Computational studies on the interactions of nanomaterials with proteins and their impacts
The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomater...
        Saved in:
      
    
          | Published in | Chinese physics B Vol. 24; no. 12; pp. 8 - 15 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.12.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-1056 2058-3834 1741-4199  | 
| DOI | 10.1088/1674-1056/24/12/120504 | 
Cover
| Abstract | The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications,many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic andπ-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups.The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial–protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment. | 
    
|---|---|
| AbstractList | The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications,many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic andπ-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups.The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial–protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment. The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications, many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic and [pi]-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups. The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial-protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment.  | 
    
| Author | 安德义 苏计国 李春华 李敬源 | 
    
| AuthorAffiliation | CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China College of Science, Yanshan University, Qinhuangdao 066004, China College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China | 
    
| Author_xml | – sequence: 1 fullname: 安德义 苏计国 李春华 李敬源  | 
    
| BookMark | eNqFkM1LwzAYxoNMcJv-C1I8eanLR5uk4EWGXzDwohcvIUvTLdImXZIi_vemdOzgRQg84X2fX3jyLMDMOqsBuEbwDkHOV4iyIkewpCtcrBBOB5awOAPzpDwnnBQzMD-ZLsAihC8IKYKYzMHn2nX9EGU0zso2C3GojQ6Zs1nc68zYqL1U4zLNmsxK6zqZZka2Ifs2cZ_13kVt0lraemSMz0zXJyZcgvMm2fTVUZfg4-nxff2Sb96eX9cPm1wRVMaccYa01JQg3VSw3NK65ohVKTCpK0UbiLaVUpSVVc0k0rjeSqwqxtIFQ1xJsgS307spymHQIYrOBKXbVlrthiAQh7BgJalYst5PVuVdCF43Qpnp79FL0woExVipGNsSY1sCJ8ViqjTh9A_ee9NJ__M_eHME987uDsbuTiSllPGSpXC_ZD2I7g | 
    
| CitedBy_id | crossref_primary_10_1080_1536383X_2023_2209225 crossref_primary_10_1002_adhm_202401836 crossref_primary_10_1080_1536383X_2024_2356217 crossref_primary_10_3390_inorganics11070313 crossref_primary_10_1002_adhm_202402066 crossref_primary_10_1021_acsnano_3c04378 crossref_primary_10_1149_2162_8777_ad910e crossref_primary_10_1088_1674_1056_ad7af5 crossref_primary_10_1149_2162_8777_acea22  | 
    
| Cites_doi | 10.1039/c1nr10783f 10.1021/nn300223w 10.1085/jgp.200910373 10.3109/07853890109002055 10.1016/j.bcp.2005.12.001 10.1039/c3cc46690f 10.1016/j.tig.2003.11.004 10.1021/jp110898r 10.1021/nn800551s 10.1126/science.1108752 10.1021/nn901478z 10.2174/092986711795656225 10.1021/jp208967t 10.1021/nn101762b 10.1146/annurev.physchem.58.032806.104546 10.1039/A809495K 10.1016/S0092-8674(01)00506-2 10.1016/j.ab.2009.01.044 10.1021/jp109133v 10.1103/RevModPhys.58.533 10.1152/ajplung.00084.2005 10.1038/nnano.2013.125 10.1016/j.nano.2008.04.003 10.1038/355761a0 10.1289/ehp.7339 10.1289/ehp.9688 10.1038/nature01116 10.2217/nnm.10.158 10.2174/092986710794183024 10.1021/cr100440g 10.1517/17425247.2010.498473 10.1073/pnas.1204600109 10.1038/nnano.2008.68 10.1016/j.bbapap.2003.11.032 10.1517/17425240903167934 10.1021/ar00005a002 10.1021/ar700089b 10.1002/smll.201201381 10.1021/nl070345g 10.1021/jacs.5b00888 10.1039/b307337h 10.1103/PhysRevLett.93.077402 10.1016/j.addr.2010.08.004 10.1021/nl201391e 10.1103/PhysRevLett.90.207002 10.1073/pnas.1105270108 10.1074/jbc.270.24.14733 10.1021/nn3035155 10.1016/j.bpj.2010.01.065 10.1021/nn101557e 10.1021/ja406924v 10.1002/cjoc.201200662 10.1002/(ISSN)1097-0215 10.1016/j.drudis.2007.06.012 10.1007%2Fb103818 10.1021/nl051624b 10.1021/bc5005284 10.1002/(ISSN)1521-4095 10.1093/toxsci/kfp146 10.1016/j.progpolymsci.2010.04.006 10.1126/science.1114397 10.1016/j.nano.2013.04.010 10.1038/nature04233 10.1016/j.biomaterials.2010.06.051 10.1038/1831186a0 10.1002/(ISSN)1521-3773 10.1021/nn100448z 10.1042/bj3160001 10.1021/nl052396o 10.1039/c3cs60111k 10.1002/(ISSN)1097-0134 10.1038/21650 10.1021/ja711021m 10.1016/j.jsb.2005.09.013 10.1016/j.drudis.2007.06.002 10.1021/ja200746p 10.1073/pnas.0505141102 10.1038/nsb0995-768 10.1021/ja2084338 10.1021/ac801817k 10.1016/j.nano.2011.08.019 10.1021/jp961721g 10.1039/b821518a 10.1016/j.nano.2008.04.002 10.1021/nl051861e 10.1039/C4CC03320E 10.1038/nnano.2010.250 10.1073/pnas.95.11.6122 10.1039/c3nr01469j 10.1021/nl103992v 10.1007/s00198-005-2035-9 10.1016/S1386-1425(98)00153-X 10.1063/1.3596745 10.1074/jbc.M414645200 10.1073/pnas.1222276110 10.1021/nn200021j 10.1073/pnas.0909707107 10.1074/jbc.M011026200 10.1016/S0962-8924(00)01800-6 10.1073/pnas.92.17.7819 10.1002/(ISSN)1613-6829 10.1038/354056a0 10.1039/C4NR01623H 10.1146/annurev.bb.24.060195.000505 10.1038/nature08116 10.2217/nnm.10.95 10.1056/NEJMra0912273 10.1021/jp106177n 10.1126/science.1585175 10.1021/ar00174a003 10.1021/jp111820b 10.1073/pnas.022532599 10.1073/pnas.0407928102 10.1016/j.biomaterials.2009.04.001 10.1529/biophysj.107.120659  | 
    
| ContentType | Journal Article | 
    
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M  | 
    
| DOI | 10.1088/1674-1056/24/12/120504 | 
    
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Aerospace Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| DocumentTitleAlternate | Computational studies on the interactions of nanomaterials with proteins and their impacts | 
    
| EISSN | 2058-3834 1741-4199  | 
    
| EndPage | 15 | 
    
| ExternalDocumentID | 10_1088_1674_1056_24_12_120504 666785797  | 
    
| GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M  | 
    
| ID | FETCH-LOGICAL-c315t-7871eae631ef905b6dd81791673d9c6f01b9cc6759d7a1e2dba2c9772db2029a3 | 
    
| ISSN | 1674-1056 | 
    
| IngestDate | Thu Oct 02 06:23:52 EDT 2025 Wed Oct 01 03:34:57 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 Wed Feb 14 10:23:54 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c315t-7871eae631ef905b6dd81791673d9c6f01b9cc6759d7a1e2dba2c9772db2029a3 | 
    
| Notes | molecular dynamics simulation,biological effect,nanomaterial,protein 11-5639/O4 The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications,many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic andπ-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups.The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial–protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1800475397 | 
    
| PQPubID | 23500 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | proquest_miscellaneous_1800475397 crossref_citationtrail_10_1088_1674_1056_24_12_120504 crossref_primary_10_1088_1674_1056_24_12_120504 chongqing_primary_666785797  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-12-01 | 
    
| PublicationDateYYYYMMDD | 2015-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Chinese physics B | 
    
| PublicationTitleAlternate | Chinese Physics | 
    
| PublicationYear | 2015 | 
    
| References | 88 89 Guo W W (104) 2009 110 111 112 114 116 90 117 91 118 92 93 94 95 96 97 10 98 99 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Choi H S (11) 2010; 9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Berggren M (115) 1996; 16 Soderberg A (113) 2000; 60 70 71 72 73 Brokx R D (74) 2001; 276 75 76 77 78 79 100 101 102 103 105 106 80 107 81 108 82 109 83 84 85 86 87  | 
    
| References_xml | – ident: 31 doi: 10.1039/c1nr10783f – ident: 86 doi: 10.1021/nn300223w – ident: 16 doi: 10.1085/jgp.200910373 – ident: 42 doi: 10.3109/07853890109002055 – ident: 37 doi: 10.1016/j.bcp.2005.12.001 – ident: 111 doi: 10.1039/c3cc46690f – ident: 43 doi: 10.1016/j.tig.2003.11.004 – ident: 49 doi: 10.1021/jp110898r – ident: 60 doi: 10.1021/nn800551s – volume: 60 start-page: 2281 year: 2000 ident: 113 publication-title: Cancer Res. – ident: 22 doi: 10.1126/science.1108752 – ident: 35 doi: 10.1021/nn901478z – ident: 32 doi: 10.2174/092986711795656225 – ident: 78 doi: 10.1021/jp208967t – ident: 48 doi: 10.1021/nn101762b – ident: 103 doi: 10.1146/annurev.physchem.58.032806.104546 – ident: 30 doi: 10.1039/A809495K – ident: 66 doi: 10.1016/S0092-8674(01)00506-2 – ident: 101 doi: 10.1016/j.ab.2009.01.044 – ident: 56 doi: 10.1021/jp109133v – ident: 2 doi: 10.1103/RevModPhys.58.533 – ident: 27 doi: 10.1152/ajplung.00084.2005 – ident: 79 doi: 10.1038/nnano.2013.125 – ident: 21 doi: 10.1016/j.nano.2008.04.003 – ident: 1 doi: 10.1038/355761a0 – ident: 24 doi: 10.1289/ehp.7339 – ident: 28 doi: 10.1289/ehp.9688 – ident: 67 doi: 10.1038/nature01116 – ident: 77 doi: 10.2217/nnm.10.158 – ident: 8 doi: 10.2174/092986710794183024 – ident: 15 doi: 10.1021/cr100440g – ident: 14 doi: 10.1517/17425247.2010.498473 – ident: 40 doi: 10.1073/pnas.1204600109 – ident: 26 doi: 10.1038/nnano.2008.68 – ident: 75 doi: 10.1016/j.bbapap.2003.11.032 – ident: 10 doi: 10.1517/17425240903167934 – ident: 4 doi: 10.1021/ar00005a002 – ident: 59 doi: 10.1021/ar700089b – ident: 7 doi: 10.1002/smll.201201381 – ident: 81 doi: 10.1021/nl070345g – volume: 16 start-page: 3459 issn: 0250-7005 year: 1996 ident: 115 publication-title: Anticancer Res. – ident: 118 doi: 10.1021/jacs.5b00888 – ident: 95 doi: 10.1039/b307337h – ident: 102 doi: 10.1103/PhysRevLett.93.077402 – ident: 12 doi: 10.1016/j.addr.2010.08.004 – ident: 96 doi: 10.1021/nl201391e – ident: 94 doi: 10.1103/PhysRevLett.90.207002 – ident: 50 doi: 10.1073/pnas.1105270108 – ident: 64 doi: 10.1074/jbc.270.24.14733 – ident: 89 doi: 10.1021/nn3035155 – ident: 55 doi: 10.1016/j.bpj.2010.01.065 – ident: 84 doi: 10.1021/nn101557e – ident: 92 doi: 10.1021/ja406924v – ident: 6 doi: 10.1002/cjoc.201200662 – ident: 116 doi: 10.1002/(ISSN)1097-0215 – ident: 19 doi: 10.1016/j.drudis.2007.06.012 – ident: 52 doi: 10.1007%2Fb103818 – ident: 34 doi: 10.1021/nl051624b – ident: 109 doi: 10.1021/bc5005284 – ident: 5 doi: 10.1002/(ISSN)1521-4095 – ident: 25 doi: 10.1093/toxsci/kfp146 – ident: 13 doi: 10.1016/j.progpolymsci.2010.04.006 – ident: 23 doi: 10.1126/science.1114397 – ident: 87 doi: 10.1016/j.nano.2013.04.010 – ident: 76 doi: 10.1038/nature04233 – ident: 83 doi: 10.1016/j.biomaterials.2010.06.051 – ident: 45 doi: 10.1038/1831186a0 – ident: 105 doi: 10.1002/(ISSN)1521-3773 – volume: 9 start-page: 291 year: 2010 ident: 11 publication-title: Mol. Imaging – ident: 38 doi: 10.1021/nn100448z – ident: 41 doi: 10.1042/bj3160001 – ident: 82 doi: 10.1021/nl052396o – ident: 97 doi: 10.1039/c3cs60111k – ident: 117 doi: 10.1002/(ISSN)1097-0134 – ident: 65 doi: 10.1038/21650 – ident: 53 doi: 10.1021/ja711021m – ident: 99 doi: 10.1016/j.jsb.2005.09.013 – ident: 18 doi: 10.1016/j.drudis.2007.06.002 – ident: 110 doi: 10.1021/ja200746p – ident: 51 doi: 10.1073/pnas.0505141102 – ident: 70 doi: 10.1038/nsb0995-768 – ident: 90 doi: 10.1021/ja2084338 – ident: 100 doi: 10.1021/ac801817k – ident: 39 doi: 10.1016/j.nano.2011.08.019 – ident: 106 doi: 10.1021/jp961721g – start-page: 3395 year: 2009 ident: 104 publication-title: Chem. Commun. doi: 10.1039/b821518a – ident: 20 doi: 10.1016/j.nano.2008.04.002 – ident: 58 doi: 10.1021/nl051861e – ident: 112 doi: 10.1039/C4CC03320E – ident: 91 doi: 10.1038/nnano.2010.250 – ident: 93 doi: 10.1073/pnas.95.11.6122 – ident: 46 doi: 10.1039/c3nr01469j – ident: 88 doi: 10.1021/nl103992v – ident: 44 doi: 10.1007/s00198-005-2035-9 – ident: 98 doi: 10.1016/S1386-1425(98)00153-X – ident: 108 doi: 10.1063/1.3596745 – ident: 114 doi: 10.1074/jbc.M414645200 – ident: 80 doi: 10.1073/pnas.1222276110 – ident: 85 doi: 10.1021/nn200021j – ident: 33 doi: 10.1073/pnas.0909707107 – volume: 276 start-page: 14083 year: 2001 ident: 74 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M011026200 – ident: 69 doi: 10.1016/S0962-8924(00)01800-6 – ident: 63 doi: 10.1073/pnas.92.17.7819 – ident: 17 doi: 10.1002/(ISSN)1613-6829 – ident: 57 doi: 10.1038/354056a0 – ident: 68 doi: 10.1039/C4NR01623H – ident: 73 doi: 10.1146/annurev.bb.24.060195.000505 – ident: 61 doi: 10.1038/nature08116 – ident: 62 doi: 10.2217/nnm.10.95 – ident: 9 doi: 10.1056/NEJMra0912273 – ident: 47 doi: 10.1021/jp106177n – ident: 72 doi: 10.1126/science.1585175 – ident: 3 doi: 10.1021/ar00174a003 – ident: 107 doi: 10.1021/jp111820b – ident: 29 doi: 10.1073/pnas.022532599 – ident: 71 doi: 10.1073/pnas.0407928102 – ident: 36 doi: 10.1016/j.biomaterials.2009.04.001 – ident: 54 doi: 10.1529/biophysj.107.120659  | 
    
| SSID | ssj0061023 ssib054405859 ssib000804704  | 
    
| Score | 2.1045742 | 
    
| Snippet | The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the... | 
    
| SourceID | proquest crossref chongqing  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 8 | 
    
| SubjectTerms | Carbon Computation Gold Medical services Nanomaterials Nanostructure Proteins Residues 生物医学应用 生物学作用 生物安全性 碳纳米材料 蛋白相互作用 蛋白质功能 蛋白质相互作用 计算  | 
    
| Title | Computational studies on the interactions of nanomaterials with proteins and their impacts | 
    
| URI | http://lib.cqvip.com/qk/85823A/201512/666785797.html https://www.proquest.com/docview/1800475397  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4imWAjIS4maSOE8fK9SyVKXtYVfacrEcx4GVUNJuNhd-PTOx85IqUbh4o1FiWZ5vxzPjeRDyQWRCJWXImTFhySJdJCwPTcqKQIMCm6swFJjv_O08Wa6j0028GcOau-ySff5J_741r-R_uAo04Ctmyf4DZ4dJgQDPwF8YgcMw3onHtiVD785rbEigc_93hSB2Nm3Bhmuoqgb11K7L-l-7Ig0YI-PCKLc7lzXZTHVWbLFtGuOcIM3Yp_nISSx2tR3vljpYbNmXth5ifbb2Xr-t2LJVc-opnJzsqnUQdd6HIJ5EcliBmaQRiPLYlbO2NNBS8HZZTKWszZTu0cRvld4g8dCR0E-JySoREng3-LFtVDwvmn1-IU_WZ2dydbxZfby-YdhPDO_dXXOV--QBB3mPTT2-XlxOFB8_SkdDNI5Ab81QsbNneIIFLdBU75fS55ZnmTfQPB55AffswrA0x8-6-nED2zZXceYnfKe2rJ6Qx87eoEcWPE_JPVM9Iw8vLSufk-8zCFEHIVpXFOBApxCidUlnEKIIIdpDiAKEaAch6iD0gqxPjlefl8y122A6DOI9A9EdGGWSMDCl8OM8KYoMi9cmaVgInZR-kAutwcAURaoCw4tccQ3mAzxwnwsVviQHVV2ZV4RqHealFtjJBk4IEQmtFFY6SjVYCzrXC3I47Ja8tmVVJBjSaRanIl2QuN8_qV2lemyY8kt2ERNZJpEHEnkgOfxyaXmwIN7wXT_p375437NHgljFuzJVmbptZJBhHdUYtPXXd3jnkDwa_xxvyMF-15q3oKzu83cd7v4AMzyNXg | 
    
| linkProvider | IOP Publishing | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+studies+on+the+interactions+of+nanomaterials+with+proteins+and+their+impacts&rft.jtitle=Chinese+physics+B&rft.au=An%2C+De-Yi&rft.au=Su%2C+Ji-Guo&rft.au=Li%2C+Chun-Hua&rft.au=Li%2C+Jing-Yuan&rft.date=2015-12-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=24&rft.issue=12&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F12%2F120504&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |