A multi-platform active debris removal mission planning method based on DCOP with chain topology
In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP), and a novel Synchronous Incomplete Searching Algorithm under Chain Topology (SISACT) is proposed. We envision a distributive cooperative miss...
Saved in:
| Published in | Acta astronautica Vol. 203; pp. 495 - 509 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-5765 |
| DOI | 10.1016/j.actaastro.2022.10.046 |
Cover
| Abstract | In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP), and a novel Synchronous Incomplete Searching Algorithm under Chain Topology (SISACT) is proposed. We envision a distributive cooperative mission planning scenario where multiple debris removal platforms generate individual mission sub-plans on how to remove a subset of assigned debris subject to constraints on mission duration and orbit transfer cost. The overall goal is to maximize the aggregate reward for debris removal while avoiding conflicts among sub-plans. To resolve the potential conflicts, multiple platforms must communicate each other intensively. The proposed SISACT algorithm can reduce the inter-platform communication burdens by inducing a fully connected constraint graph into a chain graph with domain assignment. SISACT is designed to focus on global collaboration among the platforms for mission plan partitioning while leveraging existing single platform mission planning algorithms to provide details of the sub-plans. Simulation with a realistic active debris removal scenario has been carried out. It is shown that the proposed SISACT algorithm can optimize the overall reward of the mission while satisfying all the constraints. This validates the effectiveness of SISACT.
•A new multi-platform ADR mission planning is proposed based on DCOP.•A new DCOP model with fully-connected all-hard constraint graph is presented.•Proposed method can satisfy all constraints without changing solution frequently.•Tests on Iridium 33 debris set with 4 platforms verify its efficiency. |
|---|---|
| AbstractList | In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP), and a novel Synchronous Incomplete Searching Algorithm under Chain Topology (SISACT) is proposed. We envision a distributive cooperative mission planning scenario where multiple debris removal platforms generate individual mission sub-plans on how to remove a subset of assigned debris subject to constraints on mission duration and orbit transfer cost. The overall goal is to maximize the aggregate reward for debris removal while avoiding conflicts among sub-plans. To resolve the potential conflicts, multiple platforms must communicate each other intensively. The proposed SISACT algorithm can reduce the inter-platform communication burdens by inducing a fully connected constraint graph into a chain graph with domain assignment. SISACT is designed to focus on global collaboration among the platforms for mission plan partitioning while leveraging existing single platform mission planning algorithms to provide details of the sub-plans. Simulation with a realistic active debris removal scenario has been carried out. It is shown that the proposed SISACT algorithm can optimize the overall reward of the mission while satisfying all the constraints. This validates the effectiveness of SISACT.
•A new multi-platform ADR mission planning is proposed based on DCOP.•A new DCOP model with fully-connected all-hard constraint graph is presented.•Proposed method can satisfy all constraints without changing solution frequently.•Tests on Iridium 33 debris set with 4 platforms verify its efficiency. |
| Author | lv, Rui Zhao, Ningning Huang, Hai Yang, Jianan Hu, Yu Hen Hou, Xiaolei Fan, Hui |
| Author_xml | – sequence: 1 givenname: Jianan orcidid: 0000-0003-2860-5004 surname: Yang fullname: Yang, Jianan email: yang_jia_nan@foxmail.com organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China – sequence: 2 givenname: Yu Hen surname: Hu fullname: Hu, Yu Hen organization: Dept. Electrical and Computer Engineering, University of Wisconsin-Madison, WI 53706, USA – sequence: 3 givenname: Xiaolei orcidid: 0000-0002-8231-0648 surname: Hou fullname: Hou, Xiaolei organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 4 givenname: Rui surname: lv fullname: lv, Rui organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China – sequence: 5 givenname: Hai surname: Huang fullname: Huang, Hai organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China – sequence: 6 givenname: Ningning surname: Zhao fullname: Zhao, Ningning organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China – sequence: 7 givenname: Hui surname: Fan fullname: Fan, Hui organization: Xi’an Precision Machinery Research Institute, Xi’an 710077, China |
| BookMark | eNqNkLtOAzEQRV0EiQT4BvwDu9jed0ERhacUKRRQm_FjE0e7dmSboPw9joIoaKAaae6cK82ZoYl1ViN0TUlOCa1vtjnICBCidzkjjKVtTsp6gqaEdGVWNXV1jmYhbAkhDWu7KXqf4_FjiCbbDRB750ecGsxeY6WFNwF7Pbo9DHg0IRhncTqz1tg1HnXcOIUFBK1wCu4Wqxf8aeIGyw0Yi6PbucGtD5forIch6KvveYHeHu5fF0_ZcvX4vJgvM1nQKmY1aZTqBdMKOsZKCmUrWKv6phAd7TotChAldLWoK6kaAUBVU9GypaTSsgBZXKDm1Cu9C8Hrnu-8GcEfOCX8KIdv-Y8cfpRzDJKcRN7-IqWJENO30YMZ_sHPT7xO7-2N9jxIo63UyngtI1fO_NnxBbWejRQ |
| CitedBy_id | crossref_primary_10_1016_j_paerosci_2024_100982 crossref_primary_10_1109_TAES_2024_3445318 crossref_primary_10_1016_j_asoc_2023_110983 crossref_primary_10_1007_s00521_023_09399_8 crossref_primary_10_1016_j_cja_2025_103464 |
| Cites_doi | 10.1016/j.knosys.2018.05.033 10.1109/69.729707 10.1007/s10957-012-0130-6 10.1007/s11432-020-3049-5 10.1007/11600930_71 10.1016/j.actaastro.2008.07.009 10.1016/j.actaastro.2018.05.040 10.1613/jair.2591 10.1109/ACCESS.2020.3001311 10.1016/j.actaastro.2015.04.003 10.1016/j.actaastro.2016.06.018 10.1016/j.actaastro.2009.08.005 10.2514/1.G005602 10.1016/j.actaastro.2018.01.017 10.1145/321296.321300 10.1016/j.asr.2015.05.002 10.1016/0004-3702(85)90041-4 10.1016/j.artint.2004.09.003 10.1016/j.asr.2012.12.003 10.1016/j.artint.2004.10.004 10.1016/j.actaastro.2014.10.003 10.1016/j.actaastro.2011.04.017 10.1016/j.actaastro.2012.11.009 10.1007/s10957-015-0705-0 10.1023/B:HEUR.0000026896.44360.f9 10.1016/j.eswa.2014.02.039 |
| ContentType | Journal Article |
| Copyright | 2022 IAA |
| Copyright_xml | – notice: 2022 IAA |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.actaastro.2022.10.046 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 509 |
| ExternalDocumentID | 10_1016_j_actaastro_2022_10_046 S0094576522005963 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c315t-607ddfb2eda92241a48b28df73b9199eb3ab4a96b65cd7baa1d75148105ec3ac3 |
| IEDL.DBID | .~1 |
| ISSN | 0094-5765 |
| IngestDate | Thu Apr 24 22:51:14 EDT 2025 Thu Oct 02 04:23:28 EDT 2025 Sun Apr 06 06:54:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Active debris removal (ADR) Multi-platform mission planning Distributed constraint optimization problem (DCOP) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c315t-607ddfb2eda92241a48b28df73b9199eb3ab4a96b65cd7baa1d75148105ec3ac3 |
| ORCID | 0000-0002-8231-0648 0000-0003-2860-5004 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1016_j_actaastro_2022_10_046 crossref_citationtrail_10_1016_j_actaastro_2022_10_046 elsevier_sciencedirect_doi_10_1016_j_actaastro_2022_10_046 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Acta astronautica |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Castronuovo (b10) 2011; 69 Stuart, Howell, Wilson (b3) 2016; 57 Liou, Johnson (b7) 2009; 64 Forshaw, Aglietti, Navarathinam, Kadhem, Salmon, Pisseloup, Joffre, Chabot, Retat, Axthelm (b9) 2016; 127 Kumar, Petcu, Faltings (b38) 2008 Chen, Jiang, Li, Baoyin (b16) 2021; 44 Petcu, Faltings (b37) 2006; Vol. 6 Liou, Shoots (b1) 2009; 13 Yang, Hou, Liu, Hu, Pan (b25) 2022; 65 Fioretto, Le, Yeoh, Pontelli, Son (b40) 2014 Rossi, Van Beek, Walsh (b45) 2006 Fioretto, Pontelli, Yeoh (b22) 2018; 61 Huang, Zhuang (b18) 2015; 113 Petcu, Faltings (b36) 2007 Duan, Zhang, Mao, Zhang (b21) 2017; 48 Yokoo, Durfee (b46) 1998; 10 A. Petcu, B. Faltings, DPOP: A scalable method for multiagent constraint optimization, in: International Joint Conference on Artificial Intelligence, 2005, pp. 266–271. Yokoo (b47) 2001 Golomb, Baumert (b43) 1965; 12 Petcu, Faltings (b35) 2007 Gershman, Meisels, Zivan (b32) 2009; 34 Braun, Lüpken, Flegel, Gelhaus, M öckel, Kebschull, Wiedemann, V örsmann (b12) 2013; 51 Zhao, Zheng, Liu (b5) 2018; 158 Mackworth, Freuder (b44) 1985; 25 Cerf (b11) 2015; 167 Aydin, Fogarty (b19) 2004; 10 Cerf (b29) 2013; 156 Kessler, Johnson, Liou, Matney (b2) 2010; 137 Lei, Xing, Wu (b34) 2012; 37 Bang, Ahn (b13) 2019 Bonnal, Ruault, Desjean (b4) 2013; 85 Okimoto, Joe, Iwasaki, Yokoo, Faltings (b33) 2011 Yu, Chen, Chen (b14) 2014; 105 G.E. Peterson, Target identification and Delta-V sizing for active debris removal and improved tracking campaigns, in: Proceedings of the 23rd International Symposium on Spaceflight Dynamics, Pasadena, Paper No. ISSFD23-CRSD2-5, 29, 2012. Yang, Hou, Hu, Liu, Pan (b27) 2020; 8 Leite, Enembreck, Barthés (b31) 2014; 41 Yang, Hu, Liu, Pan (b24) 2018; 149 Meisels (b20) 2008 Zhang, Wang, Xing, Wittenburg (b42) 2005; 161 Liou, Johnson, Hill (b6) 2010; 66 Izzo, Märtens (b15) 2018; 11 Yang, Hou, Hu, Liu, Pan, Feng (b26) 2021; 42 Modi, Shen, Tambe, Yokoo (b23) 2005; 161 Zheng, Guo, Gill (b17) 2018; 145 Le, Son, Pontelli, Yeoh (b39) 2014 Izzo, Getzner, Hennes, Simões (b28) 2015 Liu, Yang (b30) 2017 Hirayama, Yokoo (b41) 1997 Petcu (10.1016/j.actaastro.2022.10.046_b36) 2007 Liou (10.1016/j.actaastro.2022.10.046_b1) 2009; 13 Yokoo (10.1016/j.actaastro.2022.10.046_b47) 2001 Chen (10.1016/j.actaastro.2022.10.046_b16) 2021; 44 Leite (10.1016/j.actaastro.2022.10.046_b31) 2014; 41 Modi (10.1016/j.actaastro.2022.10.046_b23) 2005; 161 Bang (10.1016/j.actaastro.2022.10.046_b13) 2019 Gershman (10.1016/j.actaastro.2022.10.046_b32) 2009; 34 Lei (10.1016/j.actaastro.2022.10.046_b34) 2012; 37 Okimoto (10.1016/j.actaastro.2022.10.046_b33) 2011 Duan (10.1016/j.actaastro.2022.10.046_b21) 2017; 48 Zheng (10.1016/j.actaastro.2022.10.046_b17) 2018; 145 Aydin (10.1016/j.actaastro.2022.10.046_b19) 2004; 10 Bonnal (10.1016/j.actaastro.2022.10.046_b4) 2013; 85 10.1016/j.actaastro.2022.10.046_b48 Liou (10.1016/j.actaastro.2022.10.046_b7) 2009; 64 Kumar (10.1016/j.actaastro.2022.10.046_b38) 2008 Petcu (10.1016/j.actaastro.2022.10.046_b37) 2006; Vol. 6 Yu (10.1016/j.actaastro.2022.10.046_b14) 2014; 105 Stuart (10.1016/j.actaastro.2022.10.046_b3) 2016; 57 Forshaw (10.1016/j.actaastro.2022.10.046_b9) 2016; 127 Yang (10.1016/j.actaastro.2022.10.046_b26) 2021; 42 Liu (10.1016/j.actaastro.2022.10.046_b30) 2017 Fioretto (10.1016/j.actaastro.2022.10.046_b40) 2014 Petcu (10.1016/j.actaastro.2022.10.046_b35) 2007 Golomb (10.1016/j.actaastro.2022.10.046_b43) 1965; 12 Huang (10.1016/j.actaastro.2022.10.046_b18) 2015; 113 Izzo (10.1016/j.actaastro.2022.10.046_b28) 2015 Cerf (10.1016/j.actaastro.2022.10.046_b29) 2013; 156 Fioretto (10.1016/j.actaastro.2022.10.046_b22) 2018; 61 10.1016/j.actaastro.2022.10.046_b8 Meisels (10.1016/j.actaastro.2022.10.046_b20) 2008 Zhang (10.1016/j.actaastro.2022.10.046_b42) 2005; 161 Kessler (10.1016/j.actaastro.2022.10.046_b2) 2010; 137 Yang (10.1016/j.actaastro.2022.10.046_b27) 2020; 8 Braun (10.1016/j.actaastro.2022.10.046_b12) 2013; 51 Cerf (10.1016/j.actaastro.2022.10.046_b11) 2015; 167 Yang (10.1016/j.actaastro.2022.10.046_b24) 2018; 149 Yang (10.1016/j.actaastro.2022.10.046_b25) 2022; 65 Castronuovo (10.1016/j.actaastro.2022.10.046_b10) 2011; 69 Rossi (10.1016/j.actaastro.2022.10.046_b45) 2006 Liou (10.1016/j.actaastro.2022.10.046_b6) 2010; 66 Hirayama (10.1016/j.actaastro.2022.10.046_b41) 1997 Mackworth (10.1016/j.actaastro.2022.10.046_b44) 1985; 25 Le (10.1016/j.actaastro.2022.10.046_b39) 2014 Zhao (10.1016/j.actaastro.2022.10.046_b5) 2018; 158 Yokoo (10.1016/j.actaastro.2022.10.046_b46) 1998; 10 Izzo (10.1016/j.actaastro.2022.10.046_b15) 2018; 11 |
| References_xml | – volume: 145 start-page: 28 year: 2018 end-page: 43 ident: b17 article-title: Onboard autonomous mission re-planning for multi-satellite system publication-title: Acta Astronaut. – volume: 41 start-page: 5139 year: 2014 end-page: 5157 ident: b31 article-title: Distributed constraint optimization problems: review and perspectives publication-title: Expert Syst. Appl. – volume: 127 start-page: 448 year: 2016 end-page: 463 ident: b9 article-title: Removedebris: An in-orbit active debris removal demonstration mission publication-title: Acta Astronaut. – volume: 161 start-page: 149 year: 2005 end-page: 180 ident: b23 article-title: Adopt: asynchronous distributed constraint optimization with quality guarantees publication-title: Artificial Intelligence – volume: 10 start-page: 673 year: 1998 end-page: 685 ident: b46 article-title: The distributed constraint satisfaction problem: formalization and algorithms publication-title: IEEE Trans. Knowl. Data Eng. – volume: 48 start-page: 1 year: 2017 end-page: 12 ident: b21 article-title: Applying distributed constraint optimization approach to the user association problem in heterogeneous networks publication-title: IEEE Trans. Cybern. – start-page: 1733 year: 2017 ident: b30 article-title: A multi-objective planning method for multi-debris active removal mission in LEO publication-title: AIAA Guidance, Navigation, and Control Conference – volume: 137 start-page: 2010 year: 2010 ident: b2 article-title: The kessler syndrome: implications to future space operations publication-title: Adv. Astronaut. Sci. – start-page: 1 year: 2019 end-page: 11 ident: b13 article-title: Multitarget rendezvous for active debris removal using multiple spacecraft publication-title: J. Spacecr. Rockets – start-page: 1452 year: 2007 end-page: 1457 ident: b35 article-title: MB-DPOP: a new memory-bounded algorithm for distributed optimization publication-title: Proceedings of the 20th International Joint Conference on Artificial Intelligence – start-page: 1337 year: 2014 end-page: 1338 ident: b39 article-title: ASP-DPOP: solving distributed constraint optimization problems with logic programming publication-title: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems – volume: 66 start-page: 648 year: 2010 end-page: 653 ident: b6 article-title: Controlling the growth of future LEO debris populations with active debris removal publication-title: Acta Astronaut. – volume: 51 start-page: 1638 year: 2013 end-page: 1648 ident: b12 article-title: Active debris removal of multiple priority targets publication-title: Adv. Space Res. – volume: 25 start-page: 65 year: 1985 end-page: 74 ident: b44 article-title: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems publication-title: Artificial Intelligence – volume: 42 start-page: 524354 year: 2021 ident: b26 article-title: Heuristic enhanced reinforcement learning method for large-scale multi-debris active removal mission planning (in Chinese) publication-title: Acta Aeronaut. Astronautica Sinica – volume: 65 start-page: 1 year: 2022 end-page: 16 ident: b25 article-title: A two-level scheme for multiobjective multidebris active removal mission planning in low earth orbits publication-title: Sci. China Inf. Sci. – start-page: 167 year: 2007 end-page: 172 ident: b36 article-title: PC-DPOP: a new partial centralization algorithm for distributed optimization publication-title: Proceedings of the 20th International Joint Conference on Artificial Intelligence – volume: 13 start-page: 1 year: 2009 ident: b1 article-title: Satellite collision leaves significant debris clouds publication-title: Orbital Debris Q. News – volume: 158 start-page: 54 year: 2018 end-page: 64 ident: b5 article-title: Survey on computational-intelligence-based UAV path planning publication-title: Knowl.-Based Syst. – reference: A. Petcu, B. Faltings, DPOP: A scalable method for multiagent constraint optimization, in: International Joint Conference on Artificial Intelligence, 2005, pp. 266–271. – volume: 156 start-page: 761 year: 2013 end-page: 796 ident: b29 article-title: Multiple space debris collecting mission debris selection and trajectory optimization publication-title: J. Optim. Theory Appl. – year: 2006 ident: b45 article-title: Handbook of Constraint Programming – start-page: 325 year: 2008 end-page: 330 ident: b38 article-title: H-DPOP: using hard constraints for search space pruning in DCOP publication-title: Proceedings of the 23rd AAAI Conference on Artificial Intelligence – volume: 85 start-page: 51 year: 2013 end-page: 60 ident: b4 article-title: Active debris removal: Recent progress and current trends publication-title: Acta Astronaut. – volume: 167 start-page: 195 year: 2015 end-page: 218 ident: b11 article-title: Multiple space debris collecting mission: optimal mission planning publication-title: J. Optim. Theory Appl. – volume: 61 start-page: 1 year: 2018 end-page: 16 ident: b22 article-title: Distributed constraint optimization problems and applications: a survey publication-title: Vestnik Oftalmologii – start-page: 222 year: 1997 end-page: 236 ident: b41 article-title: Distributed partial constraint satisfaction problem publication-title: International Conference on Principles and Practice of Constraint Programming – volume: 57 start-page: 1680 year: 2016 end-page: 1697 ident: b3 article-title: Application of multi-agent coordination methods to the design of space debris mitigation tours publication-title: Adv. Space Res. – volume: 113 start-page: 149 year: 2015 end-page: 163 ident: b18 article-title: Optimal satellite formation reconfiguration using co-evolutionary particle swarm optimization in deep space publication-title: Acta Astronaut. – year: 2001 ident: b47 article-title: Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Systems – volume: 10 start-page: 269 year: 2004 end-page: 292 ident: b19 article-title: A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems publication-title: J. Heuristics – volume: 149 start-page: 123 year: 2018 end-page: 142 ident: b24 article-title: A maximal-reward preliminary planning for multi-debris active removal mission in LEO with a greedy heuristic method publication-title: Acta Astronaut. – volume: Vol. 6 start-page: 703 year: 2006 end-page: 708 ident: b37 article-title: ODPOP: an algorithm for open/distributed constraint optimization publication-title: Proceedings of the 21st National Conference on Artificial Intelligence – volume: 161 start-page: 55 year: 2005 end-page: 87 ident: b42 article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks publication-title: Artificial Intelligence – volume: 105 start-page: 311 year: 2014 end-page: 320 ident: b14 article-title: Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts publication-title: Acta Astronaut. – volume: 69 start-page: 848 year: 2011 end-page: 859 ident: b10 article-title: Active space debris removal?a preliminary mission analysis and design publication-title: Acta Astronaut. – year: 2008 ident: b20 article-title: Distributed Search By Constrained Agents: Algorithms, Performance, Communication – volume: 64 start-page: 236 year: 2009 end-page: 243 ident: b7 article-title: A sensitivity study of the effectiveness of active debris removal in LEO publication-title: Acta Astronaut. – volume: 44 start-page: 1811 year: 2021 end-page: 1822 ident: b16 article-title: Optimization for multitarget, multispacecraft impulsive rendezvous considering j 2 perturbation publication-title: J. Guid. Control Dyn. – volume: 12 start-page: 516 year: 1965 end-page: 524 ident: b43 article-title: Backtrack programming publication-title: J. Acm – reference: G.E. Peterson, Target identification and Delta-V sizing for active debris removal and improved tracking campaigns, in: Proceedings of the 23rd International Symposium on Spaceflight Dynamics, Pasadena, Paper No. ISSFD23-CRSD2-5, 29, 2012. – volume: 11 start-page: 11 year: 2018 end-page: 24 ident: b15 article-title: The kessler run: on the design of the GTOC9 challenge publication-title: Acta Futura – volume: 37 start-page: 1 year: 2012 end-page: 5 ident: b34 article-title: Research on distributed constraint optimization problem and solutions publication-title: Fire Control Command Control – start-page: 307 year: 2014 end-page: 323 ident: b40 article-title: Improving DPOP with branch consistency for solving distributed constraint optimization problems publication-title: International Conference on Principles and Practice of Constraint Programming – volume: 34 start-page: 61 year: 2009 end-page: 88 ident: b32 article-title: Asynchronous forward bounding for distributed cops publication-title: J. Artificial Intelligence Res. – start-page: 660 year: 2011 end-page: 674 ident: b33 article-title: Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds publication-title: International Conference on Principles and Practice of Constraint Programming – volume: 8 start-page: 108461 year: 2020 end-page: 108473 ident: b27 article-title: A reinforcement learning scheme for active multi-debris removal mission planning with modified upper confidence bound tree search publication-title: IEEE Access – start-page: 1207 year: 2015 end-page: 1214 ident: b28 article-title: Evolving solutions to TSP vriants for active space debris removal publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation – volume: 158 start-page: 54 year: 2018 ident: 10.1016/j.actaastro.2022.10.046_b5 article-title: Survey on computational-intelligence-based UAV path planning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.033 – volume: 10 start-page: 673 issue: 5 year: 1998 ident: 10.1016/j.actaastro.2022.10.046_b46 article-title: The distributed constraint satisfaction problem: formalization and algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.729707 – volume: 61 start-page: 1 issue: 45 year: 2018 ident: 10.1016/j.actaastro.2022.10.046_b22 article-title: Distributed constraint optimization problems and applications: a survey publication-title: Vestnik Oftalmologii – volume: 156 start-page: 761 issue: 3 year: 2013 ident: 10.1016/j.actaastro.2022.10.046_b29 article-title: Multiple space debris collecting mission debris selection and trajectory optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0130-6 – start-page: 660 year: 2011 ident: 10.1016/j.actaastro.2022.10.046_b33 article-title: Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds – volume: 11 start-page: 11 year: 2018 ident: 10.1016/j.actaastro.2022.10.046_b15 article-title: The kessler run: on the design of the GTOC9 challenge publication-title: Acta Futura – volume: 65 start-page: 1 issue: 5 year: 2022 ident: 10.1016/j.actaastro.2022.10.046_b25 article-title: A two-level scheme for multiobjective multidebris active removal mission planning in low earth orbits publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-020-3049-5 – start-page: 1452 year: 2007 ident: 10.1016/j.actaastro.2022.10.046_b35 article-title: MB-DPOP: a new memory-bounded algorithm for distributed optimization – start-page: 1207 year: 2015 ident: 10.1016/j.actaastro.2022.10.046_b28 article-title: Evolving solutions to TSP vriants for active space debris removal – volume: 37 start-page: 1 issue: 5 year: 2012 ident: 10.1016/j.actaastro.2022.10.046_b34 article-title: Research on distributed constraint optimization problem and solutions publication-title: Fire Control Command Control – ident: 10.1016/j.actaastro.2022.10.046_b48 doi: 10.1007/11600930_71 – start-page: 325 year: 2008 ident: 10.1016/j.actaastro.2022.10.046_b38 article-title: H-DPOP: using hard constraints for search space pruning in DCOP – start-page: 222 year: 1997 ident: 10.1016/j.actaastro.2022.10.046_b41 article-title: Distributed partial constraint satisfaction problem – volume: 13 start-page: 1 issue: 2 year: 2009 ident: 10.1016/j.actaastro.2022.10.046_b1 article-title: Satellite collision leaves significant debris clouds publication-title: Orbital Debris Q. News – volume: 64 start-page: 236 issue: 2–3 year: 2009 ident: 10.1016/j.actaastro.2022.10.046_b7 article-title: A sensitivity study of the effectiveness of active debris removal in LEO publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2008.07.009 – volume: 149 start-page: 123 year: 2018 ident: 10.1016/j.actaastro.2022.10.046_b24 article-title: A maximal-reward preliminary planning for multi-debris active removal mission in LEO with a greedy heuristic method publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.05.040 – volume: 34 start-page: 61 issue: 34 year: 2009 ident: 10.1016/j.actaastro.2022.10.046_b32 article-title: Asynchronous forward bounding for distributed cops publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.2591 – start-page: 1337 year: 2014 ident: 10.1016/j.actaastro.2022.10.046_b39 article-title: ASP-DPOP: solving distributed constraint optimization problems with logic programming – volume: 8 start-page: 108461 year: 2020 ident: 10.1016/j.actaastro.2022.10.046_b27 article-title: A reinforcement learning scheme for active multi-debris removal mission planning with modified upper confidence bound tree search publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001311 – volume: 113 start-page: 149 issue: aug.-sep. year: 2015 ident: 10.1016/j.actaastro.2022.10.046_b18 article-title: Optimal satellite formation reconfiguration using co-evolutionary particle swarm optimization in deep space publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.04.003 – volume: 127 start-page: 448 year: 2016 ident: 10.1016/j.actaastro.2022.10.046_b9 article-title: Removedebris: An in-orbit active debris removal demonstration mission publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2016.06.018 – volume: 66 start-page: 648 issue: 5–6 year: 2010 ident: 10.1016/j.actaastro.2022.10.046_b6 article-title: Controlling the growth of future LEO debris populations with active debris removal publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2009.08.005 – start-page: 167 year: 2007 ident: 10.1016/j.actaastro.2022.10.046_b36 article-title: PC-DPOP: a new partial centralization algorithm for distributed optimization – volume: 44 start-page: 1811 issue: 10 year: 2021 ident: 10.1016/j.actaastro.2022.10.046_b16 article-title: Optimization for multitarget, multispacecraft impulsive rendezvous considering j 2 perturbation publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G005602 – start-page: 307 year: 2014 ident: 10.1016/j.actaastro.2022.10.046_b40 article-title: Improving DPOP with branch consistency for solving distributed constraint optimization problems – volume: 145 start-page: 28 issue: APR. year: 2018 ident: 10.1016/j.actaastro.2022.10.046_b17 article-title: Onboard autonomous mission re-planning for multi-satellite system publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.01.017 – volume: 12 start-page: 516 issue: 4 year: 1965 ident: 10.1016/j.actaastro.2022.10.046_b43 article-title: Backtrack programming publication-title: J. Acm doi: 10.1145/321296.321300 – volume: 57 start-page: 1680 issue: 8 year: 2016 ident: 10.1016/j.actaastro.2022.10.046_b3 article-title: Application of multi-agent coordination methods to the design of space debris mitigation tours publication-title: Adv. Space Res. doi: 10.1016/j.asr.2015.05.002 – year: 2008 ident: 10.1016/j.actaastro.2022.10.046_b20 – volume: 48 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.actaastro.2022.10.046_b21 article-title: Applying distributed constraint optimization approach to the user association problem in heterogeneous networks publication-title: IEEE Trans. Cybern. – year: 2006 ident: 10.1016/j.actaastro.2022.10.046_b45 – year: 2001 ident: 10.1016/j.actaastro.2022.10.046_b47 – volume: 25 start-page: 65 issue: 1 year: 1985 ident: 10.1016/j.actaastro.2022.10.046_b44 article-title: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems publication-title: Artificial Intelligence doi: 10.1016/0004-3702(85)90041-4 – volume: 137 start-page: 2010 issue: 8 year: 2010 ident: 10.1016/j.actaastro.2022.10.046_b2 article-title: The kessler syndrome: implications to future space operations publication-title: Adv. Astronaut. Sci. – volume: Vol. 6 start-page: 703 year: 2006 ident: 10.1016/j.actaastro.2022.10.046_b37 article-title: ODPOP: an algorithm for open/distributed constraint optimization – volume: 161 start-page: 149 issue: 1–2 year: 2005 ident: 10.1016/j.actaastro.2022.10.046_b23 article-title: Adopt: asynchronous distributed constraint optimization with quality guarantees publication-title: Artificial Intelligence doi: 10.1016/j.artint.2004.09.003 – volume: 51 start-page: 1638 issue: 9 year: 2013 ident: 10.1016/j.actaastro.2022.10.046_b12 article-title: Active debris removal of multiple priority targets publication-title: Adv. Space Res. doi: 10.1016/j.asr.2012.12.003 – volume: 42 start-page: 524354 issue: 4 year: 2021 ident: 10.1016/j.actaastro.2022.10.046_b26 article-title: Heuristic enhanced reinforcement learning method for large-scale multi-debris active removal mission planning (in Chinese) publication-title: Acta Aeronaut. Astronautica Sinica – volume: 161 start-page: 55 issue: 1–2 year: 2005 ident: 10.1016/j.actaastro.2022.10.046_b42 article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks publication-title: Artificial Intelligence doi: 10.1016/j.artint.2004.10.004 – start-page: 1733 year: 2017 ident: 10.1016/j.actaastro.2022.10.046_b30 article-title: A multi-objective planning method for multi-debris active removal mission in LEO – start-page: 1 year: 2019 ident: 10.1016/j.actaastro.2022.10.046_b13 article-title: Multitarget rendezvous for active debris removal using multiple spacecraft publication-title: J. Spacecr. Rockets – volume: 105 start-page: 311 issue: 1 year: 2014 ident: 10.1016/j.actaastro.2022.10.046_b14 article-title: Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.10.003 – volume: 69 start-page: 848 issue: 9–10 year: 2011 ident: 10.1016/j.actaastro.2022.10.046_b10 article-title: Active space debris removal?a preliminary mission analysis and design publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2011.04.017 – volume: 85 start-page: 51 year: 2013 ident: 10.1016/j.actaastro.2022.10.046_b4 article-title: Active debris removal: Recent progress and current trends publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2012.11.009 – ident: 10.1016/j.actaastro.2022.10.046_b8 – volume: 167 start-page: 195 issue: 1 year: 2015 ident: 10.1016/j.actaastro.2022.10.046_b11 article-title: Multiple space debris collecting mission: optimal mission planning publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0705-0 – volume: 10 start-page: 269 issue: 3 year: 2004 ident: 10.1016/j.actaastro.2022.10.046_b19 article-title: A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems publication-title: J. Heuristics doi: 10.1023/B:HEUR.0000026896.44360.f9 – volume: 41 start-page: 5139 issue: 11 year: 2014 ident: 10.1016/j.actaastro.2022.10.046_b31 article-title: Distributed constraint optimization problems: review and perspectives publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.02.039 |
| SSID | ssj0007289 |
| Score | 2.3728454 |
| Snippet | In this work, a distributed multi-platform active debris removal mission planning task is formulated as a distributed constrained optimization problem (DCOP),... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 495 |
| SubjectTerms | Active debris removal (ADR) Distributed constraint optimization problem (DCOP) Multi-platform mission planning |
| Title | A multi-platform active debris removal mission planning method based on DCOP with chain topology |
| URI | https://dx.doi.org/10.1016/j.actaastro.2022.10.046 |
| Volume | 203 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0094-5765 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007289 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Complete Freedom Collection issn: 0094-5765 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007289 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0094-5765 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007289 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0094-5765 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007289 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0094-5765 databaseCode: AKRWK dateStart: 19740101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007289 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPMWz8sDqkocTx2xVARUQhQEktnB-RBSVNCphYOG348ujUAmJgTXOSdH5fPfF-u4-Qo6l1h4PuWHWM5JxVzEZqChjgdAmCr1MRYCNwjejePjArx6jxw4ZtL0wSKtscn-d06ts3Tw5abx5UozH2OMruUPLDkBUGjI48ZNzgSoGvc9vmocIkhoCS87w7QWOF-gS4K2cYRdgEPSQ5oVI-LcK9aPqXKyTtQYu0n79RRukY_NNsvpjiOAWeerTihXIigmUCEEpVDmMGotsfjqzr1MXTtRtKN6M0aKRKaK1eDTFOmaoWzgb3N5RvJel-hnGOS1r_YSPbfJwcX4_GLJGN4Hp0I9KFnvCmEwF1oDECg08UUFiMhEq6Uvpfp9BcZCxiiNthALwjXC4KXFQy-oQdLhDlvJpbncJzYSxOhBgEFj5iU0MeInOMl8p686r3SNx66tUN0PFUdtikrbssZd07uQUnYwLzsl7xJsbFvVcjb9NTtvNSBdCJHXZ_y_j_f8YH5AVVJmvydqHZKmcvdsjh0VK1a2CrUuW-5fXw9EXTnDiSQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RRvPLC65OHEMVtVqAq0hQEktnB-RBSVUpUwsPDb8SUptBISA2uck6Lz5e6z9d19hJxIrT0ecsOsZyTjrmIyUFHGAqFNFHqZigAbhXv9uHPPrx6ihxppTXthkFZZ5f4ypxfZunpyWnnzdDwYYI-v5A4tOwBRaMiEC2SRR4HAE1jj84fnIYKkxMCSM3x9juQFOgd4yyfYBhgEDeR5IRT-rUTNlJ32Glmt8CJtlp-0Tmp2tEFWZqYIbpLHJi1ogWw8hBwxKIUiiVFjkc5PJ_bl1cUTdTuKV2N0XOkU0VI9mmIhM9QtnLdubilezFL9BIMRzUsBhY8tct--uGt1WCWcwHToRzmLPWFMpgJrQGKJBp6oIDGZCJX0pXTnZ1AcZKziSBuhAHwjHHBKHNayOgQdbpP66HVkdwjNhLE6EGAQWfmJTQx4ic4yXynrfli7S-Kpr1JdTRVHcYthOqWPPaffTk7RybjgnLxLvG_DcTlY42-Ts-lmpHMxkrr0_5fx3n-Mj8lS567XTbuX_et9soyS8yVz-4DU88m7PXTAJFdHReB9AaBL494 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-platform+active+debris+removal+mission+planning+method+based+on+DCOP+with+chain+topology&rft.jtitle=Acta+astronautica&rft.au=Yang%2C+Jianan&rft.au=Hu%2C+Yu+Hen&rft.au=Hou%2C+Xiaolei&rft.au=lv%2C+Rui&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.volume=203&rft.spage=495&rft.epage=509&rft_id=info:doi/10.1016%2Fj.actaastro.2022.10.046&rft.externalDocID=S0094576522005963 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |