Review of deep learning algorithms and architectures publication-title: IEEE Access – year: 2009 ident: bib0002 – volume: 114 start-page: 79 year: 2015 end-page: 92 ident: bib0011 article-title: Methodology for requirements definition of complex space missions and systems publication-title: Acta Astronautica – volume: 16 start-page: 1412 year: 2019 end-page: 1425 ident: bib0064 article-title: Identifying unseen faults for smart buildings by incorporating expert knowledge with data publication-title: IEEE Transactions on Automation Science and Engineering – year: 2005 ident: bib0105 article-title: Support vector machines: Theory and applications – start-page: 70 year: 2017 end-page: 75 ident: bib0032 article-title: Telemetry anomaly detection system using machine learning to streamline mission operations publication-title: Proceedings of the 6th international conference on space mission challenges for information technology (smc-it) – volume: 34 start-page: 46 year: 2019 end-page: 60 ident: bib0088 article-title: Machine learning for predicting thermal power consumption of the Mars express spacecraft publication-title: IEEE Aerospace and Electronic Systems Magazine – year: 2010 ident: bib0044 article-title: Monitoring distributed real-time systems: A survey and future directions – year: 2013 ident: bib0066 article-title: Case-Based reasoning: A concise introduction – volume: 85 start-page: 2171 year: 2012 end-page: 2181 ident: bib0083 article-title: A systematic literature review of stakeholder identification methods in requirements elicitation publication-title: Journal of Systems and Software – volume: 14 start-page: 41 year: 2018 end-page: 51 ident: bib0112 article-title: On flight operational issues management: Past, present and future publication-title: Annual reviews in control – year: 2018 ident: bib0057 article-title: Machine learning for decision makers: Cognitive computing fundamentals for better decision making – reference: MXNet (2019a). Mxnet - a scalable deep learning framework. – start-page: 60 year: 2011 end-page: 67 ident: bib0045 article-title: Exhaustive diagnosis of discrete event systems through exploration of the hypothesis space publication-title: Proceedings of the international workshop on principles of diagnosis (dx-11) – volume: 12 start-page: 3893 year: 2018 end-page: 3905 ident: bib0075 article-title: A survey on model-based mission planning and execution for autonomous spacecraft publication-title: IEEE Systems Journal – year: 2018 ident: bib0070 article-title: Novelty detection with deep learning publication-title: Proceedings of the 2018 spaceops conference – volume: 13 start-page: 1018 year: 2019 end-page: 1029 ident: bib0078 article-title: Model checking techniques applied to satellite operational mode management publication-title: IEEE Systems Journal – volume: 93 start-page: 52 year: 2017 end-page: 60 ident: bib0033 article-title: Neural networks to increase the autonomy of interplanetary nanosatellite missions publication-title: Robotics and Autonomous Systems – volume: 22 start-page: 2421 year: 2018 end-page: 2427 ident: bib0026 article-title: Toward a soft computing-based correlation between oxygen toxicity seizures and hyperoxic hyperpnea publication-title: Soft Computing – year: 2010 ident: bib0003 – year: 2017 ident: bib0031 article-title: Spacecraft power system fault diagnosis based on DNN publication-title: 2017 prognostics and system health management conference (phm-harbin) – reference: Proba2-Science-Center (2012). LYRA temperature evolution. – start-page: 81 year: 2019 end-page: 86 ident: bib0098 article-title: Comparison of various machine learning techniques and its uses in different fields publication-title: 2019 3rd international conference on electronics, communication and aerospace technology (iceca) – volume: 107 start-page: 241 year: 2018 end-page: 265 ident: bib0059 article-title: A review on the application of deep learning in system health management publication-title: Mechanical Systems and Signal Processing – reference: Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. ArXiv e-prints. – start-page: 1 year: 2014 end-page: 7 ident: bib0022 article-title: Agile science: Using onboard autonomy for primitive bodies and deep space exploration publication-title: Spaceops 2014 conference – start-page: 47 year: 2015 end-page: 52 ident: bib0018 article-title: The openorbiter cubesat as a system-of-systems (SoS) and how sos engineering (SoSE) aids cubesat design publication-title: 10th system of systems engineering conference (SOSE) – year: 2018 ident: bib0056 article-title: Predicting the Computational Cost of Deep Learning Models publication-title: 2018 IEEE international conference on big data, big data – reference: Caffe (2019). Caffe. – volume: 34 start-page: 2207 year: 2004 end-page: 2221 ident: bib0038 article-title: Combining FDI and AI approaches within causal-model-based diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 440 start-page: 99 year: 1999 ident: bib0091 article-title: Iterative repair planning for spacecraft operations using the ASPEN system publication-title: Proceedings of the artificial intelligence, robotics and automation in space – volume: 21 start-page: 2224 year: 2019 end-page: 2287 ident: bib0109 article-title: Deep learning in mobile and wireless networking: A survey publication-title: IEEE Communications Surveys Tutorials – volume: 122 start-page: 473 year: 2018 end-page: 483 ident: bib0113 article-title: Cross-model verification of the electrical power subsystem in space projects publication-title: Measurement – year: 2008 ident: bib0001 – start-page: 1803 year: 2019 end-page: 1810 ident: bib0106 article-title: A survey on named entity recognition publication-title: International conference in communications, signal processing, and systems – reference: ESA-Earth-Online (2017). Antarctica acquisitions by proba-v. – start-page: 439 year: 2019 end-page: 454 ident: bib0046 article-title: The added value of advanced feature engineering and selection for machine learning models in spacecraft behavior prediction publication-title: Space operations: Inspiring humankind’s future – volume: 18 start-page: 636 year: 2010 end-page: 653 ident: bib0052 article-title: A survey of fault detection, isolation, and reconfiguration methods publication-title: IEEE Transactions on Control Systems Technology – volume: 57 start-page: 114 year: 2019 end-page: 119 ident: bib0050 article-title: Deep learning with long short-term memory for time series prediction publication-title: IEEE Communications Magazine – year: 2002 ident: bib0040 article-title: Spacecraft thermal control handbook, volume i: fundamental technologies – volume: 98 start-page: 1034 year: 2018 end-page: 1055 ident: bib0035 article-title: Model predictive and reallocation problem for cubesat fault recovery and attitude control publication-title: Mechanical Systems and Signal Processing – volume: 45 start-page: 983 year: 2009 end-page: 1002 ident: bib0013 article-title: A diagnostic tree approach for fault cause identification in the attitude control subsystem of satellites publication-title: IEEE Transactions on Aerospace and Electronic Systems – start-page: 20 year: 2019 end-page: 27 ident: bib0108 article-title: Research on Knowledge Mining Algorithm of Spacecraft Fault Diagnosis System publication-title: Communications, signal processing, and systems: Proceedings of the 8th international conference on communications, signal processing, and systems – volume: 226 start-page: 1329 year: 2012 end-page: 1360 ident: bib0072 article-title: Model-based fault diagnosis for aerospace systems: A survey publication-title: Journal of Aerospace Engineering – year: 2013 ident: bib0005 – volume: 9 year: 1997 ident: bib0048 article-title: Long short-term memory publication-title: Neural Computation – volume: 35 start-page: 2548 year: 2014 end-page: 2564 ident: bib0036 article-title: The PROBA-V mission: the space segment publication-title: International Journal of Remote Sensing – volume: 45 start-page: 1 year: 2018 end-page: 4 ident: bib0060 article-title: Advancing systems and control research in the era of ml and ai publication-title: Annual Reviews in Control – reference: Inc., G. (2019). Tensorflow. – reference: Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. ArXiv e-prints. – start-page: 1 year: 2012 end-page: 9 ident: bib0103 article-title: Innovative fault detection, isolation and recovery strategies on-board spacecraft: State of the art and research challenges publication-title: Proceedings of the deutscher luftund raumfahrtkongress (2012) – start-page: 1 year: 2000 end-page: 7 ident: bib0049 article-title: The history and continuing quest to reduce the costs of spacecraft ground stations and operations publication-title: Reducing the cost of spacecraft ground systems and operations – volume: 42 start-page: 63 year: 2016 end-page: 81 ident: bib0099 article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges publication-title: Annual Reviews in Control – year: 2006 ident: bib0015 article-title: Pattern recognition and machine learning (information science and statistics) – volume: 55 start-page: 1816 year: 2018 end-page: 1827 ident: bib0053 article-title: Machine learning methods for spacecraft telemetry mining publication-title: IEEE Transactions on Aerospace and Electronic Systems – start-page: 1 year: 2018 end-page: 14 ident: bib0080 article-title: Assurance of model-based fault diagnosis publication-title: 2018 IEEE aerospace conference – reference: Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv e-prints. – start-page: 387 year: 2018 end-page: 395 ident: bib0051 article-title: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding publication-title: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining – reference: Segù, M., Loquercio, A., & Scaramuzza, D. (2019). A general framework for uncertainty estimation in deep learning. ArXiv e-prints. – year: 2018 ident: bib0102 article-title: Testing in the digital age - AI makes the difference – year: 1999 ident: bib0061 article-title: Development of the PROBA attitude control and navigation software publication-title: Proceedings of the 4th ESA international conference on spacecraft guidance – volume: 24 start-page: 823 year: 2012 end-page: 839 ident: bib0021 article-title: Anomaly detection for discrete sequences: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2014 ident: bib0012 article-title: Root cause analysis: A step-by-step guide to using the right tool at the right time – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: bib0111 article-title: Deep learning and its applications to machine health monitoring publication-title: Mechanical Systems and Signal Processing – volume: 18 start-page: 1093 year: 2010 end-page: 1109 ident: bib0085 article-title: Robust FDI applied to thruster faults of a satellite system publication-title: Control Engineering Practice – volume: 21 start-page: 38 year: 2008 end-page: 51 ident: bib0062 article-title: An expert system using an extended AND–OR graph publication-title: Knowledge-Based Systems – start-page: 439 year: 2011 end-page: 466 ident: bib0034 article-title: Telemetry, command, data handling and processing publication-title: Spacecraft systems engineering – reference: . – year: 1999 ident: bib0107 article-title: Space mission analysis and design, 3rd ed. – year: 2012 ident: bib0004 – volume: 62 start-page: 973 year: 2017 end-page: 980 ident: bib0008 article-title: State and parameter estimation: A nonlinear Luenberger observer approach publication-title: IEEE Transactions on Automatic Control – volume: 85 start-page: 2171 issue: 9 year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0083 article-title: A systematic literature review of stakeholder identification methods in requirements elicitation publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2012.04.075 – year: 1998 ident: 10.1016/j.arcontrol.2020.04.012_bib0097 article-title: Representing spacecraft mission planning knowledge in ASPEN – volume: 55 start-page: 126 issue: 9 year: 2017 ident: 10.1016/j.arcontrol.2020.04.012_bib0043 article-title: Root cause analysis of network failures using machine learning and summarization techniques publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2017.1700066 – volume: 15 start-page: 239 issue: 5 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0017 article-title: Telemetry fault-detection algorithms: Applications for spacecraft monitoring and space environment sensing publication-title: Journal of Aerospace Information Systems doi: 10.2514/1.I010587 – year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0028 – ident: 10.1016/j.arcontrol.2020.04.012_bib0077 – ident: 10.1016/j.arcontrol.2020.04.012_bib0058 doi: 10.1007/s10462-020-09825-6 – volume: 14 start-page: 41 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0112 article-title: On flight operational issues management: Past, present and future publication-title: Annual reviews in control doi: 10.1016/j.arcontrol.2018.03.001 – ident: 10.1016/j.arcontrol.2020.04.012_bib0092 – ident: 10.1016/j.arcontrol.2020.04.012_bib0054 – start-page: 1 year: 2000 ident: 10.1016/j.arcontrol.2020.04.012_bib0049 article-title: The history and continuing quest to reduce the costs of spacecraft ground stations and operations – volume: 13 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0067 article-title: Statistical and machine learning forecasting methods: Concerns and ways forward publication-title: PloS One doi: 10.1371/journal.pone.0194889 – volume: 45 start-page: 983 issue: 3 year: 2009 ident: 10.1016/j.arcontrol.2020.04.012_bib0013 article-title: A diagnostic tree approach for fault cause identification in the attitude control subsystem of satellites publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2009.5259178 – volume: 57 start-page: 114 issue: 6 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0050 article-title: Deep learning with long short-term memory for time series prediction publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2019.1800155 – start-page: 1803 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0106 article-title: A survey on named entity recognition – year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0004 – volume: 24 start-page: 823 issue: 5 year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0021 article-title: Anomaly detection for discrete sequences: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.235 – year: 2004 ident: 10.1016/j.arcontrol.2020.04.012_bib0039 – start-page: 3456 year: 2014 ident: 10.1016/j.arcontrol.2020.04.012_bib0009 article-title: Derivation of diagnostic models based on formalized process knowledge – volume: 8 start-page: 2306 issue: 5 year: 2015 ident: 10.1016/j.arcontrol.2020.04.012_bib0065 article-title: Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2015.2438893 – start-page: 47 year: 2015 ident: 10.1016/j.arcontrol.2020.04.012_bib0018 article-title: The openorbiter cubesat as a system-of-systems (SoS) and how sos engineering (SoSE) aids cubesat design – volume: 486 start-page: 31 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0025 article-title: Detecting unfair recommendations in trust-based pervasive environments publication-title: Information Sciences doi: 10.1016/j.ins.2019.02.015 – volume: 99 start-page: 215 year: 2014 ident: 10.1016/j.arcontrol.2020.04.012_bib0089 article-title: A review of novelty detection publication-title: Signal Processing doi: 10.1016/j.sigpro.2013.12.026 – year: 2017 ident: 10.1016/j.arcontrol.2020.04.012_bib0101 – year: 2005 ident: 10.1016/j.arcontrol.2020.04.012_bib0105 – year: 2010 ident: 10.1016/j.arcontrol.2020.04.012_bib0024 article-title: PROBA-V a multispectral Earth observation mission based on small satellite technology spacecraft family - small mission solutions for emerging applications – volume: 107 start-page: 241 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0059 article-title: A review on the application of deep learning in system health management publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.11.024 – volume: 34 start-page: 46 issue: 7 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0088 article-title: Machine learning for predicting thermal power consumption of the Mars express spacecraft publication-title: IEEE Aerospace and Electronic Systems Magazine doi: 10.1109/MAES.2019.2915456 – year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0082 article-title: Applications of deep learning neural networks to satellite telemetry monitoring – volume: 114 start-page: 79 year: 2015 ident: 10.1016/j.arcontrol.2020.04.012_bib0011 article-title: Methodology for requirements definition of complex space missions and systems publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2015.04.018 – volume: 9 year: 1997 ident: 10.1016/j.arcontrol.2020.04.012_sbref0043 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0056 article-title: Predicting the Computational Cost of Deep Learning Models – volume: 12 start-page: 3893 issue: 4 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0075 article-title: A survey on model-based mission planning and execution for autonomous spacecraft publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2017.2720682 – year: 2010 ident: 10.1016/j.arcontrol.2020.04.012_bib0003 – year: 2013 ident: 10.1016/j.arcontrol.2020.04.012_bib0066 – year: 2009 ident: 10.1016/j.arcontrol.2020.04.012_bib0002 – year: 2008 ident: 10.1016/j.arcontrol.2020.04.012_bib0014 article-title: PROBA spacecraft family - small mission solutions for emerging applications – ident: 10.1016/j.arcontrol.2020.04.012_bib0090 – ident: 10.1016/j.arcontrol.2020.04.012_bib0079 – ident: 10.1016/j.arcontrol.2020.04.012_bib0019 doi: 10.1145/3394486.3406704 – volume: 34 start-page: 2207 issue: 5 year: 2004 ident: 10.1016/j.arcontrol.2020.04.012_bib0038 article-title: Combining FDI and AI approaches within causal-model-based diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2004.833335 – start-page: 1 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0068 article-title: Using model based systems engineering structures for onboard spacecraft electronics – volume: 18 start-page: 1093 issue: 9 year: 2010 ident: 10.1016/j.arcontrol.2020.04.012_bib0085 article-title: Robust FDI applied to thruster faults of a satellite system publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2009.04.011 – year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0007 article-title: Practical aspects of anomaly detection algorithms in satellite operations – start-page: 235 year: 2007 ident: 10.1016/j.arcontrol.2020.04.012_bib0042 article-title: Artificial intelligence for space applications – year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0073 article-title: Techniques of artificial intelligence for space applications - A survey – year: 2010 ident: 10.1016/j.arcontrol.2020.04.012_bib0044 – year: 2014 ident: 10.1016/j.arcontrol.2020.04.012_bib0012 – year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0057 – start-page: 282 year: 2015 ident: 10.1016/j.arcontrol.2020.04.012_bib0093 article-title: Planning-based reasoning for automated large-scale data analysis – year: 2017 ident: 10.1016/j.arcontrol.2020.04.012_bib0031 article-title: Spacecraft power system fault diagnosis based on DNN – start-page: 20 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0108 article-title: Research on Knowledge Mining Algorithm of Spacecraft Fault Diagnosis System – ident: 10.1016/j.arcontrol.2020.04.012_bib0076 – volume: 440 start-page: 99 year: 1999 ident: 10.1016/j.arcontrol.2020.04.012_bib0091 article-title: Iterative repair planning for spacecraft operations using the ASPEN system – volume: 504 start-page: 501 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0027 article-title: A data-driven approximate dynamic programming approach based on association rule learning: Spacecraft autonomy as a case study publication-title: Information Sciences doi: 10.1016/j.ins.2019.07.067 – volume: 93 start-page: 52 year: 2017 ident: 10.1016/j.arcontrol.2020.04.012_bib0033 article-title: Neural networks to increase the autonomy of interplanetary nanosatellite missions publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2017.04.005 – volume: 122 start-page: 473 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0113 article-title: Cross-model verification of the electrical power subsystem in space projects publication-title: Measurement doi: 10.1016/j.measurement.2018.01.014 – start-page: 1 year: 2011 ident: 10.1016/j.arcontrol.2020.04.012_bib0047 article-title: Diagnosis as planning: Two case studies – year: 2002 ident: 10.1016/j.arcontrol.2020.04.012_bib0040 – year: 2006 ident: 10.1016/j.arcontrol.2020.04.012_bib0015 – start-page: 703 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0063 article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks – volume: 21 start-page: 2224 issue: 3 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0109 article-title: Deep learning in mobile and wireless networking: A survey publication-title: IEEE Communications Surveys Tutorials doi: 10.1109/COMST.2019.2904897 – volume: 14 start-page: 307 issue: 6 year: 2017 ident: 10.1016/j.arcontrol.2020.04.012_bib0023 article-title: Onboard autonomy on the intelligent payload experiment cubesat mission publication-title: Journal of Aerospace Information Systems doi: 10.2514/1.I010386 – volume: 21 start-page: 38 issue: 1 year: 2008 ident: 10.1016/j.arcontrol.2020.04.012_bib0062 article-title: An expert system using an extended AND–OR graph publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2006.10.008 – year: 1999 ident: 10.1016/j.arcontrol.2020.04.012_bib0061 article-title: Development of the PROBA attitude control and navigation software – volume: 12 start-page: 235 issue: 2 year: 2015 ident: 10.1016/j.arcontrol.2020.04.012_bib0100 article-title: Survey on fault detection, isolation, and recovery strategies in the space domain publication-title: Journal of Aerospace Information Systems doi: 10.2514/1.I010307 – year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0102 – volume: 35 start-page: 2548 issue: 7 year: 2014 ident: 10.1016/j.arcontrol.2020.04.012_bib0036 article-title: The PROBA-V mission: the space segment publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2014.883098 – start-page: 70 year: 2017 ident: 10.1016/j.arcontrol.2020.04.012_bib0032 article-title: Telemetry anomaly detection system using machine learning to streamline mission operations – volume: 16 start-page: 1412 issue: 3 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0064 article-title: Identifying unseen faults for smart buildings by incorporating expert knowledge with data publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2018.2876611 – start-page: 1 year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0103 article-title: Innovative fault detection, isolation and recovery strategies on-board spacecraft: State of the art and research challenges – start-page: 60 year: 2011 ident: 10.1016/j.arcontrol.2020.04.012_bib0045 article-title: Exhaustive diagnosis of discrete event systems through exploration of the hypothesis space – year: 1999 ident: 10.1016/j.arcontrol.2020.04.012_bib0107 – volume: 35 start-page: 37 issue: 4 year: 2014 ident: 10.1016/j.arcontrol.2020.04.012_bib0069 article-title: Enhanced telemetry monitoring with novelty detection publication-title: AI Magazine doi: 10.1609/aimag.v35i4.2553 – start-page: 97 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0104 article-title: Financial markets prediction with deep learning – volume: 226 start-page: 1329 issue: 10 year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0072 article-title: Model-based fault diagnosis for aerospace systems: A survey publication-title: Journal of Aerospace Engineering – volume: 98 start-page: 1034 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0035 article-title: Model predictive and reallocation problem for cubesat fault recovery and attitude control publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.05.039 – volume: 30 start-page: 223 issue: 2 year: 2006 ident: 10.1016/j.arcontrol.2020.04.012_bib0074 article-title: From case-based reasoning to traces-based reasoning publication-title: Annual reviews in control doi: 10.1016/j.arcontrol.2006.09.003 – volume: 18 start-page: 636 issue: 3 year: 2010 ident: 10.1016/j.arcontrol.2020.04.012_bib0052 article-title: A survey of fault detection, isolation, and reconfiguration methods publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2009.2026285 – start-page: 439 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0046 article-title: The added value of advanced feature engineering and selection for machine learning models in spacecraft behavior prediction – volume: 35 start-page: 309 issue: 2 year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0041 article-title: Ontology-based system for supporting manufacturing sustainability publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2012.09.012 – ident: 10.1016/j.arcontrol.2020.04.012_bib0084 – start-page: 1 year: 2015 ident: 10.1016/j.arcontrol.2020.04.012_bib0020 article-title: Machine learning techniques for cognitive decision making – start-page: 1 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0080 article-title: Assurance of model-based fault diagnosis – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0111 article-title: Deep learning and its applications to machine health monitoring publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.05.050 – volume: 56 start-page: 153 issue: 1–2 year: 2005 ident: 10.1016/j.arcontrol.2020.04.012_bib0055 article-title: The PROBA satellite star tracker performance publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2004.09.011 – ident: 10.1016/j.arcontrol.2020.04.012_bib0029 – volume: 8 start-page: 399 issue: 5 year: 2016 ident: 10.1016/j.arcontrol.2020.04.012_bib0087 article-title: A new method for Earth observation data analytics based on symbolic machine learning publication-title: Remote Sensing doi: 10.3390/rs8050399 – start-page: 81 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0098 article-title: Comparison of various machine learning techniques and its uses in different fields – ident: 10.1016/j.arcontrol.2020.04.012_bib0094 – year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0071 article-title: DrMUST - a data mining approach for anomaly investigation – volume: 22 start-page: 2421 issue: 7 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0026 article-title: Toward a soft computing-based correlation between oxygen toxicity seizures and hyperoxic hyperpnea publication-title: Soft Computing doi: 10.1007/s00500-017-2512-z – ident: 10.1016/j.arcontrol.2020.04.012_bib0010 – volume: 45 start-page: 1 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0060 article-title: Advancing systems and control research in the era of ml and ai publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2018.04.001 – volume: 42 start-page: 63 year: 2016 ident: 10.1016/j.arcontrol.2020.04.012_bib0099 article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2016.09.008 – start-page: 1 year: 2008 ident: 10.1016/j.arcontrol.2020.04.012_bib0086 article-title: Predicting venus express thermal power consumption – volume: 22 start-page: 99 issue: 1 year: 2012 ident: 10.1016/j.arcontrol.2020.04.012_bib0081 article-title: FDI(R) for satellites: How to deal with high availability and robustness in the space domain? publication-title: International Journal of Applied Mathematics and Computer Science doi: 10.2478/v10006-012-0007-8 – year: 2008 ident: 10.1016/j.arcontrol.2020.04.012_bib0001 – ident: 10.1016/j.arcontrol.2020.04.012_bib0016 – ident: 10.1016/j.arcontrol.2020.04.012_bib0030 – start-page: 439 year: 2011 ident: 10.1016/j.arcontrol.2020.04.012_bib0034 article-title: Telemetry, command, data handling and processing – year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0070 article-title: Novelty detection with deep learning – start-page: 1 year: 2014 ident: 10.1016/j.arcontrol.2020.04.012_bib0022 article-title: Agile science: Using onboard autonomy for primitive bodies and deep space exploration – volume: 62 start-page: 3768 issue: 6 year: 2015 ident: 10.1016/j.arcontrol.2020.04.012_bib0037 article-title: A survey of fault diagnosis and fault-tolerant techniques–part II: Fault diagnosis with knowledge-based and hybrid/active approaches publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2015.2417501 – year: 2013 ident: 10.1016/j.arcontrol.2020.04.012_bib0005 – volume: 13 start-page: 1018 issue: 1 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0078 article-title: Model checking techniques applied to satellite operational mode management publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2018.2793665 – volume: 55 start-page: 1816 issue: 4 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0053 article-title: Machine learning methods for spacecraft telemetry mining publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2018.2876586 – volume: 55 start-page: 1414 issue: 6 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0095 article-title: Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous publication-title: Journal of Spacecraft and Rockets doi: 10.2514/1.A34124 – start-page: 387 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0051 article-title: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding – volume: 62 start-page: 973 issue: 2 year: 2017 ident: 10.1016/j.arcontrol.2020.04.012_bib0008 article-title: State and parameter estimation: A nonlinear Luenberger observer approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2566804 – volume: 62 start-page: 2620 issue: 9 year: 2018 ident: 10.1016/j.arcontrol.2020.04.012_bib0110 article-title: Multi-spacecraft attitude cooperative control using model-based event-triggered methodology publication-title: Advances in Space Research doi: 10.1016/j.asr.2018.07.019 – year: 2016 ident: 10.1016/j.arcontrol.2020.04.012_bib0006 – volume: 7 start-page: 53040 year: 2019 ident: 10.1016/j.arcontrol.2020.04.012_bib0096 article-title: Review of deep learning algorithms and architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 |
| SSID | ssj0002215 |
| Score | 2.397867 |
| SecondaryResourceType | review_article |
| Snippet | This paper presents new perspectives on the application of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order to augment... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 197 |
| SubjectTerms | Artificial intelligence Discipline models Model-based diagnostics Spacecraft flight data Spacecraft operations |
| Title | On applying AI-driven flight data analysis for operational spacecraft model-based diagnostics |
| URI | https://dx.doi.org/10.1016/j.arcontrol.2020.04.012 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1367-5788 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002215 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1367-5788 databaseCode: ACRLP dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002215 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1367-5788 databaseCode: AIKHN dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002215 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 1367-5788 databaseCode: .~1 dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002215 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1367-5788 databaseCode: AKRWK dateStart: 19960101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002215 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz34FtfHkoPXuG2apI23RZRdRT2osBcp0zxAkd1lWa_-djNtuq4gePDYkoEwncw3Sb98Q8hZkUqQhTaM69SGDYpyrLAcmPBKV1I7BbVOwd29GjyLm5EcrZDL9i4M0ipj7m9yep2t45te9GZv-vrae0SxsRBvAcIyRCpU_BQixy4G55_fNA_O6y4GOJjh6B8crxBLDSE8bBR5Umuepvx3hFpCnettshnLRdpvZrRDVtx4l2y1rRhoXJm7ZGNJV3CPvDyMKf6ZxitMtD9kdoY5jfp33IlTJIVSiGIkNBStdDJ1s3goSEOGMaGUBD-ndZcchjhnqW0oeSjqvE-er6-eLgcs9lFgJkvlnFVpJYFbWWVa8MqBNhVIBYUTeS49qIQbK4U32haQWG-sS70WGUChIAlLPjsgq-PJ2B0S6kKBlgConIfSw3gPVeEV90UwzHKneYeo1neliSLj2OvivWzZZG_lwuklOr1MRBmc3iHJwnDa6Gz8bXLRfpzyR8iUAQ3-Mj76j_ExWcen5iTmhKzOZx_uNNQm86pbB1-XrPWHt4P7L3525xs |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5WPagH3-LbHLzGbdMmbbyJKLu66kEFLxKmeYAi67KsV3-7SZvqCoIHr20HynQy80365RuAozLlyEupKZOp8Q2KsLQ0DGnuhKy4tAJrnYLrG9F7yC8f-WMHztqzMIFWGXN_k9PrbB2vdKM3u6Pn5-5dEBvz8eZLWBYqVTYDczlnRejAjj--eR6M1WMMwtM0PP6D5OWDqWGE-06RJbXoacp-L1FTZediBZYiXiSnzSutQscO12C5ncVA4tJcg8UpYcF1eLodkvBrOpxhIqd9asYhqRH3GlpxElihBKMaCfGolbyN7DjuChKfYrTHkugmpB6TQ0OhM8Q0nLyg6rwBDxfn92c9GgcpUJ2lfEKrtOLIDK8ymbPKotQVcoGlzYuCOxQJ04bnTktTYmKcNjZ1Ms8QS4GJX_PZJswO34Z2C4j1CC1BFAXz2EM7h1XpBHOlN8wKK9k2iNZ3SkeV8TDs4lW1dLIX9eV0FZyuklx5p29D8mU4aoQ2_jY5aT-O-hEzypeDv4x3_mN8CPO9--uBGvRvrnZhIdxptmX2YHYyfrf7HqhMqoM6ED8B5rXosA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+applying+AI-driven+flight+data+analysis+for+operational+spacecraft+model-based+diagnostics&rft.jtitle=Annual+reviews+in+control&rft.au=Tipaldi%2C+Massimo&rft.au=Feruglio%2C+Lorenzo&rft.au=Denis%2C+Pierre&rft.au=D%E2%80%99Angelo%2C+Gianni&rft.date=2020&rft.issn=1367-5788&rft.volume=49&rft.spage=197&rft.epage=211&rft_id=info:doi/10.1016%2Fj.arcontrol.2020.04.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_arcontrol_2020_04_012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-5788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-5788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-5788&client=summon |