HYPERSURFACES IN SPACE FORMS WITH SCALAR CURVATURE CONDITIONS

Let f : M^n→S^n+1真包含于R^n+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n+1)-dimensional unit sphere S^n+1. Denote by S^n+1 the upper closed hemisphere. If f(M^n)包含于S+^n+1, then under some curvature conditions the authors can get that the isometric immersion is...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 24; no. 1; pp. 39 - 44
Main Author 徐森林 张运涛
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2004
Department of Mathematics, Central China Normal University, Wuhan,430079, China%Department of Mathematics, University of Science and Technology of China, Hefei,230026, China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(17)30357-0

Cover

Abstract Let f : M^n→S^n+1真包含于R^n+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n+1)-dimensional unit sphere S^n+1. Denote by S^n+1 the upper closed hemisphere. If f(M^n)包含于S+^n+1, then under some curvature conditions the authors can get that the isometric immersion is a totally embedding. They also generalize a theorem of Li Hai Zhong on hypersurface of space form with costant scalar curvature.
AbstractList Let f: Mn → Sn+1(∩) Rn+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n+1)-dimensional unit sphere Sn+1. Denote by Sn+1+ the upper closed hemisphere. If f(Mn)(∩-) Sn+1+, then under some curvature conditions the authors can get that the isometric immersion is a totally embedding. They also generalize a theorem of Li Hai Zhong on hypersurface of space form with costant scalar curvature.
Let f:(Mn)→Sn+1⊂Rn+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n + 1)-dimensional unit sphere Sn+1. Denote by the upper closed hemisphere. If f:(Mn)⊆S+n+1, then under some curvature conditions the authors can get that the isometric immersion is a totally embedding. They also generalize a theorem of Li Hai Zhong on hypersurface of space form with costant scalar curvature.
Let f : M^n→S^n+1真包含于R^n+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n+1)-dimensional unit sphere S^n+1. Denote by S^n+1 the upper closed hemisphere. If f(M^n)包含于S+^n+1, then under some curvature conditions the authors can get that the isometric immersion is a totally embedding. They also generalize a theorem of Li Hai Zhong on hypersurface of space form with costant scalar curvature.
Author 徐森林 张运涛
AuthorAffiliation DepartmentofMathematics,CentralChinaNormalUniversity,Wuhan430079,China DepartmentofMathematics,UniversityofScienceandTechnologyofChina,Hefei230026,China
AuthorAffiliation_xml – name: Department of Mathematics, Central China Normal University, Wuhan,430079, China%Department of Mathematics, University of Science and Technology of China, Hefei,230026, China
Author_xml – sequence: 1
  fullname: 徐森林 张运涛
BookMark eNqFkMtOg0AUhidGE9vqI5jgzi7QuQADC2MIUktSS8NF42oyDDOVWkGh2vr2Ti9x6-ack5P_O5e_D47rppYAXCB4jSByblKIbWx6DsRXiA4JJDY14RHoIZvqNnTpMej9SU5Bv-sWUHPYsXrgdvwyC5M0T0Z-EKZGNDXSma6MUZw8psZzlI2NNPAnfmIEefLkZ3kSGkE8vY-yKJ6mZ-BE8WUnzw95APJRmAVjcxI_RBozBUH2yrQ4drlbllgQKD2LIkgJ4siRBRbK47REliCKblvEK2zPxhwppyw9F1GFS0oGYLifu-a14vWcLZqvttYbWbdZLzcFkxhCCyIdtNbea0XbdF0rFftoq3fe_jAE2dYvtvOLbc1giLKdXwxq7m7PSf3IdyVb1olK1kKWVSvFipVN9e-Ey8Pm16aef1b6zoKLN1UtJfM0ZhFCfgEbp3gv
Cites_doi 10.1002/cpa.3160280303
10.1007/BF01444243
10.1007/BF01214381
10.1090/S0002-9939-1992-1093601-7
10.1007/BF01425237
ContentType Journal Article
Copyright 2004 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2004 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(17)30357-0
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1572-9087
EndPage 44
ExternalDocumentID sxwlxb_e200401004
10_1016_S0252_9602_17_30357_0
S0252960217303570
9016433
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (10371047)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAFGU
AAHNG
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAPBV
AAQFI
AAUYE
AAXUO
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABPIF
ABTEG
ABTMW
ABXDB
ABXPI
ABYKQ
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACRLP
ACTTH
ACVWB
ACWMK
ADALY
ADBBV
ADEZE
ADKNI
ADMDM
ADTIX
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESTI
AEVTX
AFKWA
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CDYEO
CHBEP
CIAHI
CQIGP
CS3
CSCUP
CW9
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IPNFZ
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VFIZW
W94
ZMTXR
~G-
~L9
~WA
AAEDW
AATNV
AAYFA
ABTKH
ACOKC
ACZOJ
ADMUD
ADOXG
ADTPH
AESKC
AFNRJ
AGQEE
AMXSW
DPUIP
EFLBG
FIGPU
IKXTQ
IWAJR
NPVJJ
PT4
SNPRN
SOHCF
VEKWB
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ABWVN
ACAOD
ACDTI
ACLOT
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
EFKBS
HG6
SJYHP
~HD
4A8
AFXIZ
AGCQF
AGRNS
PSX
SSH
ID FETCH-LOGICAL-c315t-4a28a8dd2c30e94710731a16eb2cf9a7d14c3f71a1639b5952a1f6dd9817f2d73
IEDL.DBID AIKHN
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Wed Oct 01 03:09:12 EDT 2025
Fri Feb 23 02:25:04 EST 2024
Thu Nov 24 20:32:27 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 53C42
Hypersurface
53A10
space form
scalar curvature
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-4a28a8dd2c30e94710731a16eb2cf9a7d14c3f71a1639b5952a1f6dd9817f2d73
Notes O186.1
42-1227/O
PageCount 6
ParticipantIDs wanfang_journals_sxwlxb_e200401004
crossref_primary_10_1016_S0252_9602_17_30357_0
elsevier_sciencedirect_doi_10_1016_S0252_9602_17_30357_0
chongqing_backfile_9016433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004
January 2004
2004-01-00
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 2004
PublicationDecade 2000
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL ACTA MATHEMATICA SCIENTIA
PublicationYear 2004
Publisher Elsevier Ltd
Department of Mathematics, Central China Normal University, Wuhan,430079, China%Department of Mathematics, University of Science and Technology of China, Hefei,230026, China
Publisher_xml – name: Elsevier Ltd
– name: Department of Mathematics, Central China Normal University, Wuhan,430079, China%Department of Mathematics, University of Science and Technology of China, Hefei,230026, China
References Cheng, Yau (bib4) 1975; 29
Leung (bib3) 1992; 114
Cheng (bib5) 1975; 143
Cheng, Yau (bib1) 1977; 225
Li (bib2) 1996; 305
Cheng (10.1016/S0252-9602(17)30357-0_bib4) 1975; 29
Leung (10.1016/S0252-9602(17)30357-0_bib3) 1992; 114
Li (10.1016/S0252-9602(17)30357-0_bib2) 1996; 305
Cheng (10.1016/S0252-9602(17)30357-0_bib5) 1975; 143
Cheng (10.1016/S0252-9602(17)30357-0_bib1) 1977; 225
References_xml – volume: 114
  start-page: 1051
  year: 1992
  end-page: 1061
  ident: bib3
  article-title: An estimate of Ricci curvature for submanifolds and its application
  publication-title: Proc of the Amer Math Soc
– volume: 143
  start-page: 289
  year: 1975
  end-page: 293
  ident: bib5
  article-title: Eigenvalues comparison theorems and its applications
  publication-title: Math Z
– volume: 305
  start-page: 665
  year: 1996
  end-page: 672
  ident: bib2
  article-title: Hypersurfaces with constant scalar curvature in space forms
  publication-title: Math Ann
– volume: 225
  start-page: 195
  year: 1977
  end-page: 204
  ident: bib1
  article-title: Hypersurfaces with constant scalar curvature
  publication-title: Math Ann
– volume: 29
  start-page: 333
  year: 1975
  end-page: 354
  ident: bib4
  article-title: Differential equations on Riemannian manifold and their geometric applications
  publication-title: Comm Pure Appl Math
– volume: 29
  start-page: 333
  year: 1975
  ident: 10.1016/S0252-9602(17)30357-0_bib4
  article-title: Differential equations on Riemannian manifold and their geometric applications
  publication-title: Comm Pure Appl Math
  doi: 10.1002/cpa.3160280303
– volume: 305
  start-page: 665
  year: 1996
  ident: 10.1016/S0252-9602(17)30357-0_bib2
  article-title: Hypersurfaces with constant scalar curvature in space forms
  publication-title: Math Ann
  doi: 10.1007/BF01444243
– volume: 143
  start-page: 289
  year: 1975
  ident: 10.1016/S0252-9602(17)30357-0_bib5
  article-title: Eigenvalues comparison theorems and its applications
  publication-title: Math Z
  doi: 10.1007/BF01214381
– volume: 114
  start-page: 1051
  year: 1992
  ident: 10.1016/S0252-9602(17)30357-0_bib3
  article-title: An estimate of Ricci curvature for submanifolds and its application
  publication-title: Proc of the Amer Math Soc
  doi: 10.1090/S0002-9939-1992-1093601-7
– volume: 225
  start-page: 195
  year: 1977
  ident: 10.1016/S0252-9602(17)30357-0_bib1
  article-title: Hypersurfaces with constant scalar curvature
  publication-title: Math Ann
  doi: 10.1007/BF01425237
SSID ssj0016264
Score 1.5833308
Snippet Let f : M^n→S^n+1真包含于R^n+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n+1)-dimensional unit sphere S^n+1. Denote...
Let f:(Mn)→Sn+1⊂Rn+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n + 1)-dimensional unit sphere Sn+1. Denote by the...
Let f: Mn → Sn+1(∩) Rn+2 be an n-dimensional complete oriented Riemannian manifold minimally immersed in an (n+1)-dimensional unit sphere Sn+1. Denote by Sn+1+...
SourceID wanfang
crossref
elsevier
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 39
SubjectTerms 53A10
53C42
Hypersurface
Riemannian流形
scalar curvature
space form
数量曲率
等距浸入
超曲面
Title HYPERSURFACES IN SPACE FORMS WITH SCALAR CURVATURE CONDITIONS
URI http://lib.cqvip.com/qk/86464X/20041/9016433.html
https://dx.doi.org/10.1016/S0252-9602(17)30357-0
https://d.wanfangdata.com.cn/periodical/sxwlxb-e200401004
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamTpPgwH4AottAFuIAh9AkTmr7sEOUtUopLVOysnGy7DjZpk3Zj3ba_nyeHbeDw4TEKYkVW9Z79vc-J8-fEfoEHFkRCehHokh6URVLj8ky8jiLuTayuMyeojCZ9rNZ9O00Pl1D6XIvjEmrdNjfYrpFa1fSc9bs3Vxc9AqI1iHwb-DUAMMxhXX7OsQfxjpoPRmNs-nqZwL0x6pIwfueqfC0kadtxBZ-DugX247nG5mF8-vm7BaCx3PhauNBNrVszv4IRsMt9MqxSJy0Hd1Ga1WzgzYdo8Ruvs530MvJSpUVnjZsumc5f40Osl9Hg7yY5cMkHRR4NMXFEdxhWBJOCnwyOs5wkSbfkxyns_ynTY3A6Y_p4chuOn6DZsPBcZp57iAFryRBvPAiGTLJtA5L4lccwhHM60AGfVhVlzWXVAdRSWpqighXMY9DGdR9rTkLaB1qSt6iTnPdVO8QVmWspWZ-xShwgVopRQGnVMQ1BzKgqy7aXdkOAnF5aeSlBDdCXoR00delMcVNK6YhnrLMwBPCeEIEVFhPCL-L2NLk4q9RIQDw_1X1o3ORcLNyLuaPD1ePSlQGGXwjlbf7_-3voRdtEo_5GrOPOou7--o98JOF-uDGn7mO85Pxb2Tc11A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamTRNw4McA0fHLQhzgEJrEdm0fOEShVcLaMDUtjJNlx8mYQNmgRdufz3PidnBASNwSK7ai9_y-9zl5_ozQS-DIhmhAP0KpDmjNdCB0RQMpmLROFld0pyjMilG2pO9P2MkOSjd7YVxZpcf-HtM7tPYtQ2_N4cXZ2bCEbB0D_wZODTDMOKzb9ygjHKJzL8mPsmL7MwHep1ORgucD1-F6I08_SNf4KuKvu3GC0MksfDlvT79D8vhbutq_1G2j29PfktHkLrrtWSRO-he9h3bq9gDd8YwS-3hdHaBbs60qK9ztd-We1eo-ept9Ph7Py-V8kqTjEucFLo_hCsOScFbiT_kiw2WaTJM5Tpfzj11pBE4_FO_ybtPxA7ScjBdpFviDFIKKRGwdUB0LLayNKxLWEtIRxHWkoxGsqqtGam4jWpGGuyYiDZMs1lEzslaKiDex5eQh2m3P2_oRwqZiVlsR1oIDF2iMMRxwylBpJZABWw_Q4dZ2kIirr05eSkkn5EXIAL3ZGFNd9GIa6rrKDDyhnCdUxFXnCRUOkNiYXP0xKxQA_r-6vvAuUj4qV2p1dfntyqjaIUPopPIO_3_85-hGtphN1TQvjh6jm31Bj_sy8wTtrn_8rJ8CV1mbZ34u_gK_T9iO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HYPERSURFACES+IN+SPACE+FORMS+WITH+SCALAR+CURVATURE+CONDITIONS&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%28%E8%8B%B1%E6%96%87%E7%89%88%29&rft.date=2004&rft.pub=Department+of+Mathematics%2C+Central+China+Normal+University%2C+Wuhan%2C430079%2C+China%25Department+of+Mathematics%2C+University+of+Science+and+Technology+of+China%2C+Hefei%2C230026%2C+China&rft.issn=0252-9602&rft.volume=24&rft.issue=1&rft.spage=39&rft.epage=44&rft_id=info:doi/10.1016%2FS0252-9602%2817%2930357-0&rft.externalDocID=sxwlxb_e200401004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg