Effects of Oxygen Vacancy on Optical and Electrical Properties of ZnO Bulks and Nanowires
Based on the generalized gradient approximation (GGA) in density functional theory (DFT) and using the firstprinciple plane wave ultrasoft pseudopotential method, we construct and optimize the structures of intrinsic and oxygen vacancy (Vo) ZnO bulks and nanowires (NWs) in the Castep module. Moreove...
Saved in:
Published in | Chinese physics letters Vol. 31; no. 11; pp. 136 - 139 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/31/11/117301 |
Cover
Summary: | Based on the generalized gradient approximation (GGA) in density functional theory (DFT) and using the firstprinciple plane wave ultrasoft pseudopotential method, we construct and optimize the structures of intrinsic and oxygen vacancy (Vo) ZnO bulks and nanowires (NWs) in the Castep module. Moreover, the calculation of band structures and the optical properties are carried out. The cMculated results exhibit that the oxygen vacancy exerts a more significant influence on the electronic structures of the ZnO bulks instead of the NWs. What is more, the influences of the Vo on the optical properties are mainly embodied in the ultraviolet region, and the main optical parameters of ZnO bulks and NWs with Vo are anisotropic. |
---|---|
Bibliography: | 11-1959/O4 YU Xiao-Xia, ZHENG Hong-Mei, FANG Xiao-Yong, JIN Sai-Bo, CAO Mao-Sheng( 1School of Science, Yanshan University, Qinhuangdao 066004 ;2.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081) Based on the generalized gradient approximation (GGA) in density functional theory (DFT) and using the firstprinciple plane wave ultrasoft pseudopotential method, we construct and optimize the structures of intrinsic and oxygen vacancy (Vo) ZnO bulks and nanowires (NWs) in the Castep module. Moreover, the calculation of band structures and the optical properties are carried out. The cMculated results exhibit that the oxygen vacancy exerts a more significant influence on the electronic structures of the ZnO bulks instead of the NWs. What is more, the influences of the Vo on the optical properties are mainly embodied in the ultraviolet region, and the main optical parameters of ZnO bulks and NWs with Vo are anisotropic. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/31/11/117301 |