A multi-platform active debris removal mission planning method based on DCOP with chain topology

In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP), and a novel Synchronous Incomplete Searching Algorithm under Chain Topology (SISACT) is proposed. We envision a distributive cooperative miss...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 203; pp. 495 - 509
Main Authors Yang, Jianan, Hu, Yu Hen, Hou, Xiaolei, lv, Rui, Huang, Hai, Zhao, Ningning, Fan, Hui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN0094-5765
DOI10.1016/j.actaastro.2022.10.046

Cover

Abstract In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP), and a novel Synchronous Incomplete Searching Algorithm under Chain Topology (SISACT) is proposed. We envision a distributive cooperative mission planning scenario where multiple debris removal platforms generate individual mission sub-plans on how to remove a subset of assigned debris subject to constraints on mission duration and orbit transfer cost. The overall goal is to maximize the aggregate reward for debris removal while avoiding conflicts among sub-plans. To resolve the potential conflicts, multiple platforms must communicate each other intensively. The proposed SISACT algorithm can reduce the inter-platform communication burdens by inducing a fully connected constraint graph into a chain graph with domain assignment. SISACT is designed to focus on global collaboration among the platforms for mission plan partitioning while leveraging existing single platform mission planning algorithms to provide details of the sub-plans. Simulation with a realistic active debris removal scenario has been carried out. It is shown that the proposed SISACT algorithm can optimize the overall reward of the mission while satisfying all the constraints. This validates the effectiveness of SISACT. •A new multi-platform ADR mission planning is proposed based on DCOP.•A new DCOP model with fully-connected all-hard constraint graph is presented.•Proposed method can satisfy all constraints without changing solution frequently.•Tests on Iridium 33 debris set with 4 platforms verify its efficiency.
AbstractList In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP), and a novel Synchronous Incomplete Searching Algorithm under Chain Topology (SISACT) is proposed. We envision a distributive cooperative mission planning scenario where multiple debris removal platforms generate individual mission sub-plans on how to remove a subset of assigned debris subject to constraints on mission duration and orbit transfer cost. The overall goal is to maximize the aggregate reward for debris removal while avoiding conflicts among sub-plans. To resolve the potential conflicts, multiple platforms must communicate each other intensively. The proposed SISACT algorithm can reduce the inter-platform communication burdens by inducing a fully connected constraint graph into a chain graph with domain assignment. SISACT is designed to focus on global collaboration among the platforms for mission plan partitioning while leveraging existing single platform mission planning algorithms to provide details of the sub-plans. Simulation with a realistic active debris removal scenario has been carried out. It is shown that the proposed SISACT algorithm can optimize the overall reward of the mission while satisfying all the constraints. This validates the effectiveness of SISACT. •A new multi-platform ADR mission planning is proposed based on DCOP.•A new DCOP model with fully-connected all-hard constraint graph is presented.•Proposed method can satisfy all constraints without changing solution frequently.•Tests on Iridium 33 debris set with 4 platforms verify its efficiency.
Author lv, Rui
Zhao, Ningning
Huang, Hai
Yang, Jianan
Hu, Yu Hen
Hou, Xiaolei
Fan, Hui
Author_xml – sequence: 1
  givenname: Jianan
  orcidid: 0000-0003-2860-5004
  surname: Yang
  fullname: Yang, Jianan
  email: yang_jia_nan@foxmail.com
  organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China
– sequence: 2
  givenname: Yu Hen
  surname: Hu
  fullname: Hu, Yu Hen
  organization: Dept. Electrical and Computer Engineering, University of Wisconsin-Madison, WI 53706, USA
– sequence: 3
  givenname: Xiaolei
  orcidid: 0000-0002-8231-0648
  surname: Hou
  fullname: Hou, Xiaolei
  organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 4
  givenname: Rui
  surname: lv
  fullname: lv, Rui
  organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China
– sequence: 5
  givenname: Hai
  surname: Huang
  fullname: Huang, Hai
  organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China
– sequence: 6
  givenname: Ningning
  surname: Zhao
  fullname: Zhao, Ningning
  organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China
– sequence: 7
  givenname: Hui
  surname: Fan
  fullname: Fan, Hui
  organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China
BookMark eNqNkLtOAzEQRV0EiQT4BvwDu9jed0ERhacUKRRQm_FjE0e7dmSboPw9joIoaKAaae6cK82ZoYl1ViN0TUlOCa1vtjnICBCidzkjjKVtTsp6gqaEdGVWNXV1jmYhbAkhDWu7KXqf4_FjiCbbDRB750ecGsxeY6WFNwF7Pbo9DHg0IRhncTqz1tg1HnXcOIUFBK1wCu4Wqxf8aeIGyw0Yi6PbucGtD5forIch6KvveYHeHu5fF0_ZcvX4vJgvM1nQKmY1aZTqBdMKOsZKCmUrWKv6phAd7TotChAldLWoK6kaAUBVU9GypaTSsgBZXKDm1Cu9C8Hrnu-8GcEfOCX8KIdv-Y8cfpRzDJKcRN7-IqWJENO30YMZ_sHPT7xO7-2N9jxIo63UyngtI1fO_NnxBbWejRQ
CitedBy_id crossref_primary_10_1016_j_paerosci_2024_100982
crossref_primary_10_1109_TAES_2024_3445318
crossref_primary_10_1016_j_asoc_2023_110983
crossref_primary_10_1007_s00521_023_09399_8
crossref_primary_10_1016_j_cja_2025_103464
Cites_doi 10.1016/j.knosys.2018.05.033
10.1109/69.729707
10.1007/s10957-012-0130-6
10.1007/s11432-020-3049-5
10.1007/11600930_71
10.1016/j.actaastro.2008.07.009
10.1016/j.actaastro.2018.05.040
10.1613/jair.2591
10.1109/ACCESS.2020.3001311
10.1016/j.actaastro.2015.04.003
10.1016/j.actaastro.2016.06.018
10.1016/j.actaastro.2009.08.005
10.2514/1.G005602
10.1016/j.actaastro.2018.01.017
10.1145/321296.321300
10.1016/j.asr.2015.05.002
10.1016/0004-3702(85)90041-4
10.1016/j.artint.2004.09.003
10.1016/j.asr.2012.12.003
10.1016/j.artint.2004.10.004
10.1016/j.actaastro.2014.10.003
10.1016/j.actaastro.2011.04.017
10.1016/j.actaastro.2012.11.009
10.1007/s10957-015-0705-0
10.1023/B:HEUR.0000026896.44360.f9
10.1016/j.eswa.2014.02.039
ContentType Journal Article
Copyright 2022 IAA
Copyright_xml – notice: 2022 IAA
DBID AAYXX
CITATION
DOI 10.1016/j.actaastro.2022.10.046
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 509
ExternalDocumentID 10_1016_j_actaastro_2022_10_046
S0094576522005963
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c315t-607ddfb2eda92241a48b28df73b9199eb3ab4a96b65cd7baa1d75148105ec3ac3
IEDL.DBID .~1
ISSN 0094-5765
IngestDate Thu Apr 24 22:51:14 EDT 2025
Thu Oct 02 04:23:28 EDT 2025
Sun Apr 06 06:54:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Active debris removal (ADR)
Multi-platform mission planning
Distributed constraint optimization problem (DCOP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-607ddfb2eda92241a48b28df73b9199eb3ab4a96b65cd7baa1d75148105ec3ac3
ORCID 0000-0002-8231-0648
0000-0003-2860-5004
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_actaastro_2022_10_046
crossref_citationtrail_10_1016_j_actaastro_2022_10_046
elsevier_sciencedirect_doi_10_1016_j_actaastro_2022_10_046
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Acta astronautica
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Castronuovo (b10) 2011; 69
Stuart, Howell, Wilson (b3) 2016; 57
Liou, Johnson (b7) 2009; 64
Forshaw, Aglietti, Navarathinam, Kadhem, Salmon, Pisseloup, Joffre, Chabot, Retat, Axthelm (b9) 2016; 127
Kumar, Petcu, Faltings (b38) 2008
Chen, Jiang, Li, Baoyin (b16) 2021; 44
Petcu, Faltings (b37) 2006; Vol. 6
Liou, Shoots (b1) 2009; 13
Yang, Hou, Liu, Hu, Pan (b25) 2022; 65
Fioretto, Le, Yeoh, Pontelli, Son (b40) 2014
Rossi, Van Beek, Walsh (b45) 2006
Fioretto, Pontelli, Yeoh (b22) 2018; 61
Huang, Zhuang (b18) 2015; 113
Petcu, Faltings (b36) 2007
Duan, Zhang, Mao, Zhang (b21) 2017; 48
Yokoo, Durfee (b46) 1998; 10
A. Petcu, B. Faltings, DPOP: A scalable method for multiagent constraint optimization, in: International Joint Conference on Artificial Intelligence, 2005, pp. 266–271.
Yokoo (b47) 2001
Golomb, Baumert (b43) 1965; 12
Petcu, Faltings (b35) 2007
Gershman, Meisels, Zivan (b32) 2009; 34
Braun, Lüpken, Flegel, Gelhaus, M öckel, Kebschull, Wiedemann, V örsmann (b12) 2013; 51
Zhao, Zheng, Liu (b5) 2018; 158
Mackworth, Freuder (b44) 1985; 25
Cerf (b11) 2015; 167
Aydin, Fogarty (b19) 2004; 10
Cerf (b29) 2013; 156
Kessler, Johnson, Liou, Matney (b2) 2010; 137
Lei, Xing, Wu (b34) 2012; 37
Bang, Ahn (b13) 2019
Bonnal, Ruault, Desjean (b4) 2013; 85
Okimoto, Joe, Iwasaki, Yokoo, Faltings (b33) 2011
Yu, Chen, Chen (b14) 2014; 105
G.E. Peterson, Target identification and Delta-V sizing for active debris removal and improved tracking campaigns, in: Proceedings of the 23rd International Symposium on Spaceflight Dynamics, Pasadena, Paper No. ISSFD23-CRSD2-5, 29, 2012.
Yang, Hou, Hu, Liu, Pan (b27) 2020; 8
Leite, Enembreck, Barthés (b31) 2014; 41
Yang, Hu, Liu, Pan (b24) 2018; 149
Meisels (b20) 2008
Zhang, Wang, Xing, Wittenburg (b42) 2005; 161
Liou, Johnson, Hill (b6) 2010; 66
Izzo, Märtens (b15) 2018; 11
Yang, Hou, Hu, Liu, Pan, Feng (b26) 2021; 42
Modi, Shen, Tambe, Yokoo (b23) 2005; 161
Zheng, Guo, Gill (b17) 2018; 145
Le, Son, Pontelli, Yeoh (b39) 2014
Izzo, Getzner, Hennes, Simões (b28) 2015
Liu, Yang (b30) 2017
Hirayama, Yokoo (b41) 1997
Petcu (10.1016/j.actaastro.2022.10.046_b36) 2007
Liou (10.1016/j.actaastro.2022.10.046_b1) 2009; 13
Yokoo (10.1016/j.actaastro.2022.10.046_b47) 2001
Chen (10.1016/j.actaastro.2022.10.046_b16) 2021; 44
Leite (10.1016/j.actaastro.2022.10.046_b31) 2014; 41
Modi (10.1016/j.actaastro.2022.10.046_b23) 2005; 161
Bang (10.1016/j.actaastro.2022.10.046_b13) 2019
Gershman (10.1016/j.actaastro.2022.10.046_b32) 2009; 34
Lei (10.1016/j.actaastro.2022.10.046_b34) 2012; 37
Okimoto (10.1016/j.actaastro.2022.10.046_b33) 2011
Duan (10.1016/j.actaastro.2022.10.046_b21) 2017; 48
Zheng (10.1016/j.actaastro.2022.10.046_b17) 2018; 145
Aydin (10.1016/j.actaastro.2022.10.046_b19) 2004; 10
Bonnal (10.1016/j.actaastro.2022.10.046_b4) 2013; 85
10.1016/j.actaastro.2022.10.046_b48
Liou (10.1016/j.actaastro.2022.10.046_b7) 2009; 64
Kumar (10.1016/j.actaastro.2022.10.046_b38) 2008
Petcu (10.1016/j.actaastro.2022.10.046_b37) 2006; Vol. 6
Yu (10.1016/j.actaastro.2022.10.046_b14) 2014; 105
Stuart (10.1016/j.actaastro.2022.10.046_b3) 2016; 57
Forshaw (10.1016/j.actaastro.2022.10.046_b9) 2016; 127
Yang (10.1016/j.actaastro.2022.10.046_b26) 2021; 42
Liu (10.1016/j.actaastro.2022.10.046_b30) 2017
Fioretto (10.1016/j.actaastro.2022.10.046_b40) 2014
Petcu (10.1016/j.actaastro.2022.10.046_b35) 2007
Golomb (10.1016/j.actaastro.2022.10.046_b43) 1965; 12
Huang (10.1016/j.actaastro.2022.10.046_b18) 2015; 113
Izzo (10.1016/j.actaastro.2022.10.046_b28) 2015
Cerf (10.1016/j.actaastro.2022.10.046_b29) 2013; 156
Fioretto (10.1016/j.actaastro.2022.10.046_b22) 2018; 61
10.1016/j.actaastro.2022.10.046_b8
Meisels (10.1016/j.actaastro.2022.10.046_b20) 2008
Zhang (10.1016/j.actaastro.2022.10.046_b42) 2005; 161
Kessler (10.1016/j.actaastro.2022.10.046_b2) 2010; 137
Yang (10.1016/j.actaastro.2022.10.046_b27) 2020; 8
Braun (10.1016/j.actaastro.2022.10.046_b12) 2013; 51
Cerf (10.1016/j.actaastro.2022.10.046_b11) 2015; 167
Yang (10.1016/j.actaastro.2022.10.046_b24) 2018; 149
Yang (10.1016/j.actaastro.2022.10.046_b25) 2022; 65
Castronuovo (10.1016/j.actaastro.2022.10.046_b10) 2011; 69
Rossi (10.1016/j.actaastro.2022.10.046_b45) 2006
Liou (10.1016/j.actaastro.2022.10.046_b6) 2010; 66
Hirayama (10.1016/j.actaastro.2022.10.046_b41) 1997
Mackworth (10.1016/j.actaastro.2022.10.046_b44) 1985; 25
Le (10.1016/j.actaastro.2022.10.046_b39) 2014
Zhao (10.1016/j.actaastro.2022.10.046_b5) 2018; 158
Yokoo (10.1016/j.actaastro.2022.10.046_b46) 1998; 10
Izzo (10.1016/j.actaastro.2022.10.046_b15) 2018; 11
References_xml – volume: 145
  start-page: 28
  year: 2018
  end-page: 43
  ident: b17
  article-title: Onboard autonomous mission re-planning for multi-satellite system
  publication-title: Acta Astronaut.
– volume: 41
  start-page: 5139
  year: 2014
  end-page: 5157
  ident: b31
  article-title: Distributed constraint optimization problems: review and perspectives
  publication-title: Expert Syst. Appl.
– volume: 127
  start-page: 448
  year: 2016
  end-page: 463
  ident: b9
  article-title: Removedebris: An in-orbit active debris removal demonstration mission
  publication-title: Acta Astronaut.
– volume: 161
  start-page: 149
  year: 2005
  end-page: 180
  ident: b23
  article-title: Adopt: asynchronous distributed constraint optimization with quality guarantees
  publication-title: Artificial Intelligence
– volume: 10
  start-page: 673
  year: 1998
  end-page: 685
  ident: b46
  article-title: The distributed constraint satisfaction problem: formalization and algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 48
  start-page: 1
  year: 2017
  end-page: 12
  ident: b21
  article-title: Applying distributed constraint optimization approach to the user association problem in heterogeneous networks
  publication-title: IEEE Trans. Cybern.
– start-page: 1733
  year: 2017
  ident: b30
  article-title: A multi-objective planning method for multi-debris active removal mission in LEO
  publication-title: AIAA Guidance, Navigation, and Control Conference
– volume: 137
  start-page: 2010
  year: 2010
  ident: b2
  article-title: The kessler syndrome: implications to future space operations
  publication-title: Adv. Astronaut. Sci.
– start-page: 1
  year: 2019
  end-page: 11
  ident: b13
  article-title: Multitarget rendezvous for active debris removal using multiple spacecraft
  publication-title: J. Spacecr. Rockets
– start-page: 1452
  year: 2007
  end-page: 1457
  ident: b35
  article-title: MB-DPOP: a new memory-bounded algorithm for distributed optimization
  publication-title: Proceedings of the 20th International Joint Conference on Artificial Intelligence
– start-page: 1337
  year: 2014
  end-page: 1338
  ident: b39
  article-title: ASP-DPOP: solving distributed constraint optimization problems with logic programming
  publication-title: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems
– volume: 66
  start-page: 648
  year: 2010
  end-page: 653
  ident: b6
  article-title: Controlling the growth of future LEO debris populations with active debris removal
  publication-title: Acta Astronaut.
– volume: 51
  start-page: 1638
  year: 2013
  end-page: 1648
  ident: b12
  article-title: Active debris removal of multiple priority targets
  publication-title: Adv. Space Res.
– volume: 25
  start-page: 65
  year: 1985
  end-page: 74
  ident: b44
  article-title: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems
  publication-title: Artificial Intelligence
– volume: 42
  start-page: 524354
  year: 2021
  ident: b26
  article-title: Heuristic enhanced reinforcement learning method for large-scale multi-debris active removal mission planning (in Chinese)
  publication-title: Acta Aeronaut. Astronautica Sinica
– volume: 65
  start-page: 1
  year: 2022
  end-page: 16
  ident: b25
  article-title: A two-level scheme for multiobjective multidebris active removal mission planning in low earth orbits
  publication-title: Sci. China Inf. Sci.
– start-page: 167
  year: 2007
  end-page: 172
  ident: b36
  article-title: PC-DPOP: a new partial centralization algorithm for distributed optimization
  publication-title: Proceedings of the 20th International Joint Conference on Artificial Intelligence
– volume: 13
  start-page: 1
  year: 2009
  ident: b1
  article-title: Satellite collision leaves significant debris clouds
  publication-title: Orbital Debris Q. News
– volume: 158
  start-page: 54
  year: 2018
  end-page: 64
  ident: b5
  article-title: Survey on computational-intelligence-based UAV path planning
  publication-title: Knowl.-Based Syst.
– reference: A. Petcu, B. Faltings, DPOP: A scalable method for multiagent constraint optimization, in: International Joint Conference on Artificial Intelligence, 2005, pp. 266–271.
– volume: 156
  start-page: 761
  year: 2013
  end-page: 796
  ident: b29
  article-title: Multiple space debris collecting mission debris selection and trajectory optimization
  publication-title: J. Optim. Theory Appl.
– year: 2006
  ident: b45
  article-title: Handbook of Constraint Programming
– start-page: 325
  year: 2008
  end-page: 330
  ident: b38
  article-title: H-DPOP: using hard constraints for search space pruning in DCOP
  publication-title: Proceedings of the 23rd AAAI Conference on Artificial Intelligence
– volume: 85
  start-page: 51
  year: 2013
  end-page: 60
  ident: b4
  article-title: Active debris removal: Recent progress and current trends
  publication-title: Acta Astronaut.
– volume: 167
  start-page: 195
  year: 2015
  end-page: 218
  ident: b11
  article-title: Multiple space debris collecting mission: optimal mission planning
  publication-title: J. Optim. Theory Appl.
– volume: 61
  start-page: 1
  year: 2018
  end-page: 16
  ident: b22
  article-title: Distributed constraint optimization problems and applications: a survey
  publication-title: Vestnik Oftalmologii
– start-page: 222
  year: 1997
  end-page: 236
  ident: b41
  article-title: Distributed partial constraint satisfaction problem
  publication-title: International Conference on Principles and Practice of Constraint Programming
– volume: 57
  start-page: 1680
  year: 2016
  end-page: 1697
  ident: b3
  article-title: Application of multi-agent coordination methods to the design of space debris mitigation tours
  publication-title: Adv. Space Res.
– volume: 113
  start-page: 149
  year: 2015
  end-page: 163
  ident: b18
  article-title: Optimal satellite formation reconfiguration using co-evolutionary particle swarm optimization in deep space
  publication-title: Acta Astronaut.
– year: 2001
  ident: b47
  article-title: Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Systems
– volume: 10
  start-page: 269
  year: 2004
  end-page: 292
  ident: b19
  article-title: A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems
  publication-title: J. Heuristics
– volume: 149
  start-page: 123
  year: 2018
  end-page: 142
  ident: b24
  article-title: A maximal-reward preliminary planning for multi-debris active removal mission in LEO with a greedy heuristic method
  publication-title: Acta Astronaut.
– volume: Vol. 6
  start-page: 703
  year: 2006
  end-page: 708
  ident: b37
  article-title: ODPOP: an algorithm for open/distributed constraint optimization
  publication-title: Proceedings of the 21st National Conference on Artificial Intelligence
– volume: 161
  start-page: 55
  year: 2005
  end-page: 87
  ident: b42
  article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks
  publication-title: Artificial Intelligence
– volume: 105
  start-page: 311
  year: 2014
  end-page: 320
  ident: b14
  article-title: Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts
  publication-title: Acta Astronaut.
– volume: 69
  start-page: 848
  year: 2011
  end-page: 859
  ident: b10
  article-title: Active space debris removal?a preliminary mission analysis and design
  publication-title: Acta Astronaut.
– year: 2008
  ident: b20
  article-title: Distributed Search By Constrained Agents: Algorithms, Performance, Communication
– volume: 64
  start-page: 236
  year: 2009
  end-page: 243
  ident: b7
  article-title: A sensitivity study of the effectiveness of active debris removal in LEO
  publication-title: Acta Astronaut.
– volume: 44
  start-page: 1811
  year: 2021
  end-page: 1822
  ident: b16
  article-title: Optimization for multitarget, multispacecraft impulsive rendezvous considering j 2 perturbation
  publication-title: J. Guid. Control Dyn.
– volume: 12
  start-page: 516
  year: 1965
  end-page: 524
  ident: b43
  article-title: Backtrack programming
  publication-title: J. Acm
– reference: G.E. Peterson, Target identification and Delta-V sizing for active debris removal and improved tracking campaigns, in: Proceedings of the 23rd International Symposium on Spaceflight Dynamics, Pasadena, Paper No. ISSFD23-CRSD2-5, 29, 2012.
– volume: 11
  start-page: 11
  year: 2018
  end-page: 24
  ident: b15
  article-title: The kessler run: on the design of the GTOC9 challenge
  publication-title: Acta Futura
– volume: 37
  start-page: 1
  year: 2012
  end-page: 5
  ident: b34
  article-title: Research on distributed constraint optimization problem and solutions
  publication-title: Fire Control Command Control
– start-page: 307
  year: 2014
  end-page: 323
  ident: b40
  article-title: Improving DPOP with branch consistency for solving distributed constraint optimization problems
  publication-title: International Conference on Principles and Practice of Constraint Programming
– volume: 34
  start-page: 61
  year: 2009
  end-page: 88
  ident: b32
  article-title: Asynchronous forward bounding for distributed cops
  publication-title: J. Artificial Intelligence Res.
– start-page: 660
  year: 2011
  end-page: 674
  ident: b33
  article-title: Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds
  publication-title: International Conference on Principles and Practice of Constraint Programming
– volume: 8
  start-page: 108461
  year: 2020
  end-page: 108473
  ident: b27
  article-title: A reinforcement learning scheme for active multi-debris removal mission planning with modified upper confidence bound tree search
  publication-title: IEEE Access
– start-page: 1207
  year: 2015
  end-page: 1214
  ident: b28
  article-title: Evolving solutions to TSP vriants for active space debris removal
  publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– volume: 158
  start-page: 54
  year: 2018
  ident: 10.1016/j.actaastro.2022.10.046_b5
  article-title: Survey on computational-intelligence-based UAV path planning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.033
– volume: 10
  start-page: 673
  issue: 5
  year: 1998
  ident: 10.1016/j.actaastro.2022.10.046_b46
  article-title: The distributed constraint satisfaction problem: formalization and algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.729707
– volume: 61
  start-page: 1
  issue: 45
  year: 2018
  ident: 10.1016/j.actaastro.2022.10.046_b22
  article-title: Distributed constraint optimization problems and applications: a survey
  publication-title: Vestnik Oftalmologii
– volume: 156
  start-page: 761
  issue: 3
  year: 2013
  ident: 10.1016/j.actaastro.2022.10.046_b29
  article-title: Multiple space debris collecting mission debris selection and trajectory optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0130-6
– start-page: 660
  year: 2011
  ident: 10.1016/j.actaastro.2022.10.046_b33
  article-title: Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds
– volume: 11
  start-page: 11
  year: 2018
  ident: 10.1016/j.actaastro.2022.10.046_b15
  article-title: The kessler run: on the design of the GTOC9 challenge
  publication-title: Acta Futura
– volume: 65
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.actaastro.2022.10.046_b25
  article-title: A two-level scheme for multiobjective multidebris active removal mission planning in low earth orbits
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-020-3049-5
– start-page: 1452
  year: 2007
  ident: 10.1016/j.actaastro.2022.10.046_b35
  article-title: MB-DPOP: a new memory-bounded algorithm for distributed optimization
– start-page: 1207
  year: 2015
  ident: 10.1016/j.actaastro.2022.10.046_b28
  article-title: Evolving solutions to TSP vriants for active space debris removal
– volume: 37
  start-page: 1
  issue: 5
  year: 2012
  ident: 10.1016/j.actaastro.2022.10.046_b34
  article-title: Research on distributed constraint optimization problem and solutions
  publication-title: Fire Control Command Control
– ident: 10.1016/j.actaastro.2022.10.046_b48
  doi: 10.1007/11600930_71
– start-page: 325
  year: 2008
  ident: 10.1016/j.actaastro.2022.10.046_b38
  article-title: H-DPOP: using hard constraints for search space pruning in DCOP
– start-page: 222
  year: 1997
  ident: 10.1016/j.actaastro.2022.10.046_b41
  article-title: Distributed partial constraint satisfaction problem
– volume: 13
  start-page: 1
  issue: 2
  year: 2009
  ident: 10.1016/j.actaastro.2022.10.046_b1
  article-title: Satellite collision leaves significant debris clouds
  publication-title: Orbital Debris Q. News
– volume: 64
  start-page: 236
  issue: 2–3
  year: 2009
  ident: 10.1016/j.actaastro.2022.10.046_b7
  article-title: A sensitivity study of the effectiveness of active debris removal in LEO
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2008.07.009
– volume: 149
  start-page: 123
  year: 2018
  ident: 10.1016/j.actaastro.2022.10.046_b24
  article-title: A maximal-reward preliminary planning for multi-debris active removal mission in LEO with a greedy heuristic method
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.05.040
– volume: 34
  start-page: 61
  issue: 34
  year: 2009
  ident: 10.1016/j.actaastro.2022.10.046_b32
  article-title: Asynchronous forward bounding for distributed cops
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.2591
– start-page: 1337
  year: 2014
  ident: 10.1016/j.actaastro.2022.10.046_b39
  article-title: ASP-DPOP: solving distributed constraint optimization problems with logic programming
– volume: 8
  start-page: 108461
  year: 2020
  ident: 10.1016/j.actaastro.2022.10.046_b27
  article-title: A reinforcement learning scheme for active multi-debris removal mission planning with modified upper confidence bound tree search
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001311
– volume: 113
  start-page: 149
  issue: aug.-sep.
  year: 2015
  ident: 10.1016/j.actaastro.2022.10.046_b18
  article-title: Optimal satellite formation reconfiguration using co-evolutionary particle swarm optimization in deep space
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.04.003
– volume: 127
  start-page: 448
  year: 2016
  ident: 10.1016/j.actaastro.2022.10.046_b9
  article-title: Removedebris: An in-orbit active debris removal demonstration mission
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2016.06.018
– volume: 66
  start-page: 648
  issue: 5–6
  year: 2010
  ident: 10.1016/j.actaastro.2022.10.046_b6
  article-title: Controlling the growth of future LEO debris populations with active debris removal
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2009.08.005
– start-page: 167
  year: 2007
  ident: 10.1016/j.actaastro.2022.10.046_b36
  article-title: PC-DPOP: a new partial centralization algorithm for distributed optimization
– volume: 44
  start-page: 1811
  issue: 10
  year: 2021
  ident: 10.1016/j.actaastro.2022.10.046_b16
  article-title: Optimization for multitarget, multispacecraft impulsive rendezvous considering j 2 perturbation
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G005602
– start-page: 307
  year: 2014
  ident: 10.1016/j.actaastro.2022.10.046_b40
  article-title: Improving DPOP with branch consistency for solving distributed constraint optimization problems
– volume: 145
  start-page: 28
  issue: APR.
  year: 2018
  ident: 10.1016/j.actaastro.2022.10.046_b17
  article-title: Onboard autonomous mission re-planning for multi-satellite system
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.01.017
– volume: 12
  start-page: 516
  issue: 4
  year: 1965
  ident: 10.1016/j.actaastro.2022.10.046_b43
  article-title: Backtrack programming
  publication-title: J. Acm
  doi: 10.1145/321296.321300
– volume: 57
  start-page: 1680
  issue: 8
  year: 2016
  ident: 10.1016/j.actaastro.2022.10.046_b3
  article-title: Application of multi-agent coordination methods to the design of space debris mitigation tours
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2015.05.002
– year: 2008
  ident: 10.1016/j.actaastro.2022.10.046_b20
– volume: 48
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.actaastro.2022.10.046_b21
  article-title: Applying distributed constraint optimization approach to the user association problem in heterogeneous networks
  publication-title: IEEE Trans. Cybern.
– year: 2006
  ident: 10.1016/j.actaastro.2022.10.046_b45
– year: 2001
  ident: 10.1016/j.actaastro.2022.10.046_b47
– volume: 25
  start-page: 65
  issue: 1
  year: 1985
  ident: 10.1016/j.actaastro.2022.10.046_b44
  article-title: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(85)90041-4
– volume: 137
  start-page: 2010
  issue: 8
  year: 2010
  ident: 10.1016/j.actaastro.2022.10.046_b2
  article-title: The kessler syndrome: implications to future space operations
  publication-title: Adv. Astronaut. Sci.
– volume: Vol. 6
  start-page: 703
  year: 2006
  ident: 10.1016/j.actaastro.2022.10.046_b37
  article-title: ODPOP: an algorithm for open/distributed constraint optimization
– volume: 161
  start-page: 149
  issue: 1–2
  year: 2005
  ident: 10.1016/j.actaastro.2022.10.046_b23
  article-title: Adopt: asynchronous distributed constraint optimization with quality guarantees
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2004.09.003
– volume: 51
  start-page: 1638
  issue: 9
  year: 2013
  ident: 10.1016/j.actaastro.2022.10.046_b12
  article-title: Active debris removal of multiple priority targets
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2012.12.003
– volume: 42
  start-page: 524354
  issue: 4
  year: 2021
  ident: 10.1016/j.actaastro.2022.10.046_b26
  article-title: Heuristic enhanced reinforcement learning method for large-scale multi-debris active removal mission planning (in Chinese)
  publication-title: Acta Aeronaut. Astronautica Sinica
– volume: 161
  start-page: 55
  issue: 1–2
  year: 2005
  ident: 10.1016/j.actaastro.2022.10.046_b42
  article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2004.10.004
– start-page: 1733
  year: 2017
  ident: 10.1016/j.actaastro.2022.10.046_b30
  article-title: A multi-objective planning method for multi-debris active removal mission in LEO
– start-page: 1
  year: 2019
  ident: 10.1016/j.actaastro.2022.10.046_b13
  article-title: Multitarget rendezvous for active debris removal using multiple spacecraft
  publication-title: J. Spacecr. Rockets
– volume: 105
  start-page: 311
  issue: 1
  year: 2014
  ident: 10.1016/j.actaastro.2022.10.046_b14
  article-title: Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2014.10.003
– volume: 69
  start-page: 848
  issue: 9–10
  year: 2011
  ident: 10.1016/j.actaastro.2022.10.046_b10
  article-title: Active space debris removal?a preliminary mission analysis and design
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2011.04.017
– volume: 85
  start-page: 51
  year: 2013
  ident: 10.1016/j.actaastro.2022.10.046_b4
  article-title: Active debris removal: Recent progress and current trends
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2012.11.009
– ident: 10.1016/j.actaastro.2022.10.046_b8
– volume: 167
  start-page: 195
  issue: 1
  year: 2015
  ident: 10.1016/j.actaastro.2022.10.046_b11
  article-title: Multiple space debris collecting mission: optimal mission planning
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0705-0
– volume: 10
  start-page: 269
  issue: 3
  year: 2004
  ident: 10.1016/j.actaastro.2022.10.046_b19
  article-title: A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems
  publication-title: J. Heuristics
  doi: 10.1023/B:HEUR.0000026896.44360.f9
– volume: 41
  start-page: 5139
  issue: 11
  year: 2014
  ident: 10.1016/j.actaastro.2022.10.046_b31
  article-title: Distributed constraint optimization problems: review and perspectives
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.02.039
SSID ssj0007289
Score 2.3728454
Snippet In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP),...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 495
SubjectTerms Active debris removal (ADR)
Distributed constraint optimization problem (DCOP)
Multi-platform mission planning
Title A multi-platform active debris removal mission planning method based on DCOP with chain topology
URI https://dx.doi.org/10.1016/j.actaastro.2022.10.046
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0094-5765
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007289
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  issn: 0094-5765
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007289
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0094-5765
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007289
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0094-5765
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007289
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0094-5765
  databaseCode: AKRWK
  dateStart: 19740101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007289
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPMWz8sDqkocTx2xVARUQhQEktnB-RBSVNCphYOG348ujUAmJgTXOSdH5fPfF-u4-Qo6l1h4PuWHWM5JxVzEZqChjgdAmCr1MRYCNwjejePjArx6jxw4ZtL0wSKtscn-d06ts3Tw5abx5UozH2OMruUPLDkBUGjI48ZNzgSoGvc9vmocIkhoCS87w7QWOF-gS4K2cYRdgEPSQ5oVI-LcK9aPqXKyTtQYu0n79RRukY_NNsvpjiOAWeerTihXIigmUCEEpVDmMGotsfjqzr1MXTtRtKN6M0aKRKaK1eDTFOmaoWzgb3N5RvJel-hnGOS1r_YSPbfJwcX4_GLJGN4Hp0I9KFnvCmEwF1oDECg08UUFiMhEq6Uvpfp9BcZCxiiNthALwjXC4KXFQy-oQdLhDlvJpbncJzYSxOhBgEFj5iU0MeInOMl8p686r3SNx66tUN0PFUdtikrbssZd07uQUnYwLzsl7xJsbFvVcjb9NTtvNSBdCJHXZ_y_j_f8YH5AVVJmvydqHZKmcvdsjh0VK1a2CrUuW-5fXw9EXTnDiSQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RRvPLC65OHEMVtVqAq0hQEktnB-RBSVUpUwsPDb8SUptBISA2uck6Lz5e6z9d19hJxIrT0ecsOsZyTjrmIyUFHGAqFNFHqZigAbhXv9uHPPrx6ihxppTXthkFZZ5f4ypxfZunpyWnnzdDwYYI-v5A4tOwBRaMiEC2SRR4HAE1jj84fnIYKkxMCSM3x9juQFOgd4yyfYBhgEDeR5IRT-rUTNlJ32Glmt8CJtlp-0Tmp2tEFWZqYIbpLHJi1ogWw8hBwxKIUiiVFjkc5PJ_bl1cUTdTuKV2N0XOkU0VI9mmIhM9QtnLdubilezFL9BIMRzUsBhY8tct--uGt1WCWcwHToRzmLPWFMpgJrQGKJBp6oIDGZCJX0pXTnZ1AcZKziSBuhAHwjHHBKHNayOgQdbpP66HVkdwjNhLE6EGAQWfmJTQx4ic4yXynrfli7S-Kpr1JdTRVHcYthOqWPPaffTk7RybjgnLxLvG_DcTlY42-Ts-lmpHMxkrr0_5fx3n-Mj8lS567XTbuX_et9soyS8yVz-4DU88m7PXTAJFdHReB9AaBL494
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-platform+active+debris+removal+mission+planning+method+based+on+DCOP+with+chain+topology&rft.jtitle=Acta+astronautica&rft.au=Yang%2C+Jianan&rft.au=Hu%2C+Yu+Hen&rft.au=Hou%2C+Xiaolei&rft.au=lv%2C+Rui&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.volume=203&rft.spage=495&rft.epage=509&rft_id=info:doi/10.1016%2Fj.actaastro.2022.10.046&rft.externalDocID=S0094576522005963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon