Precursor evolution and growth mechanism of BTO/YBCO films by TFA-MOD process
In this study, BaTiO3 (BTO)-doped YBCO films are prepared on LaA103 (100) single-crystal substrates by metal- organic decomposition (MOD) using trifluoroacetate (TFA) precursor solutions. The critical current density (Jc) of BTO/YBCO film is as high as 10 MA/cm2 (77 K, 0 T). The BTO peak is found in...
Saved in:
| Published in | Chinese physics B Vol. 23; no. 10; pp. 503 - 507 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.10.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 1741-4199 |
| DOI | 10.1088/1674-1056/23/10/107402 |
Cover
| Summary: | In this study, BaTiO3 (BTO)-doped YBCO films are prepared on LaA103 (100) single-crystal substrates by metal- organic decomposition (MOD) using trifluoroacetate (TFA) precursor solutions. The critical current density (Jc) of BTO/YBCO film is as high as 10 MA/cm2 (77 K, 0 T). The BTO peak is found in the X-ray diffraction (XRD) pattern of a final YBCO superconductivity film. Moreover, a comprehensive study of the precursor evolution is conducted mainly by X-ray analysis and μ-Raman spectroscopy. It is found that the TFA begins to decompose at the beginning of the thermal process, and then further decomposes as temperature increases, and at 700 ℃ BTO nanoparticles begin to appear. It sug- gests that the YBCO film embedded with BTO nanoparticles, whose critical current density (Jc) is enhanced, is successfully prepared by an easily scalable chemical solution deposition technique. |
|---|---|
| Bibliography: | In this study, BaTiO3 (BTO)-doped YBCO films are prepared on LaA103 (100) single-crystal substrates by metal- organic decomposition (MOD) using trifluoroacetate (TFA) precursor solutions. The critical current density (Jc) of BTO/YBCO film is as high as 10 MA/cm2 (77 K, 0 T). The BTO peak is found in the X-ray diffraction (XRD) pattern of a final YBCO superconductivity film. Moreover, a comprehensive study of the precursor evolution is conducted mainly by X-ray analysis and μ-Raman spectroscopy. It is found that the TFA begins to decompose at the beginning of the thermal process, and then further decomposes as temperature increases, and at 700 ℃ BTO nanoparticles begin to appear. It sug- gests that the YBCO film embedded with BTO nanoparticles, whose critical current density (Jc) is enhanced, is successfully prepared by an easily scalable chemical solution deposition technique. Wang Hong-Yan, Ding Fa-Zhu, Gu Hong-Wei, Zhang Teng, and Peng Xing-Yu( a) Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China b ) University of Chinese Academy of Sciences, Beijing 100049, China 11-5639/O4 YBa2Cu3O7-x, precursor evolution, BaTiO3, TFA-MOD ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-1056 2058-3834 1741-4199 |
| DOI: | 10.1088/1674-1056/23/10/107402 |