Model-free algorithm for consensus of discrete-time multi-agent systems using reinforcement learning method
In this work, we investigate consensus issues of discrete-time (DT) multi-agent systems (MASs) with completely unknown dynamic by using reinforcement learning (RL) technique. Different from policy iteration (PI) based algorithms that require admissible initial control policies, this work proposes a...
Saved in:
| Published in | Journal of the Franklin Institute Vol. 360; no. 14; pp. 10564 - 10581 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.09.2023
|
| Online Access | Get full text |
| ISSN | 0016-0032 1879-2693 |
| DOI | 10.1016/j.jfranklin.2023.08.010 |
Cover
| Abstract | In this work, we investigate consensus issues of discrete-time (DT) multi-agent systems (MASs) with completely unknown dynamic by using reinforcement learning (RL) technique. Different from policy iteration (PI) based algorithms that require admissible initial control policies, this work proposes a value iteration (VI) based model-free algorithm for consensus of DTMASs with optimal performance and no requirement of admissible initial control policy. Firstly, in order to utilize RL method, the consensus problem is modeled as an optimal control problem of tracking error system for each agent. Then, we introduce a VI algorithm for consensus of DTMASs and give a novel convergence analysis for this algorithm, which does not require admissible initial control input. To implement the proposed VI algorithm to achieve consensus of DTMASs without information of dynamics, we construct actor-critic networks to online estimate the value functions and optimal control inputs in real time. At last, we give some simulation results to show the validity of the proposed algorithm. |
|---|---|
| AbstractList | In this work, we investigate consensus issues of discrete-time (DT) multi-agent systems (MASs) with completely unknown dynamic by using reinforcement learning (RL) technique. Different from policy iteration (PI) based algorithms that require admissible initial control policies, this work proposes a value iteration (VI) based model-free algorithm for consensus of DTMASs with optimal performance and no requirement of admissible initial control policy. Firstly, in order to utilize RL method, the consensus problem is modeled as an optimal control problem of tracking error system for each agent. Then, we introduce a VI algorithm for consensus of DTMASs and give a novel convergence analysis for this algorithm, which does not require admissible initial control input. To implement the proposed VI algorithm to achieve consensus of DTMASs without information of dynamics, we construct actor-critic networks to online estimate the value functions and optimal control inputs in real time. At last, we give some simulation results to show the validity of the proposed algorithm. |
| Author | Su, Housheng An, Qing Luo, Hui Zhao, Jin Long, Mingkang |
| Author_xml | – sequence: 1 givenname: Mingkang surname: Long fullname: Long, Mingkang organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China – sequence: 2 givenname: Qing surname: An fullname: An, Qing organization: Artificial Intelligence School, Wuchang University of Technology, Wuhan 430223, China – sequence: 3 givenname: Housheng orcidid: 0000-0002-7321-2923 surname: Su fullname: Su, Housheng email: houshengsu@gmail.com, shs@hust.edu.cn organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China – sequence: 4 givenname: Hui surname: Luo fullname: Luo, Hui organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China – sequence: 5 givenname: Jin surname: Zhao fullname: Zhao, Jin organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China |
| BookMark | eNqNkMtKAzEUhoMoWKvPYF5gxpNM5tKFi1K8QcWNrkOanLRpZxJJUsG3d0rFhRtdHc7l--F8F-TUB4-EXDMoGbDmZltubVR-1ztfcuBVCV0JDE7IhHXtrODNrDolExhPC4CKn5OLlLZj2zKACdk9B4N9YSMiVf06RJc3A7UhUh18Qp_2iQZLjUs6YsYiuwHpsO-zK9QafabpM2UcEt0n59c0ovMjrHE47HpU0R_GA-ZNMJfkzKo-4dV3nZK3-7vXxWOxfHl4WsyXha5YnYtGcysaMHW3ErCqdAPIBG9sh8pYZphSpq5WeiaqmgkGRoiW8ZXgTLSC13VTTUl7zNUxpBTRyvfoBhU_JQN5cCa38seZPDiT0MnR2Uje_iK1yyq74HNUrv8HPz_yOL734TDKpB16jcZF1Fma4P7M-AJzSZKP |
| CitedBy_id | crossref_primary_10_1016_j_ins_2024_121196 crossref_primary_10_1016_j_neucom_2025_129846 crossref_primary_10_1109_TSIPN_2024_3419437 |
| Cites_doi | 10.1109/TCYB.2015.2492242 10.1016/j.jfranklin.2021.02.022 10.1109/TAC.2007.904277 10.1109/TAC.2022.3184630 10.1016/j.jfranklin.2020.07.008 10.1016/j.automatica.2014.10.047 10.1109/TCYB.2019.2948209 10.1007/s11768-015-3203-x 10.1016/j.automatica.2011.03.005 10.1049/iet-cta.2018.6266 10.1109/TCYB.2020.2987385 10.1109/TAC.2022.3184652 10.1109/TIE.2016.2542134 10.1109/TNN.2009.2027233 10.1109/TMECH.2009.2014057 10.1016/j.jfranklin.2018.06.006 10.1063/1.5120106 10.1016/j.jfranklin.2020.12.033 10.1016/j.automatica.2022.110645 |
| ContentType | Journal Article |
| Copyright | 2023 The Franklin Institute |
| Copyright_xml | – notice: 2023 The Franklin Institute |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jfranklin.2023.08.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2693 |
| EndPage | 10581 |
| ExternalDocumentID | 10_1016_j_jfranklin_2023_08_010 S001600322300501X |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO ADXHL AEIPS AFJKZ AGQPQ AHPAA AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c315t-6c2f460d58b40b3c60e1426f8eadf1d1aad53bc94351410d44712b42147425563 |
| IEDL.DBID | .~1 |
| ISSN | 0016-0032 |
| IngestDate | Wed Oct 01 05:31:44 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 23 02:35:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c315t-6c2f460d58b40b3c60e1426f8eadf1d1aad53bc94351410d44712b42147425563 |
| ORCID | 0000-0002-7321-2923 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1016_j_jfranklin_2023_08_010 crossref_citationtrail_10_1016_j_jfranklin_2023_08_010 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2023_08_010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the Franklin Institute |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Liu, Fan, Jia (bib0002) 2020; 357 Rizvi, Lin (bib0019) 2019; 13 Bertsekas, Tsitsiklis (bib0015) 1996 Ren, Beard, Atkins (bib0011) 2005; Vol .3 Abouheaf, Lewis, Vamvoudakis, Haesaert, Babuska (bib0016) 2014; 50 Li, Duan (bib0022) 2014 Su, Wang, Gao (bib0005) 2023; 68 Tabuada (bib0009) 2007; 52 Long, Su, Liu (bib0003) 2018; 355 Zhang, Wu, Cao (bib0008) 2021; 358 Long, Su, Zeng (bib0021) 2022; 52 Abouheaf, Lewis, Mahmoud (bib0017) 2015; 13 Yao, Dou, Zhao, Zhang (bib0001) 2021; 358 Long, Su, Wang, Jiang, Wang (bib0020) 2019; 29 Su, Wang, Zeng (bib0010) 2020; 50 Vamvoudakis, Lewis (bib0012) 2011; 47 Li, An, Su (bib0006) 2023; 444 Wei, Liu, Lin (bib0014) 2016; 46 Khoo, Xie, Man (bib0023) 2009; 14 Su, Miao (bib0004) 2023; 68 Su, Xu (bib0007) 2022; 146 Zhang, Luo, Liu (bib0024) 2009; 20 Zhang, Jiang, Luo, Xiao (bib0018) 2017; 64 Sutton, Barto (bib0013) 1998 Khoo (10.1016/j.jfranklin.2023.08.010_bib0023) 2009; 14 Abouheaf (10.1016/j.jfranklin.2023.08.010_bib0017) 2015; 13 Zhang (10.1016/j.jfranklin.2023.08.010_bib0024) 2009; 20 Tabuada (10.1016/j.jfranklin.2023.08.010_bib0009) 2007; 52 Zhang (10.1016/j.jfranklin.2023.08.010_bib0008) 2021; 358 Bertsekas (10.1016/j.jfranklin.2023.08.010_bib0015) 1996 Long (10.1016/j.jfranklin.2023.08.010_bib0021) 2022; 52 Sutton (10.1016/j.jfranklin.2023.08.010_bib0013) 1998 Abouheaf (10.1016/j.jfranklin.2023.08.010_bib0016) 2014; 50 Yao (10.1016/j.jfranklin.2023.08.010_bib0001) 2021; 358 Liu (10.1016/j.jfranklin.2023.08.010_bib0002) 2020; 357 Su (10.1016/j.jfranklin.2023.08.010_bib0004) 2023; 68 Li (10.1016/j.jfranklin.2023.08.010_bib0006) 2023; 444 Li (10.1016/j.jfranklin.2023.08.010_bib0022) 2014 Su (10.1016/j.jfranklin.2023.08.010_bib0007) 2022; 146 Vamvoudakis (10.1016/j.jfranklin.2023.08.010_bib0012) 2011; 47 Rizvi (10.1016/j.jfranklin.2023.08.010_bib0019) 2019; 13 Su (10.1016/j.jfranklin.2023.08.010_bib0005) 2023; 68 Su (10.1016/j.jfranklin.2023.08.010_bib0010) 2020; 50 Zhang (10.1016/j.jfranklin.2023.08.010_bib0018) 2017; 64 Long (10.1016/j.jfranklin.2023.08.010_bib0003) 2018; 355 Wei (10.1016/j.jfranklin.2023.08.010_bib0014) 2016; 46 Ren (10.1016/j.jfranklin.2023.08.010_bib0011) 2005; Vol .3 Long (10.1016/j.jfranklin.2023.08.010_bib0020) 2019; 29 |
| References_xml | – volume: 14 start-page: 219 year: 2009 end-page: 228 ident: bib0023 article-title: Robust finite-time consensus tracking algorithm for multirobot systems publication-title: IEEE/ASME Trans. Mechatron. – volume: 357 start-page: 9268 year: 2020 end-page: 9287 ident: bib0002 article-title: Iterative learning formation control for continuous-time multi-agent systems with randomly varying trial lengths publication-title: J. Franklin Inst. – volume: 358 start-page: 3512 year: 2021 end-page: 3529 ident: bib0001 article-title: Finite-time consensus control for a class of multi-agent systems with dead-zone input publication-title: J. Franklin Inst. – volume: 13 start-page: 55 year: 2015 end-page: 69 ident: bib0017 article-title: Discrete-time dynamic graphical games: model-free reinforcement learning solution publication-title: Control Theory Technol. – volume: 358 start-page: 2086 year: 2021 end-page: 2114 ident: bib0008 article-title: Global Mittag-Leffler consensus for fractional singularly perturbed multi-agent systems with discontinuous inherent dynamics via event-triggered control strategy publication-title: J. Franklin Inst. – year: 2014 ident: bib0022 article-title: Cooperative Control of Multi-Agent Systems: A Consensus Region Approach – volume: 29 start-page: 103127 year: 2019 ident: bib0020 article-title: An iterative q-learning based global consensus of discrete-time saturated multi-agent systems publication-title: Chaos – volume: 355 start-page: 6045 year: 2018 end-page: 6061 ident: bib0003 article-title: Group controllability of two-time-scale multi-agent networks publication-title: J. Franklin Inst. – volume: 47 start-page: 1556 year: 2011 end-page: 1569 ident: bib0012 article-title: Multi-player non-zero-sum games: online adaptive learning solution of coupled Hamilton-Jacobi equations publication-title: Automatica – volume: 46 start-page: 840 year: 2016 end-page: 853 ident: bib0014 article-title: Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems publication-title: IEEE Trans. Cybern. – volume: 52 start-page: 1680 year: 2007 end-page: 1685 ident: bib0009 article-title: Event-triggered real-time scheduling of stabilizing control tasks publication-title: IEEE Trans. Automat. Contr. – year: 1998 ident: bib0013 article-title: Reinforcement Learning: An Introduction – volume: 50 start-page: 3038 year: 2014 end-page: 3053 ident: bib0016 article-title: Multi-agent discrete-time graphical games and reinforcement learning solutions publication-title: Automatica – volume: 68 start-page: 2552 year: 2023 end-page: 2559 ident: bib0005 article-title: Interval coordination of multiagent networks with antagonistic interactions publication-title: IEEE Trans. Automat. Contr. – volume: 146 start-page: 110645 year: 2022 ident: bib0007 article-title: Deployment of second-order networked mobile agents over a smooth curve publication-title: Automatica – volume: 68 start-page: 2529 year: 2023 end-page: 2535 ident: bib0004 article-title: Consensus on directed matrix-weighted networks publication-title: IEEE Trans. Automat. Contr. – volume: Vol .3 start-page: 1859 year: 2005 end-page: 1864 ident: bib0011 article-title: A survey of consensus problems in multi-agent coordination publication-title: Proceedings of the 2005 American Control Conference – year: 1996 ident: bib0015 article-title: Neuro-Dynamic Programming – volume: 13 start-page: 2866 year: 2019 end-page: 2876 ident: bib0019 article-title: Output feedback reinforcement learning based optimal output synchronisation of heterogeneous discrete-time multi-agent systems publication-title: IET Control Theory Appl. – volume: 52 start-page: 1661 year: 2022 end-page: 1670 ident: bib0021 article-title: Output-feedback global consensus of discrete-time multiagent systems subject to input saturation via q-learning method publication-title: IEEE Trans. Cybern. – volume: 444 start-page: 127801 year: 2023 ident: bib0006 article-title: Proximal nested primal-dual gradient algorithms for distributed constraint-coupled composite optimization publication-title: Appl. Math. Comput. – volume: 50 start-page: 4648 year: 2020 end-page: 4657 ident: bib0010 article-title: Consensus of second-order hybrid multiagent systems by event-triggered strategy publication-title: IEEE Trans. Cybern. – volume: 20 start-page: 1490 year: 2009 end-page: 1503 ident: bib0024 article-title: Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints publication-title: IEEE Trans. Neural Netw. – volume: 64 start-page: 4091 year: 2017 end-page: 4100 ident: bib0018 article-title: Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method publication-title: IEEE Trans. Ind. Electron. – year: 1998 ident: 10.1016/j.jfranklin.2023.08.010_bib0013 – volume: 46 start-page: 840 issue: 3 year: 2016 ident: 10.1016/j.jfranklin.2023.08.010_bib0014 article-title: Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2492242 – volume: 358 start-page: 3512 issue: 7 year: 2021 ident: 10.1016/j.jfranklin.2023.08.010_bib0001 article-title: Finite-time consensus control for a class of multi-agent systems with dead-zone input publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2021.02.022 – volume: Vol .3 start-page: 1859 year: 2005 ident: 10.1016/j.jfranklin.2023.08.010_bib0011 article-title: A survey of consensus problems in multi-agent coordination – volume: 52 start-page: 1680 issue: 9 year: 2007 ident: 10.1016/j.jfranklin.2023.08.010_bib0009 article-title: Event-triggered real-time scheduling of stabilizing control tasks publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2007.904277 – volume: 68 start-page: 2529 issue: 4 year: 2023 ident: 10.1016/j.jfranklin.2023.08.010_bib0004 article-title: Consensus on directed matrix-weighted networks publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2022.3184630 – volume: 357 start-page: 9268 issue: 14 year: 2020 ident: 10.1016/j.jfranklin.2023.08.010_bib0002 article-title: Iterative learning formation control for continuous-time multi-agent systems with randomly varying trial lengths publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.07.008 – volume: 444 start-page: 127801 year: 2023 ident: 10.1016/j.jfranklin.2023.08.010_bib0006 article-title: Proximal nested primal-dual gradient algorithms for distributed constraint-coupled composite optimization publication-title: Appl. Math. Comput. – volume: 50 start-page: 3038 issue: 12 year: 2014 ident: 10.1016/j.jfranklin.2023.08.010_bib0016 article-title: Multi-agent discrete-time graphical games and reinforcement learning solutions publication-title: Automatica doi: 10.1016/j.automatica.2014.10.047 – volume: 50 start-page: 4648 issue: 11 year: 2020 ident: 10.1016/j.jfranklin.2023.08.010_bib0010 article-title: Consensus of second-order hybrid multiagent systems by event-triggered strategy publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2948209 – volume: 13 start-page: 55 issue: 1 year: 2015 ident: 10.1016/j.jfranklin.2023.08.010_bib0017 article-title: Discrete-time dynamic graphical games: model-free reinforcement learning solution publication-title: Control Theory Technol. doi: 10.1007/s11768-015-3203-x – year: 2014 ident: 10.1016/j.jfranklin.2023.08.010_bib0022 – volume: 47 start-page: 1556 issue: 8 year: 2011 ident: 10.1016/j.jfranklin.2023.08.010_bib0012 article-title: Multi-player non-zero-sum games: online adaptive learning solution of coupled Hamilton-Jacobi equations publication-title: Automatica doi: 10.1016/j.automatica.2011.03.005 – volume: 13 start-page: 2866 issue: 17 year: 2019 ident: 10.1016/j.jfranklin.2023.08.010_bib0019 article-title: Output feedback reinforcement learning based optimal output synchronisation of heterogeneous discrete-time multi-agent systems publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2018.6266 – volume: 52 start-page: 1661 issue: 3 year: 2022 ident: 10.1016/j.jfranklin.2023.08.010_bib0021 article-title: Output-feedback global consensus of discrete-time multiagent systems subject to input saturation via q-learning method publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2987385 – volume: 68 start-page: 2552 issue: 4 year: 2023 ident: 10.1016/j.jfranklin.2023.08.010_bib0005 article-title: Interval coordination of multiagent networks with antagonistic interactions publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2022.3184652 – volume: 64 start-page: 4091 issue: 5 year: 2017 ident: 10.1016/j.jfranklin.2023.08.010_bib0018 article-title: Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2542134 – year: 1996 ident: 10.1016/j.jfranklin.2023.08.010_bib0015 – volume: 20 start-page: 1490 issue: 9 year: 2009 ident: 10.1016/j.jfranklin.2023.08.010_bib0024 article-title: Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2027233 – volume: 14 start-page: 219 issue: 2 year: 2009 ident: 10.1016/j.jfranklin.2023.08.010_bib0023 article-title: Robust finite-time consensus tracking algorithm for multirobot systems publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2009.2014057 – volume: 355 start-page: 6045 issue: 13 year: 2018 ident: 10.1016/j.jfranklin.2023.08.010_bib0003 article-title: Group controllability of two-time-scale multi-agent networks publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2018.06.006 – volume: 29 start-page: 103127 issue: 10 year: 2019 ident: 10.1016/j.jfranklin.2023.08.010_bib0020 article-title: An iterative q-learning based global consensus of discrete-time saturated multi-agent systems publication-title: Chaos doi: 10.1063/1.5120106 – volume: 358 start-page: 2086 issue: 3 year: 2021 ident: 10.1016/j.jfranklin.2023.08.010_bib0008 article-title: Global Mittag-Leffler consensus for fractional singularly perturbed multi-agent systems with discontinuous inherent dynamics via event-triggered control strategy publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.12.033 – volume: 146 start-page: 110645 year: 2022 ident: 10.1016/j.jfranklin.2023.08.010_bib0007 article-title: Deployment of second-order networked mobile agents over a smooth curve publication-title: Automatica doi: 10.1016/j.automatica.2022.110645 |
| SSID | ssj0017100 |
| Score | 2.4042578 |
| Snippet | In this work, we investigate consensus issues of discrete-time (DT) multi-agent systems (MASs) with completely unknown dynamic by using reinforcement learning... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 10564 |
| Title | Model-free algorithm for consensus of discrete-time multi-agent systems using reinforcement learning method |
| URI | https://dx.doi.org/10.1016/j.jfranklin.2023.08.010 |
| Volume | 360 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na8IwFA_iLtth7JO5D8lh12hi09ruJjJxG_M0wVtJ0sTpXCtVr_vbl9emojDwsGNLH5TX1_dey-8DoccOGL4bIYgCtVuuI_vOBV2PREKB1bFhorADeh8FwzF_nfiTGupXXBiAVbreX_b0olu7M22XzfZyNgOOL7PT2hYkKK5TNgEGO--Ci0HrZwvzYKBeU3Zj--Vsr97DeM2Nc0ZvgYt4oeUJVNq_JtTO1BmcoVO3LuJeeUfnqKbTC3SyIyJ4ib7AzmxBTK41FotpZr_2P7-x3UWxAqR0utqscGYw0G9zuyETcJPHBY6QCOBV4VLMeYUBAj_FuS60VFXx2xA7U4kpLp2mr9B48PzRHxJnoUCUx_w1CVTH8IAmfig5lZ4KqGZ2JpvQFpBhCRMi8T2pIg6AfkYTm0DWkRzMiziIk3nXqJ5mqb5BmCo_8SJBPdsVeCKTUDJjqAgjyXRgTNhAQZW2WDl9cbC5WMQVkGweb_MdQ75jMMBktIHoNnBZSmwcDnmqnku8Vy2xHQSHgm__E3yHjuGoRJndo_o63-gHu5asZbOouyY66r28DUe_DPDkpQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RnxuQevhd12W1pvhkhQgRMk3Dbb7S6CWEiBq7_dnXZLIDHx4LXtJM10dh7NN9-H0KMLgu9aCEcC2y1TkTlzQdNzIiFB6lhTkcsB9fpBZ8jeRv6oglrlLgzAKm3uL3J6nq3tlYb1ZmMxmcCOLzXV2gQkMK4TOtpD-8x3mzCB1b83OA8K9DVFOjajs3l8B-Q11VYavQ4y4jmZJ-zS_laitspO-wQd234RPxevdIoqKj1DR1ssgufoE_TMZo7OlMJiNp6bcf_jC5tmFEuASqfL9RLPNYb928y0yA7IyeMcSOgIWKzCBZvzEgMGfowzlZOpyvy_IbaqEmNcSE1foGH7ZdDqOFZDwZEe9VdOIF3NApL4YcxI7MmAKGqKsg5NBGmaUCES34tlxADRT0nCTLFyYwbqRQzYybxLVE3nqbpCmEg_8SJBPJMWWBInYUy1JiKMYqoCrcMaCkq3cWkJxkHnYsZLJNmUb_zNwd8cFDApqSGyMVwUHBt_mzyV34XvhAs3leAv4-v_GD-gg86g1-Xd1_77DTqEOwXk7BZVV9la3ZkeZRXf5zH4A2l75jo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-free+algorithm+for+consensus+of+discrete-time+multi-agent+systems+using+reinforcement+learning+method&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Long%2C+Mingkang&rft.au=An%2C+Qing&rft.au=Su%2C+Housheng&rft.au=Luo%2C+Hui&rft.date=2023-09-01&rft.pub=Elsevier+Inc&rft.issn=0016-0032&rft.eissn=1879-2693&rft.volume=360&rft.issue=14&rft.spage=10564&rft.epage=10581&rft_id=info:doi/10.1016%2Fj.jfranklin.2023.08.010&rft.externalDocID=S001600322300501X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |