Electrothermal based active control of ion transport in a microfluidic device with an ion-permselective membrane

The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalinati...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 10; no. 24; pp. 11633 - 11641
Main Authors Park, Sinwook, Yossifon, Gilad
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.06.2018
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/C8NR02389A

Cover

Abstract The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams.
AbstractList The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams.
The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams.The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied electric field (a phenomenon termed concentration-polarization) has been used for a broad spectrum of applications ranging from on-chip desalination, bacteria filtration to biomolecule preconcentration. But these applications have been limited by the ability to control the length of the diffusion layer that is commonly indirectly prescribed by the fixed geometric and surface properties of a nanofluidic system. Here, we demonstrate that the depletion layer can be dynamically varied by inducing controlled electrothermal flow driven by the interaction of temperature gradients with the applied electric field. To this end, a series of microscale heaters, which can be individually activated on demand are embedded at the bottom of the microchannel and the relationship between their activation and ionic concentration is characterized. Such spatio-temporal control of the diffusion layer can be used to enhance on-chip electro-dialysis by producing shorter depletion layers, to dynamically reduce the microchannel resistance relative to that of the nanochannel for nanochannel based (bio)sensing, to generate current rectification reminiscent of a diode like behavior and control the location of the preconcentrated plug of analytes or the interface of brine and desalted streams.
Author Park, Sinwook
Yossifon, Gilad
Author_xml – sequence: 1
  givenname: Sinwook
  surname: Park
  fullname: Park, Sinwook
  organization: Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion – Israel Institute of Technology, Technion City 3200000, Israel
– sequence: 2
  givenname: Gilad
  orcidid: 0000-0001-7999-2919
  surname: Yossifon
  fullname: Yossifon, Gilad
  organization: Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion – Israel Institute of Technology, Technion City 3200000, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29896609$$D View this record in MEDLINE/PubMed
BookMark eNptkdlKxTAQhoMoLkdvfAAJeCNCNUuTNpdycANREL0uaTrFSNvUJD3i25u6ggiBBPLNx8w_O2h9cAMgtE_JCSVcnS7L23vCeKnO1tA2IznJOC_Y-s9b5ltoJ4RnQqTikm-iLaZKJSVR22g878BE7-IT-F53uNYBGqxNtCvAxg3pq8OuxdYNOHo9hNH5iO2ANe6t8a7tJttYgxtYWQP41cYnrIcZz8ZkDDDrZ1cPfZ3qYRdttLoLsPd1L9DjxfnD8iq7ubu8Xp7dZIZTETMmWiGBltoISmlNS6oMEaQADkWutQaRlzINn4uiaaBWULa0zmvFSiZVnUu-QEef3tG7lwlCrHobDHRd6sFNoWJE5IoVPJ0FOvyDPrvJD6m7mSoEF8WH8OCLmuoemmr0ttf-rfrOMgHHn0CKJQQP7Q9CSTUvqvpdVILJH9jYqKOdE9e2-6_kHS2-lJo
CitedBy_id crossref_primary_10_1002_elps_201900105
crossref_primary_10_1088_1361_6439_ab8bc7
crossref_primary_10_1063_5_0038914
crossref_primary_10_1039_D1LC00470K
crossref_primary_10_1002_celc_202400411
crossref_primary_10_1021_acs_analchem_9b03238
crossref_primary_10_1002_elps_201900408
crossref_primary_10_1016_j_cclet_2023_109421
crossref_primary_10_1021_acs_nanolett_0c02973
crossref_primary_10_1039_D0NR05930G
crossref_primary_10_1002_smll_202403593
crossref_primary_10_1021_acs_analchem_4c01018
crossref_primary_10_1021_acs_analchem_9b03917
crossref_primary_10_1039_D1LC00864A
crossref_primary_10_1088_1361_6463_ab71b1
crossref_primary_10_3390_mi10070447
crossref_primary_10_1016_j_electacta_2020_136750
crossref_primary_10_3390_mi11060542
crossref_primary_10_1002_EXP_20210101
crossref_primary_10_1039_C9NR02506E
Cites_doi 10.1103/PhysRevE.81.046301
10.1103/PhysRevLett.89.198103
10.1016/j.desal.2012.07.017
10.1016/0376-7388(92)80197-R
10.1017/S0022112007004880
10.1006/jcis.1999.6346
10.1103/PhysRevApplied.5.044013
10.1016/j.memsci.2013.07.033
10.1038/nnano.2010.34
10.1103/PhysRevE.62.2238
10.1021/nn100692z
10.1021/ac900318j
10.1039/c3nr04961b
10.1103/PhysRevE.93.062614
10.1088/0022-3727/36/20/023
10.1017/S0022112004009309
10.1039/B813639D
10.1103/PhysRevLett.101.236101
10.1063/1.2746413
10.1146/annurev-fluid-120710-101046
10.1021/ac010370l
10.1103/PhysRevLett.101.254501
10.1016/S0304-3886(01)00132-2
10.1039/c2lc21238b
10.1016/0001-8686(91)80022-C
10.1063/1.2908026
10.1021/nn4043628
10.1016/S0376-7388(96)00210-4
10.1016/j.cocis.2013.02.005
10.1103/PhysRevE.91.011002
10.1103/PhysRevLett.99.044501
10.1039/f29797500231
10.1039/b822556g
10.1103/PhysRevE.87.033005
10.1002/anie.201300947
10.1103/PhysRevE.86.046319
10.1103/PhysRevLett.110.114501
10.1063/1.4936915
10.1134/S102319351206016X
10.1016/S0376-7388(99)00134-9
10.1016/j.cis.2009.10.001
10.1021/ac101262v
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C8NR02389A
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 11641
ExternalDocumentID 29896609
10_1039_C8NR02389A
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-25f56e18ac5111b1819c0507e3e74aaae5486039457ddeb9e8f1b4b928269b463
ISSN 2040-3364
2040-3372
IngestDate Thu Oct 02 20:47:31 EDT 2025
Mon Jun 30 06:15:01 EDT 2025
Thu Apr 03 07:02:54 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 00:34:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-25f56e18ac5111b1819c0507e3e74aaae5486039457ddeb9e8f1b4b928269b463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7999-2919
PMID 29896609
PQID 2057535746
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_miscellaneous_2054927327
proquest_journals_2057535746
pubmed_primary_29896609
crossref_primary_10_1039_C8NR02389A
crossref_citationtrail_10_1039_C8NR02389A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-28
PublicationDateYYYYMMDD 2018-06-28
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Rubinstein (C8NR02389A-(cit20)/*[position()=1]) 1979; 75
Kim (C8NR02389A-(cit16)/*[position()=1]) 2007; 99
Bazant (C8NR02389A-(cit28)/*[position()=1]) 2009; 152
Mishchuk (C8NR02389A-(cit19)/*[position()=1]) 2013; 18
Kim (C8NR02389A-(cit3)/*[position()=1]) 2010; 5
Dukhin (C8NR02389A-(cit17)/*[position()=1]) 1991; 35
Yossifon (C8NR02389A-(cit18)/*[position()=1]) 2010; 81
Cho (C8NR02389A-(cit9)/*[position()=1]) 2014; 6
Ko (C8NR02389A-(cit4)/*[position()=1]) 2012; 12
Rosentsvit (C8NR02389A-(cit42)/*[position()=1]) 2015; 143
Green (C8NR02389A-(cit31)/*[position()=1]) 2001; 53
He (C8NR02389A-(cit39)/*[position()=1]) 2013; 7
Levich (C8NR02389A-(cit5)/*[position()=1]) 1962
Kwak (C8NR02389A-(cit10)/*[position()=1]) 2013; 308
Siwy (C8NR02389A-(cit40)/*[position()=1]) 2002; 89
Chang (C8NR02389A-(cit2)/*[position()=1]) 2012; 44
Yossifon (C8NR02389A-(cit24)/*[position()=1]) 2008; 101
Mavré (C8NR02389A-(cit29)/*[position()=1]) 2010; 82
Sistat (C8NR02389A-(cit6)/*[position()=1]) 1997; 123
Krol (C8NR02389A-(cit8)/*[position()=1]) 1999; 162
Yang (C8NR02389A-(cit32)/*[position()=1]) 2008; 2
Zehavi (C8NR02389A-(cit37)/*[position()=1]) 2016; 5
Jung (C8NR02389A-(cit43)/*[position()=1]) 2009; 81
Kim (C8NR02389A-(cit1)/*[position()=1]) 2010; 39
Fosdick (C8NR02389A-(cit30)/*[position()=1]) 2013; 52
Park (C8NR02389A-(cit35)/*[position()=1]) 2016; 93
Green (C8NR02389A-(cit36)/*[position()=1]) 2015; 91
Ng (C8NR02389A-(cit34)/*[position()=1]) 2009; 9
Ross (C8NR02389A-(cit38)/*[position()=1]) 2001; 73
Chang (C8NR02389A-(cit25)/*[position()=1]) 2012; 86
Kwak (C8NR02389A-(cit11)/*[position()=1]) 2013; 110
Rubinstein (C8NR02389A-(cit23)/*[position()=1]) 2008; 101
Perry (C8NR02389A-(cit41)/*[position()=1]) 2010; 4
Green (C8NR02389A-(cit15)/*[position()=1]) 2013; 87
Castellanos (C8NR02389A-(cit13)/*[position()=1]) 2003; 36
Wu (C8NR02389A-(cit33)/*[position()=1]) 2007; 90
Urtenov (C8NR02389A-(cit12)/*[position()=1]) 2013; 447
Rubinstein (C8NR02389A-(cit21)/*[position()=1]) 2000; 62
Zaltzman (C8NR02389A-(cit22)/*[position()=1]) 2007; 579
Zabolotskii (C8NR02389A-(cit14)/*[position()=1]) 2012; 48
Ramos (C8NR02389A-(cit26)/*[position()=1]) 1999; 217
Squires (C8NR02389A-(cit27)/*[position()=1]) 2004; 509
Rösler (C8NR02389A-(cit7)/*[position()=1]) 1992; 72
References_xml – volume: 81
  start-page: 046301
  year: 2010
  ident: C8NR02389A-(cit18)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.81.046301
– volume: 89
  start-page: 198103
  year: 2002
  ident: C8NR02389A-(cit40)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.198103
– volume: 308
  start-page: 138
  year: 2013
  ident: C8NR02389A-(cit10)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.07.017
– volume: 72
  start-page: 171
  year: 1992
  ident: C8NR02389A-(cit7)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(92)80197-R
– volume: 579
  start-page: 173
  year: 2007
  ident: C8NR02389A-(cit22)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007004880
– volume: 217
  start-page: 420
  year: 1999
  ident: C8NR02389A-(cit26)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6346
– volume: 5
  start-page: 044013
  year: 2016
  ident: C8NR02389A-(cit37)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.5.044013
– volume: 447
  start-page: 190
  year: 2013
  ident: C8NR02389A-(cit12)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.07.033
– volume: 5
  start-page: 297
  year: 2010
  ident: C8NR02389A-(cit3)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.34
– volume: 62
  start-page: 2238
  year: 2000
  ident: C8NR02389A-(cit21)/*[position()=1]
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  doi: 10.1103/PhysRevE.62.2238
– volume: 4
  start-page: 3897
  year: 2010
  ident: C8NR02389A-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn100692z
– volume: 81
  start-page: 3128
  year: 2009
  ident: C8NR02389A-(cit43)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac900318j
– volume-title: Physicochemical hydrodynamics
  year: 1962
  ident: C8NR02389A-(cit5)/*[position()=1]
– volume: 6
  start-page: 4620
  year: 2014
  ident: C8NR02389A-(cit9)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr04961b
– volume: 93
  start-page: 062614
  year: 2016
  ident: C8NR02389A-(cit35)/*[position()=1]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.062614
– volume: 36
  start-page: 2584
  year: 2003
  ident: C8NR02389A-(cit13)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/36/20/023
– volume: 509
  start-page: 217
  year: 2004
  ident: C8NR02389A-(cit27)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004009309
– volume: 9
  start-page: 802
  year: 2009
  ident: C8NR02389A-(cit34)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/B813639D
– volume: 101
  start-page: 236101
  year: 2008
  ident: C8NR02389A-(cit23)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.236101
– volume: 90
  start-page: 234103
  year: 2007
  ident: C8NR02389A-(cit33)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2746413
– volume: 44
  start-page: 401
  year: 2012
  ident: C8NR02389A-(cit2)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101046
– volume: 73
  start-page: 4117
  year: 2001
  ident: C8NR02389A-(cit38)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac010370l
– volume: 101
  start-page: 254501
  year: 2008
  ident: C8NR02389A-(cit24)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.254501
– volume: 53
  start-page: 71
  year: 2001
  ident: C8NR02389A-(cit31)/*[position()=1]
  publication-title: J. Electrost.
  doi: 10.1016/S0304-3886(01)00132-2
– volume: 12
  start-page: 4472
  year: 2012
  ident: C8NR02389A-(cit4)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c2lc21238b
– volume: 35
  start-page: 173
  year: 1991
  ident: C8NR02389A-(cit17)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/0001-8686(91)80022-C
– volume: 2
  start-page: 024101
  year: 2008
  ident: C8NR02389A-(cit32)/*[position()=1]
  publication-title: Biomicrofluidics
  doi: 10.1063/1.2908026
– volume: 7
  start-page: 10148
  year: 2013
  ident: C8NR02389A-(cit39)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4043628
– volume: 123
  start-page: 121
  year: 1997
  ident: C8NR02389A-(cit6)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(96)00210-4
– volume: 18
  start-page: 137
  year: 2013
  ident: C8NR02389A-(cit19)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2013.02.005
– volume: 91
  start-page: 011002
  year: 2015
  ident: C8NR02389A-(cit36)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.91.011002
– volume: 99
  start-page: 044501
  year: 2007
  ident: C8NR02389A-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.044501
– volume: 75
  start-page: 231
  year: 1979
  ident: C8NR02389A-(cit20)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans. 2
  doi: 10.1039/f29797500231
– volume: 39
  start-page: 912
  year: 2010
  ident: C8NR02389A-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b822556g
– volume: 87
  start-page: 033005
  year: 2013
  ident: C8NR02389A-(cit15)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.87.033005
– volume: 52
  start-page: 10438
  year: 2013
  ident: C8NR02389A-(cit30)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300947
– volume: 86
  start-page: 046319
  year: 2012
  ident: C8NR02389A-(cit25)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.86.046319
– volume: 110
  start-page: 114501
  year: 2013
  ident: C8NR02389A-(cit11)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.114501
– volume: 143
  start-page: 224706
  year: 2015
  ident: C8NR02389A-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4936915
– volume: 48
  start-page: 692
  year: 2012
  ident: C8NR02389A-(cit14)/*[position()=1]
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S102319351206016X
– volume: 162
  start-page: 155
  year: 1999
  ident: C8NR02389A-(cit8)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00134-9
– volume: 152
  start-page: 48
  year: 2009
  ident: C8NR02389A-(cit28)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2009.10.001
– volume: 82
  start-page: 8766
  year: 2010
  ident: C8NR02389A-(cit29)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac101262v
SSID ssj0069363
Score 2.3760762
Snippet The ability to induce regions of high and low ionic concentrations adjacent to a permselective membrane or a nanochannel subject to an externally applied...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 11633
SubjectTerms Active control
Depletion
Desalination
Diffusion layers
Electric fields
Electrodialysis
Fluidics
Ion transport
Nanofluids
Saline water
Stability
Surface properties
Temperature gradients
Title Electrothermal based active control of ion transport in a microfluidic device with an ion-permselective membrane
URI https://www.ncbi.nlm.nih.gov/pubmed/29896609
https://www.proquest.com/docview/2057535746
https://www.proquest.com/docview/2054927327
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers
  customDbUrl: https://pubs.rsc.org
  eissn: 2040-3372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069363
  issn: 2040-3364
  databaseCode: AETIL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHNL4L22QELwhlJPFH4sdpKgwEE4JO2ltkO44UrU0r2vLAX89dnK_STRq8RK3ruK3vl7vf2ec7Qt5wKXJuRBzY1KmAg8EIlM4ZEDmeSGlN4dc7vp7Lswv--VJc9vHz9emStTm2v689V_I_UoU2kCuekv0HyXaDQgO8BvnCFSQM11vJeOJr2CCHm8NUo0XK6-wYv_oYdEwJgRsCbRJzXODQ7-YYh1fMNmVeWjw4BeqiPeaG3YMljLiqS-TgWHM3B6e62ooaArW8WIGAO2B8a6Kuf5QYx3PVqxN46gq_t_-xnOl8uM4QpRgPFQ9UY4yxh4z5nOPHbtiWbOvTcICbmA-0YwTkjw1MLbz3Wa929HjIMA3qaXr-HTmF6jKh9smy_zJiXWhhvanOVNbfe5fsxaDywxHZO5lMP31pDbVUrC601_2xNnstU-_7u7f5yg1OSE1GpvvkQeNF0BMPiYfkjqsekfuD3JKPyXIbHLQGB_XgoA046KKgIG3agYOWFdV0CA7qwUERHFRXdAcctAXHE3LxYTI9PQua8hqBZZFYB7EohHRRqi2Q7sgA1VM2BPfAMZdwrbUTWKCMKS4SsIFGubSIDDcKnHSpDJfsKRlVi8o9JzSxVnDu0jwvgJE78KENkC9gl4kOI5eIMXnbTmJmm9zzWAJllu2Ka0xed32XPuPKtb0OWllkzRO5ymJ0PphIuByTV93HoC9xEwwmYrGp-3AFnD1OxuSZl2H3NViNQMpQvbjVT3hJ7vXPyQEZrX9u3CEw1LU5apD2B3xJkew
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrothermal+based+active+control+of+ion+transport+in+a+microfluidic+device+with+an+ion-permselective+membrane&rft.jtitle=Nanoscale&rft.au=Park%2C+Sinwook&rft.au=Yossifon%2C+Gilad&rft.date=2018-06-28&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=10&rft.issue=24&rft.spage=11633&rft.epage=11641&rft_id=info:doi/10.1039%2FC8NR02389A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8NR02389A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon