Simulations of the L-H transition dynamics with different heat and particle sources

It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L-H transition process is simulated by using the predictive transport code based on Weiland's fluid model. Base...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 11; pp. 314 - 322
Main Author 李会东 王占辉 Jan Weiland 冯灏 孙卫国
Format Journal Article
LanguageEnglish
Published 01.11.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/11/115204

Cover

Abstract It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L-H transition process is simulated by using the predictive transport code based on Weiland's fluid model. Based on the equilibrium parameters obtained from equilibrium fitting (EFIT) in the experiment, the electron density ne, electron temperature Te, ion temperatures lq, ion poloidal Vp, and toroidal momenta Vt are simulated self-consistently. The L-H transition dynamic behaviors with the formation of the transport barriers of ion and electron temperatures, the electron density, and the ion toroidal momenta are analyzed. During the L-H transition, the strong poloidal flow shear in the edge transport barrier region is observed. The crashes of the electron and ion temperature pedestals are also observed during the L-H transition. The effects of the heating and particle sources on the L-H transition process are studied systematically, and the critical power threshold of the L-H transition is also found.
AbstractList It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L-H transition process is simulated by using the predictive transport code based on Weiland's fluid model. Based on the equilibrium parameters obtained from equilibrium fitting (EFIT) in the experiment, the electron density n sub(e), electron temperature T sub(e), ion temperatures T sub(i), ion poloidal V sub(p), and toroidal momenta V sub(t) are simulated self-consistently. The L-H transition dynamic behaviors with the formation of the transport barriers of ion and electron temperatures, the electron density, and the ion toroidal momenta are analyzed. During the L-H transition, the strong poloidal flow shear in the edge transport barrier region is observed. The crashes of the electron and ion temperature pedestals are also observed during the L-H transition. The effects of the heating and particle sources on the L-H transition process are studied systematically, and the critical power threshold of the L-H transition is also found.
It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L-H transition process is simulated by using the predictive transport code based on Weiland's fluid model. Based on the equilibrium parameters obtained from equilibrium fitting (EFIT) in the experiment, the electron density ne, electron temperature Te, ion temperatures lq, ion poloidal Vp, and toroidal momenta Vt are simulated self-consistently. The L-H transition dynamic behaviors with the formation of the transport barriers of ion and electron temperatures, the electron density, and the ion toroidal momenta are analyzed. During the L-H transition, the strong poloidal flow shear in the edge transport barrier region is observed. The crashes of the electron and ion temperature pedestals are also observed during the L-H transition. The effects of the heating and particle sources on the L-H transition process are studied systematically, and the critical power threshold of the L-H transition is also found.
Author 李会东 王占辉 Jan Weiland 冯灏 孙卫国
AuthorAffiliation School of Science, Research Center for Advanced Computation, Xihua University, Chengdu 610039, China Southwestern Institute of Physics, Chengdu 610041, China Department Applied Physics, Chalmers. University of Technology and Euratom-VR Association, $41296 Gothenburg, Sweden Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Author_xml – sequence: 1
  fullname: 李会东 王占辉 Jan Weiland 冯灏 孙卫国
BookMark eNqFkMFLwzAUxoNMcJv-CxI8ealLmjRNwYsMdcLAw_Qc0jRZI226JSmy_97WjR28CO_xeI_v9-D7ZmDiOqcBuMXoASPOF5jlNMEoY4uULjAeKksRvQDTFGU8IZzQCZieRVdgFsIXQgyjlEzBZmPbvpHRdi7AzsBYa7hOVjB66YIdz7A6ONlaFeC3jTWsrDHaaxdhrWWE0lVwJ320qtEwdL1XOlyDSyOboG9Ocw4-X54_lqtk_f76tnxaJ4rgLCYFY6UhnNKhtdZZIUtW8pIbSWQ5rFVeGFXkXJK8SklJs7QiJFeGEolURQ2Zg_vj353v9r0OUbQ2KN000umuDwLnnOGMIUYH6eNRqnwXgtdGKBt_XQ9GbSMwEmOWYoxJjDGJdJhYHLMccPYH33nbSn_4H7w7gXXntnvrtmeSMUZzzGhKfgAh1IXe
CitedBy_id crossref_primary_10_1063_1_5090813
crossref_primary_10_1063_1_4974174
Cites_doi 10.1063/1.872367
10.1088/0029-5515/53/7/073053
10.1088/0029-5515/43/12/025
10.1088/0741-3335/56/7/075013
10.1088/0029-5515/53/11/113032
10.1088/0029-5515/37/3/I01
10.1088/0029-5515/53/7/073044
10.1103/PhysRevLett.53.1453
10.1063/1.4823719
10.1088/0029-5515/54/8/083003
10.1088/0741-3335/29/10A/320
10.1088/0741-3335/42/1/201
10.1088/0741-3335/54/12/124024
10.1103/PhysRevLett.90.185006
10.1088/0029-5515/54/1/013004
10.1088/0029-5515/54/2/022001
10.1103/PhysRevLett.107.245004
10.1063/1.4794288
10.1103/PhysRevLett.110.195002
10.1063/1.3125306
10.1063/1.873485
10.1063/1.3647234
10.1103/PhysRevLett.112.125002
10.1063/1.4818429
10.1007/978-1-4614-3743-7_1
10.7498/aps.62.245206
10.1063/1.4901597
10.7498/aps.62.015203
10.1063/1.4870012
10.1063/1.4775601
10.1063/1.4817945
10.1063/1.4890971
10.1063/1.870934
10.1063/1.4905628
10.1103/PhysRevLett.91.035001
10.1088/0029-5515/53/9/093020
10.1088/0029-5515/52/6/062003
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/24/11/115204
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Simulations of the L-H transition dynamics with different heat and particle sources
EISSN 2058-3834
1741-4199
EndPage 322
ExternalDocumentID 10_1088_1674_1056_24_11_115204
666471642
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c315t-966bf3844384eee59ab6b8b8fa3abe59d79fc978a37d23b452d337cf43a0cd4f3
ISSN 1674-1056
IngestDate Thu Oct 02 10:32:57 EDT 2025
Wed Oct 01 03:34:57 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
Wed Feb 14 10:22:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-966bf3844384eee59ab6b8b8fa3abe59d79fc978a37d23b452d337cf43a0cd4f3
Notes magnetic fusion, tokamak plasma, L-H transition, transport barriers
11-5639/O4
It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L-H transition process is simulated by using the predictive transport code based on Weiland's fluid model. Based on the equilibrium parameters obtained from equilibrium fitting (EFIT) in the experiment, the electron density ne, electron temperature Te, ion temperatures lq, ion poloidal Vp, and toroidal momenta Vt are simulated self-consistently. The L-H transition dynamic behaviors with the formation of the transport barriers of ion and electron temperatures, the electron density, and the ion toroidal momenta are analyzed. During the L-H transition, the strong poloidal flow shear in the edge transport barrier region is observed. The crashes of the electron and ion temperature pedestals are also observed during the L-H transition. The effects of the heating and particle sources on the L-H transition process are studied systematically, and the critical power threshold of the L-H transition is also found.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1786156064
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1786156064
crossref_citationtrail_10_1088_1674_1056_24_11_115204
crossref_primary_10_1088_1674_1056_24_11_115204
chongqing_primary_666471642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2015
References 22
Garzotti L (36) 2003; 43
23
24
28
29
Garzotti L (34) 2003; 43
Ryter F (17) 2014; 54
Wu G J (27) 2014; 54
Estrada T (20) 2012; 54
Willensdorfer M (15) 2013; 53
Cziegler I (19) 2014; 56
30
31
32
Miki K (3) 2013; 53
11
33
12
35
Xu G S (10) 2014; 54
37
38
39
Bourdelle C (16) 2014; 54
Tynan G R (26) 2013; 53
1
4
Battaglia D J (25) 2013; 53
5
Fundamenski W (9) 2012; 52
6
7
8
Connor J W (13) 2000; 42
Leconte M (14) 2014; 54
Xu G S (18) 2014; 54
41
Staebler G M (40) 1997; 37
Keilhacker M (2) 1987; 29
21
References_xml – ident: 5
  doi: 10.1063/1.872367
– volume: 53
  issn: 0029-5515
  year: 2013
  ident: 26
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/7/073053
– volume: 43
  start-page: 1829
  issn: 0029-5515
  year: 2003
  ident: 36
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/43/12/025
– volume: 56
  issn: 0741-3335
  year: 2014
  ident: 19
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/56/7/075013
– volume: 53
  issn: 0029-5515
  year: 2013
  ident: 25
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/11/113032
– volume: 37
  start-page: 287
  issn: 0029-5515
  year: 1997
  ident: 40
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/37/3/I01
– volume: 53
  issn: 0029-5515
  year: 2013
  ident: 3
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/7/073044
– ident: 1
  doi: 10.1103/PhysRevLett.53.1453
– ident: 12
  doi: 10.1063/1.4823719
– volume: 54
  issn: 0029-5515
  year: 2014
  ident: 17
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/8/083003
– volume: 29
  start-page: 1401
  issn: 0741-3335
  year: 1987
  ident: 2
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/29/10A/320
– volume: 42
  start-page: R1
  issn: 0741-3335
  year: 2000
  ident: 13
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/42/1/201
– volume: 54
  issn: 0741-3335
  year: 2012
  ident: 20
  publication-title: Plasma Phys. Control Fusion
  doi: 10.1088/0741-3335/54/12/124024
– ident: 7
  doi: 10.1103/PhysRevLett.90.185006
– volume: 54
  issn: 0029-5515
  year: 2014
  ident: 14
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/1/013004
– volume: 54
  issn: 0029-5515
  year: 2014
  ident: 16
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/2/022001
– ident: 8
  doi: 10.1103/PhysRevLett.107.245004
– ident: 32
  doi: 10.1063/1.4794288
– ident: 6
  doi: 10.1103/PhysRevLett.110.195002
– ident: 39
  doi: 10.1063/1.3125306
– ident: 41
  doi: 10.1063/1.873485
– ident: 35
  doi: 10.1063/1.3647234
– ident: 4
  doi: 10.1103/PhysRevLett.112.125002
– ident: 21
  doi: 10.1063/1.4818429
– ident: 30
  doi: 10.1007/978-1-4614-3743-7_1
– volume: 54
  issn: 0029-5515
  year: 2014
  ident: 27
  publication-title: Nucl. Fusion
– ident: 29
  doi: 10.7498/aps.62.245206
– ident: 31
  doi: 10.1063/1.4901597
– ident: 28
  doi: 10.7498/aps.62.015203
– ident: 23
  doi: 10.1063/1.4870012
– ident: 24
  doi: 10.1063/1.4775601
– volume: 43
  start-page: 1829
  issn: 0029-5515
  year: 2003
  ident: 34
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/43/12/025
– ident: 11
  doi: 10.1063/1.4817945
– ident: 22
  doi: 10.1063/1.4890971
– ident: 38
  doi: 10.1063/1.870934
– ident: 33
  doi: 10.1063/1.4905628
– ident: 37
  doi: 10.1103/PhysRevLett.91.035001
– volume: 54
  issn: 0029-5515
  year: 2014
  ident: 10
  publication-title: Nucl. Fusion
– volume: 53
  issn: 0029-5515
  year: 2013
  ident: 15
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/9/093020
– volume: 54
  issn: 0029-5515
  year: 2014
  ident: 18
  publication-title: Nucl. Fusion
– volume: 52
  issn: 0029-5515
  year: 2012
  ident: 9
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/52/6/062003
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0325387
Snippet It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in...
It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 314
SubjectTerms Computer simulation
Confinement
Dynamics
Electron density
Electron temperature
Ion temperature
L-H转换
Mathematical models
Transport
平衡参数
模拟
热粒子
电子密度
电子温度
离子温度
转换过程
Title Simulations of the L-H transition dynamics with different heat and particle sources
URI http://lib.cqvip.com/qk/85823A/201511/666471642.html
https://www.proquest.com/docview/1786156064
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbx2AvYz9Z1m1oMPZSvES2ZMuPY2vJStYWmkDehCXLNLDZaZO89K_fnSXZDhTW7SFKotjC3H05fSfp7gj5ZPPcAlE2UT4ROgJKXURFkspIFiybWK6ZaXd0f56l0wU_XYplH67YRpds9Rdze2dcyf9oFfpArxgl-w-a7QaFDvgM-oUWNAztvXR8ufq9G5xlQw45i6ZY9qF2R7GOSldw3sewhWooW-SH7mj52g975FbxN0OyirW17cb61Y_NoECzK3W9W0XfGz_ztWvyzm7gGnQEP_abPqtwfPK0xyIIsr16WjTDlQcmfAhebyzTjIMZFz6VtesDhoI7y_nQwroo6YAkdqflBmuHiwhhSAxU4djB2kbErkjxfsLss3N1spjN1Px4Of-8vo6wlhjuufvCKg_JoxhsPRb0-HF-MSA9E571TqjgwFklkjo3f6eYzALd9PAoIa5cynHXN475mLGxezBMy3EF4r4GsrFPb_Zn95ayzJ-Rp97XoF-dhp-TB7Z-QR5fOG2-JJcD-NCmogAfCvChPXxogA9F-NAOPhThQ0GnNMCHevi8IouT4_m3aeRrbEQmYWKLyVl1lUjO4WWtFXmhUy21rIqk0PC1zPLK5JkskqyME81FXCZJZiqeFBNT8ip5TQ7qprZvCDUsFZaLSpfM8qwywO2r2OrM5GkObns1IoedmNTa5VJR4D1zdNnjERFBcMr49PRYJeWXao9JSKlQ-AqFr2J4Z8oJf0TG3X1h0L_d8THoRYEtxQ2yorbNbqNYJlPMLJDyt_e45pA86f8V78jB9mZn3wND3eoPLeD-ADngiAM
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulations+of+the+L-H+transition+dynamics+with+different+heat+and+particle+sources&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Hui-Dong&rft.au=Wang%2C+Zhan-Hui&rft.au=Weiland%2C+Jan&rft.au=Feng%2C+Hao&rft.date=2015-11-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=24&rft.issue=11&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F11%2F115204&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg