Electrothermal based active control of ion transport in a microfluidic device with an ion-permselective membrane
The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalinati...
        Saved in:
      
    
          | Published in | Nanoscale Vol. 10; no. 24; pp. 11633 - 11641 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Royal Society of Chemistry
    
        28.06.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2040-3364 2040-3372 2040-3372  | 
| DOI | 10.1039/C8NR02389A | 
Cover
| Abstract | The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams. | 
    
|---|---|
| AbstractList | The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams. The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams.The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams.  | 
    
| Author | Park, Sinwook Yossifon, Gilad  | 
    
| Author_xml | – sequence: 1 givenname: Sinwook surname: Park fullname: Park, Sinwook organization: Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion – Israel Institute of Technology, Technion City 3200000, Israel – sequence: 2 givenname: Gilad orcidid: 0000-0001-7999-2919 surname: Yossifon fullname: Yossifon, Gilad organization: Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion – Israel Institute of Technology, Technion City 3200000, Israel  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29896609$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptkdlKxTAQhoMoLkdvfAAJeCNCNUuTNpdycANREL0uaTrFSNvUJD3i25u6ggiBBPLNx8w_O2h9cAMgtE_JCSVcnS7L23vCeKnO1tA2IznJOC_Y-s9b5ltoJ4RnQqTikm-iLaZKJSVR22g878BE7-IT-F53uNYBGqxNtCvAxg3pq8OuxdYNOHo9hNH5iO2ANe6t8a7tJttYgxtYWQP41cYnrIcZz8ZkDDDrZ1cPfZ3qYRdttLoLsPd1L9DjxfnD8iq7ubu8Xp7dZIZTETMmWiGBltoISmlNS6oMEaQADkWutQaRlzINn4uiaaBWULa0zmvFSiZVnUu-QEef3tG7lwlCrHobDHRd6sFNoWJE5IoVPJ0FOvyDPrvJD6m7mSoEF8WH8OCLmuoemmr0ttf-rfrOMgHHn0CKJQQP7Q9CSTUvqvpdVILJH9jYqKOdE9e2-6_kHS2-lJo | 
    
| CitedBy_id | crossref_primary_10_1002_elps_201900105 crossref_primary_10_1088_1361_6439_ab8bc7 crossref_primary_10_1063_5_0038914 crossref_primary_10_1039_D1LC00470K crossref_primary_10_1002_celc_202400411 crossref_primary_10_1021_acs_analchem_9b03238 crossref_primary_10_1002_elps_201900408 crossref_primary_10_1016_j_cclet_2023_109421 crossref_primary_10_1021_acs_nanolett_0c02973 crossref_primary_10_1039_D0NR05930G crossref_primary_10_1002_smll_202403593 crossref_primary_10_1021_acs_analchem_4c01018 crossref_primary_10_1021_acs_analchem_9b03917 crossref_primary_10_1039_D1LC00864A crossref_primary_10_1088_1361_6463_ab71b1 crossref_primary_10_3390_mi10070447 crossref_primary_10_1016_j_electacta_2020_136750 crossref_primary_10_3390_mi11060542 crossref_primary_10_1002_EXP_20210101 crossref_primary_10_1039_C9NR02506E  | 
    
| Cites_doi | 10.1103/PhysRevE.81.046301 10.1103/PhysRevLett.89.198103 10.1016/j.desal.2012.07.017 10.1016/0376-7388(92)80197-R 10.1017/S0022112007004880 10.1006/jcis.1999.6346 10.1103/PhysRevApplied.5.044013 10.1016/j.memsci.2013.07.033 10.1038/nnano.2010.34 10.1103/PhysRevE.62.2238 10.1021/nn100692z 10.1021/ac900318j 10.1039/c3nr04961b 10.1103/PhysRevE.93.062614 10.1088/0022-3727/36/20/023 10.1017/S0022112004009309 10.1039/B813639D 10.1103/PhysRevLett.101.236101 10.1063/1.2746413 10.1146/annurev-fluid-120710-101046 10.1021/ac010370l 10.1103/PhysRevLett.101.254501 10.1016/S0304-3886(01)00132-2 10.1039/c2lc21238b 10.1016/0001-8686(91)80022-C 10.1063/1.2908026 10.1021/nn4043628 10.1016/S0376-7388(96)00210-4 10.1016/j.cocis.2013.02.005 10.1103/PhysRevE.91.011002 10.1103/PhysRevLett.99.044501 10.1039/f29797500231 10.1039/b822556g 10.1103/PhysRevE.87.033005 10.1002/anie.201300947 10.1103/PhysRevE.86.046319 10.1103/PhysRevLett.110.114501 10.1063/1.4936915 10.1134/S102319351206016X 10.1016/S0376-7388(99)00134-9 10.1016/j.cis.2009.10.001 10.1021/ac101262v  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Royal Society of Chemistry 2018 | 
    
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 | 
    
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8  | 
    
| DOI | 10.1039/C8NR02389A | 
    
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic  | 
    
| DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2040-3372 | 
    
| EndPage | 11641 | 
    
| ExternalDocumentID | 29896609 10_1039_C8NR02389A  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8  | 
    
| ID | FETCH-LOGICAL-c315t-25f56e18ac5111b1819c0507e3e74aaae5486039457ddeb9e8f1b4b928269b463 | 
    
| ISSN | 2040-3364 2040-3372  | 
    
| IngestDate | Thu Oct 02 20:47:31 EDT 2025 Mon Jun 30 06:15:01 EDT 2025 Thu Apr 03 07:02:54 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 00:34:03 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 24 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c315t-25f56e18ac5111b1819c0507e3e74aaae5486039457ddeb9e8f1b4b928269b463 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-7999-2919 | 
    
| PMID | 29896609 | 
    
| PQID | 2057535746 | 
    
| PQPubID | 2047485 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_2054927327 proquest_journals_2057535746 pubmed_primary_29896609 crossref_primary_10_1039_C8NR02389A crossref_citationtrail_10_1039_C8NR02389A  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-06-28 | 
    
| PublicationDateYYYYMMDD | 2018-06-28 | 
    
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-28 day: 28  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: Cambridge  | 
    
| PublicationTitle | Nanoscale | 
    
| PublicationTitleAlternate | Nanoscale | 
    
| PublicationYear | 2018 | 
    
| Publisher | Royal Society of Chemistry | 
    
| Publisher_xml | – name: Royal Society of Chemistry | 
    
| References | Rubinstein (C8NR02389A-(cit20)/*[position()=1]) 1979; 75 Kim (C8NR02389A-(cit16)/*[position()=1]) 2007; 99 Bazant (C8NR02389A-(cit28)/*[position()=1]) 2009; 152 Mishchuk (C8NR02389A-(cit19)/*[position()=1]) 2013; 18 Kim (C8NR02389A-(cit3)/*[position()=1]) 2010; 5 Dukhin (C8NR02389A-(cit17)/*[position()=1]) 1991; 35 Yossifon (C8NR02389A-(cit18)/*[position()=1]) 2010; 81 Cho (C8NR02389A-(cit9)/*[position()=1]) 2014; 6 Ko (C8NR02389A-(cit4)/*[position()=1]) 2012; 12 Rosentsvit (C8NR02389A-(cit42)/*[position()=1]) 2015; 143 Green (C8NR02389A-(cit31)/*[position()=1]) 2001; 53 He (C8NR02389A-(cit39)/*[position()=1]) 2013; 7 Levich (C8NR02389A-(cit5)/*[position()=1]) 1962 Kwak (C8NR02389A-(cit10)/*[position()=1]) 2013; 308 Siwy (C8NR02389A-(cit40)/*[position()=1]) 2002; 89 Chang (C8NR02389A-(cit2)/*[position()=1]) 2012; 44 Yossifon (C8NR02389A-(cit24)/*[position()=1]) 2008; 101 Mavré (C8NR02389A-(cit29)/*[position()=1]) 2010; 82 Sistat (C8NR02389A-(cit6)/*[position()=1]) 1997; 123 Krol (C8NR02389A-(cit8)/*[position()=1]) 1999; 162 Yang (C8NR02389A-(cit32)/*[position()=1]) 2008; 2 Zehavi (C8NR02389A-(cit37)/*[position()=1]) 2016; 5 Jung (C8NR02389A-(cit43)/*[position()=1]) 2009; 81 Kim (C8NR02389A-(cit1)/*[position()=1]) 2010; 39 Fosdick (C8NR02389A-(cit30)/*[position()=1]) 2013; 52 Park (C8NR02389A-(cit35)/*[position()=1]) 2016; 93 Green (C8NR02389A-(cit36)/*[position()=1]) 2015; 91 Ng (C8NR02389A-(cit34)/*[position()=1]) 2009; 9 Ross (C8NR02389A-(cit38)/*[position()=1]) 2001; 73 Chang (C8NR02389A-(cit25)/*[position()=1]) 2012; 86 Kwak (C8NR02389A-(cit11)/*[position()=1]) 2013; 110 Rubinstein (C8NR02389A-(cit23)/*[position()=1]) 2008; 101 Perry (C8NR02389A-(cit41)/*[position()=1]) 2010; 4 Green (C8NR02389A-(cit15)/*[position()=1]) 2013; 87 Castellanos (C8NR02389A-(cit13)/*[position()=1]) 2003; 36 Wu (C8NR02389A-(cit33)/*[position()=1]) 2007; 90 Urtenov (C8NR02389A-(cit12)/*[position()=1]) 2013; 447 Rubinstein (C8NR02389A-(cit21)/*[position()=1]) 2000; 62 Zaltzman (C8NR02389A-(cit22)/*[position()=1]) 2007; 579 Zabolotskii (C8NR02389A-(cit14)/*[position()=1]) 2012; 48 Ramos (C8NR02389A-(cit26)/*[position()=1]) 1999; 217 Squires (C8NR02389A-(cit27)/*[position()=1]) 2004; 509 Rösler (C8NR02389A-(cit7)/*[position()=1]) 1992; 72  | 
    
| References_xml | – volume: 81 start-page: 046301 year: 2010 ident: C8NR02389A-(cit18)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.81.046301 – volume: 89 start-page: 198103 year: 2002 ident: C8NR02389A-(cit40)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.198103 – volume: 308 start-page: 138 year: 2013 ident: C8NR02389A-(cit10)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2012.07.017 – volume: 72 start-page: 171 year: 1992 ident: C8NR02389A-(cit7)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(92)80197-R – volume: 579 start-page: 173 year: 2007 ident: C8NR02389A-(cit22)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112007004880 – volume: 217 start-page: 420 year: 1999 ident: C8NR02389A-(cit26)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6346 – volume: 5 start-page: 044013 year: 2016 ident: C8NR02389A-(cit37)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.5.044013 – volume: 447 start-page: 190 year: 2013 ident: C8NR02389A-(cit12)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.07.033 – volume: 5 start-page: 297 year: 2010 ident: C8NR02389A-(cit3)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.34 – volume: 62 start-page: 2238 year: 2000 ident: C8NR02389A-(cit21)/*[position()=1] publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. doi: 10.1103/PhysRevE.62.2238 – volume: 4 start-page: 3897 year: 2010 ident: C8NR02389A-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn100692z – volume: 81 start-page: 3128 year: 2009 ident: C8NR02389A-(cit43)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac900318j – volume-title: Physicochemical hydrodynamics year: 1962 ident: C8NR02389A-(cit5)/*[position()=1] – volume: 6 start-page: 4620 year: 2014 ident: C8NR02389A-(cit9)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr04961b – volume: 93 start-page: 062614 year: 2016 ident: C8NR02389A-(cit35)/*[position()=1] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.062614 – volume: 36 start-page: 2584 year: 2003 ident: C8NR02389A-(cit13)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/36/20/023 – volume: 509 start-page: 217 year: 2004 ident: C8NR02389A-(cit27)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112004009309 – volume: 9 start-page: 802 year: 2009 ident: C8NR02389A-(cit34)/*[position()=1] publication-title: Lab Chip doi: 10.1039/B813639D – volume: 101 start-page: 236101 year: 2008 ident: C8NR02389A-(cit23)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.236101 – volume: 90 start-page: 234103 year: 2007 ident: C8NR02389A-(cit33)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2746413 – volume: 44 start-page: 401 year: 2012 ident: C8NR02389A-(cit2)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101046 – volume: 73 start-page: 4117 year: 2001 ident: C8NR02389A-(cit38)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac010370l – volume: 101 start-page: 254501 year: 2008 ident: C8NR02389A-(cit24)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.254501 – volume: 53 start-page: 71 year: 2001 ident: C8NR02389A-(cit31)/*[position()=1] publication-title: J. Electrost. doi: 10.1016/S0304-3886(01)00132-2 – volume: 12 start-page: 4472 year: 2012 ident: C8NR02389A-(cit4)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c2lc21238b – volume: 35 start-page: 173 year: 1991 ident: C8NR02389A-(cit17)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(91)80022-C – volume: 2 start-page: 024101 year: 2008 ident: C8NR02389A-(cit32)/*[position()=1] publication-title: Biomicrofluidics doi: 10.1063/1.2908026 – volume: 7 start-page: 10148 year: 2013 ident: C8NR02389A-(cit39)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4043628 – volume: 123 start-page: 121 year: 1997 ident: C8NR02389A-(cit6)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00210-4 – volume: 18 start-page: 137 year: 2013 ident: C8NR02389A-(cit19)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2013.02.005 – volume: 91 start-page: 011002 year: 2015 ident: C8NR02389A-(cit36)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.91.011002 – volume: 99 start-page: 044501 year: 2007 ident: C8NR02389A-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.044501 – volume: 75 start-page: 231 year: 1979 ident: C8NR02389A-(cit20)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. 2 doi: 10.1039/f29797500231 – volume: 39 start-page: 912 year: 2010 ident: C8NR02389A-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b822556g – volume: 87 start-page: 033005 year: 2013 ident: C8NR02389A-(cit15)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.87.033005 – volume: 52 start-page: 10438 year: 2013 ident: C8NR02389A-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300947 – volume: 86 start-page: 046319 year: 2012 ident: C8NR02389A-(cit25)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.86.046319 – volume: 110 start-page: 114501 year: 2013 ident: C8NR02389A-(cit11)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.114501 – volume: 143 start-page: 224706 year: 2015 ident: C8NR02389A-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4936915 – volume: 48 start-page: 692 year: 2012 ident: C8NR02389A-(cit14)/*[position()=1] publication-title: Russ. J. Electrochem. doi: 10.1134/S102319351206016X – volume: 162 start-page: 155 year: 1999 ident: C8NR02389A-(cit8)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00134-9 – volume: 152 start-page: 48 year: 2009 ident: C8NR02389A-(cit28)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2009.10.001 – volume: 82 start-page: 8766 year: 2010 ident: C8NR02389A-(cit29)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac101262v  | 
    
| SSID | ssj0069363 | 
    
| Score | 2.3760762 | 
    
| Snippet | The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied... | 
    
| SourceID | proquest pubmed crossref  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 11633 | 
    
| SubjectTerms | Active control Depletion Desalination Diffusion layers Electric fields Electrodialysis Fluidics Ion transport Nanofluids Saline water Stability Surface properties Temperature gradients  | 
    
| Title | Electrothermal based active control of ion transport in a microfluidic device with an ion-permselective membrane | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29896609 https://www.proquest.com/docview/2057535746 https://www.proquest.com/docview/2054927327  | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers customDbUrl: https://pubs.rsc.org eissn: 2040-3372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069363 issn: 2040-3364 databaseCode: AETIL dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHNL4L22QELwhlJPFH4sdpKgwEE4JO2ltkO44UrU0r2vLAX89dnK_STRq8RK3ruK3vl7vf2ec7Qt5wKXJuRBzY1KmAg8EIlM4ZEDmeSGlN4dc7vp7Lswv--VJc9vHz9emStTm2v689V_I_UoU2kCuekv0HyXaDQgO8BvnCFSQM11vJeOJr2CCHm8NUo0XK6-wYv_oYdEwJgRsCbRJzXODQ7-YYh1fMNmVeWjw4BeqiPeaG3YMljLiqS-TgWHM3B6e62ooaArW8WIGAO2B8a6Kuf5QYx3PVqxN46gq_t_-xnOl8uM4QpRgPFQ9UY4yxh4z5nOPHbtiWbOvTcICbmA-0YwTkjw1MLbz3Wa929HjIMA3qaXr-HTmF6jKh9smy_zJiXWhhvanOVNbfe5fsxaDywxHZO5lMP31pDbVUrC601_2xNnstU-_7u7f5yg1OSE1GpvvkQeNF0BMPiYfkjqsekfuD3JKPyXIbHLQGB_XgoA046KKgIG3agYOWFdV0CA7qwUERHFRXdAcctAXHE3LxYTI9PQua8hqBZZFYB7EohHRRqi2Q7sgA1VM2BPfAMZdwrbUTWKCMKS4SsIFGubSIDDcKnHSpDJfsKRlVi8o9JzSxVnDu0jwvgJE78KENkC9gl4kOI5eIMXnbTmJmm9zzWAJllu2Ka0xed32XPuPKtb0OWllkzRO5ymJ0PphIuByTV93HoC9xEwwmYrGp-3AFnD1OxuSZl2H3NViNQMpQvbjVT3hJ7vXPyQEZrX9u3CEw1LU5apD2B3xJkew | 
    
| linkProvider | Royal Society of Chemistry | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrothermal+based+active+control+of+ion+transport+in+a+microfluidic+device+with+an+ion-permselective+membrane&rft.jtitle=Nanoscale&rft.au=Park%2C+Sinwook&rft.au=Yossifon%2C+Gilad&rft.date=2018-06-28&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=10&rft.issue=24&rft.spage=11633&rft.epage=11641&rft_id=info:doi/10.1039%2FC8NR02389A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8NR02389A | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |