Integrable Variable-coefficient Coupled Cylindrical NLS Equations and Their Explicit Solutions

Based on the generalized dressing method, we propose integrable variable coefficient coupled cylin-drical nonlinear SchrSdinger equations and their Lax pairs. As applications, their explicit solutions and their reductions are constructed.

Saved in:
Bibliographic Details
Published inActa Mathematicae Applicatae Sinica Vol. 30; no. 4; pp. 1017 - 1024
Main Authors Su, Ting, Ding, Guo-hua, Fang, Jian-yin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2014
Subjects
Online AccessGet full text
ISSN0168-9673
1618-3932
DOI10.1007/s10255-014-0439-z

Cover

Abstract Based on the generalized dressing method, we propose integrable variable coefficient coupled cylin-drical nonlinear SchrSdinger equations and their Lax pairs. As applications, their explicit solutions and their reductions are constructed.
AbstractList Based on the generalized dressing method, we propose integrable variable coefficient coupled cylin-drical nonlinear SchrSdinger equations and their Lax pairs. As applications, their explicit solutions and their reductions are constructed.
Based on the generalized dressing method, we propose integrable variable coefficient coupled cylindrical nonlinear Schrödinger equations and their Lax pairs. As applications, their explicit solutions and their reductions are constructed.
Author Ting SU Guo-hua DING Jian-yin FANG
AuthorAffiliation Department of Mathematical and Physical Science, Henan Institute of Engineering, Zhengzhou 451191, China
Author_xml – sequence: 1
  givenname: Ting
  surname: Su
  fullname: Su, Ting
  email: suting1976@163.com
  organization: Department of Mathematical and Physical Science, Henan Institute of Engineering
– sequence: 2
  givenname: Guo-hua
  surname: Ding
  fullname: Ding, Guo-hua
  organization: Department of Mathematical and Physical Science, Henan Institute of Engineering
– sequence: 3
  givenname: Jian-yin
  surname: Fang
  fullname: Fang, Jian-yin
  organization: Department of Mathematical and Physical Science, Henan Institute of Engineering
BookMark eNp9kMtOwzAQRS1UJNrCB7Cz2Bs8cRInSxQVqFTBooUlkZ-tq-C0TiLRfj3pQyxYsJqRZs7cO3eEBr72BqFboPdAKX9ogEZJQijEhMYsJ_sLNIQUMsJyFg3QkEKakTzl7AqNmmZNKXCW8iH6nPrWLIOQlcEfIrhDQ1RtrHXKGd_iou42ldG42FXO6-CUqPDrbI4n2060rvYNFl7jxcq4gCffm6rHWjyvq-44vEaXVlSNuTnXMXp_miyKFzJ7e54WjzOiGCQtASOt5VwqCQCacqFTm2rQhgIIqiRXlMeR5DaTkY54kshIZobaTKssZ0nMxoif7qpQN00wtuxtHP21QbiqBFoeYipPMZV9TOUhpnLfk_CH3AT3JcLuXyY6MU2_65cmlOu6C75_8F_o7iy0qv1y23O_Smka8zyjScJ-ADFKilA
CitedBy_id crossref_primary_10_1155_2017_2924947
crossref_primary_10_1142_S0217984921505606
crossref_primary_10_4236_jamp_2021_98134
Cites_doi 10.1063/1.533278
10.1016/0375-9601(89)90579-3
10.1007/BF01075696
10.1143/JPSJ.60.409
10.1103/PhysRevE.50.1543
10.1016/0375-9601(96)00208-3
10.1088/0266-5611/17/4/321
10.1103/PhysRevLett.78.646
10.1063/1.529732
10.1002/sapm1969484377
10.1364/OL.9.000288
10.1007/BF01077483
10.1088/0305-4470/17/16/001
10.1002/sapm1967461133
ContentType Journal Article
Copyright Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1007/s10255-014-0439-z
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Integrable Variable-coefficient Coupled Cylindrical NLS Equations and Their Explicit Solutions
EISSN 1618-3932
EndPage 1024
ExternalDocumentID 10_1007_s10255_014_0439_z
664798055
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5QI
5VR
5VS
6NX
8TC
8UJ
92L
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~A9
~EX
~WA
-SA
-S~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
TGP
ID FETCH-LOGICAL-c315t-1ebff77bcb111d07ad6f6d1de011a0cb7c0742b7f8b2d2755b2b8e0f8dc893543
IEDL.DBID AGYKE
ISSN 0168-9673
IngestDate Wed Oct 01 05:13:23 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
Fri Feb 21 02:33:57 EST 2025
Wed Feb 14 10:30:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords variable-coefficient coupled NLS equations
45Gxx
the generalized dressing method
integrability
35Dxx
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-1ebff77bcb111d07ad6f6d1de011a0cb7c0742b7f8b2d2755b2b8e0f8dc893543
Notes 11-2041/O1
variable-coefficient coupled NLS equations; the generalized dressing method; integrability
Based on the generalized dressing method, we propose integrable variable coefficient coupled cylin-drical nonlinear SchrSdinger equations and their Lax pairs. As applications, their explicit solutions and their reductions are constructed.
PageCount 8
ParticipantIDs crossref_citationtrail_10_1007_s10255_014_0439_z
crossref_primary_10_1007_s10255_014_0439_z
springer_journals_10_1007_s10255_014_0439_z
chongqing_primary_664798055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle English Series
PublicationTitle Acta Mathematicae Applicatae Sinica
PublicationTitleAbbrev Acta Math. Appl. Sin. Engl. Ser
PublicationTitleAlternate Acta Mathematicae Applicatae Sinica
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References DaiHHJeffreyAThe inverse scattering transforms for certain types of variable-coefficient KdV equationsPhys. Lett. A.198913936937210.1016/0375-9601(89)90579-31013316
HasegawaAGeneration of a train of soliton pulses by induced modulational instability in optical fibersOptics Letters1984928829010.1364/OL.9.000288
ChristodoulidesDNCoskunTHMitchellMSegevMTheory of Incoherent Self-focusing in Biased Photorefractive MediaPhys. Rev. Lett.19977864664910.1103/PhysRevLett.78.646
ZakharovVEShabatABIntegration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem IIFunt. Anal. Appl.197913166174545363
SaSaNSatsumaJNew-type of soliton solutions for a higher-order nonlinear Schrödinger equationJ. Phys. Soc. Jpn.19916040941710.1143/JPSJ.60.4090920.351281104387
TasgalRSPotasekMJSoliton solutions to coupled higher-order nonlinear Schrödinger equationsJ. Math. Phys.1992331028121510.1063/1.5297321149244
ChowdhuryARBasakBOn the complete solution of the Hirota-Satsuma system through the ‘dressing’ operator techniqueJ. Phys. A.198417L863L86810.1088/0305-4470/17/16/0010559.35082
AgrawalGPBoydRWNonlinear Fiber Optics2001New YorkSpringer-Verlag
BuryakAVKivsharYSParkerDFCoupling between dark and bright solitonsPhys. Lett. A.1996215576210.1016/0375-9601(96)00208-3
ZakharovVEShabatABExact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear mediaSov. Phys. JETP.1972346269406174
ParkerAA reformulation of the ‘dressing method’ for the Sawada-Kotera equationInverse Problems20011788589510.1088/0266-5611/17/4/3210983.351201861489
BenneyDJRoskesGJWave instabilitiesStud. Appl. Math.1969483773850216.52904
DyeJMParkerAAn inverse scattering scheme for the regularized long-wave equationJ. Math. Phys2000412889290410.1063/1.5332780973.351651755476
BenneyDJNewellACThe propagation of nonlinear wave envelopesJ. Math. Phys.1967461331390153.30301241052
ZakharovVEShabatABA scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem IFunt. Anal. Appl.1974822623510.1007/BF010756960303.35024
PorsezianKShanmughaSPMahalingamACoupled high-order nonlinear Schrödinger equations in nonlinear optics:Painlevé analysis and integrabilityPhys. Rev. E1994501543154710.1103/PhysRevE.50.15431381874
AgrawalGPNonlinear and Fiber Optics1989LondonAcadmic Press
JeffreyADaiHHOn the application of a generalizzed version of the dressing method to the integration of variable-coefficient KdV equationRendiconti.di Mathematica, Serie VII1990104394550748.350401080309
GP Agrawal (439_CR2) 1989
VE Zakharov (439_CR17) 1979; 13
VE Zakharov (439_CR16) 1974; 8
DJ Benney (439_CR4) 1969; 48
A Hasegawa (439_CR10) 1984; 9
VE Zakharov (439_CR18) 1972; 34
AV Buryak (439_CR5) 1996; 215
DN Christodoulides (439_CR7) 1997; 78
AR Chowdhury (439_CR6) 1984; 17
A Jeffrey (439_CR11) 1990; 10
GP Agrawal (439_CR1) 2001
HH Dai (439_CR8) 1989; 139
N SaSa (439_CR14) 1991; 60
RS Tasgal (439_CR15) 1992; 33
DJ Benney (439_CR3) 1967; 46
JM Dye (439_CR9) 2000; 41
K Porsezian (439_CR13) 1994; 50
A Parker (439_CR12) 2001; 17
References_xml – reference: BuryakAVKivsharYSParkerDFCoupling between dark and bright solitonsPhys. Lett. A.1996215576210.1016/0375-9601(96)00208-3
– reference: ZakharovVEShabatABIntegration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem IIFunt. Anal. Appl.197913166174545363
– reference: BenneyDJNewellACThe propagation of nonlinear wave envelopesJ. Math. Phys.1967461331390153.30301241052
– reference: DaiHHJeffreyAThe inverse scattering transforms for certain types of variable-coefficient KdV equationsPhys. Lett. A.198913936937210.1016/0375-9601(89)90579-31013316
– reference: AgrawalGPBoydRWNonlinear Fiber Optics2001New YorkSpringer-Verlag
– reference: SaSaNSatsumaJNew-type of soliton solutions for a higher-order nonlinear Schrödinger equationJ. Phys. Soc. Jpn.19916040941710.1143/JPSJ.60.4090920.351281104387
– reference: DyeJMParkerAAn inverse scattering scheme for the regularized long-wave equationJ. Math. Phys2000412889290410.1063/1.5332780973.351651755476
– reference: ZakharovVEShabatABExact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear mediaSov. Phys. JETP.1972346269406174
– reference: AgrawalGPNonlinear and Fiber Optics1989LondonAcadmic Press
– reference: ChristodoulidesDNCoskunTHMitchellMSegevMTheory of Incoherent Self-focusing in Biased Photorefractive MediaPhys. Rev. Lett.19977864664910.1103/PhysRevLett.78.646
– reference: ParkerAA reformulation of the ‘dressing method’ for the Sawada-Kotera equationInverse Problems20011788589510.1088/0266-5611/17/4/3210983.351201861489
– reference: PorsezianKShanmughaSPMahalingamACoupled high-order nonlinear Schrödinger equations in nonlinear optics:Painlevé analysis and integrabilityPhys. Rev. E1994501543154710.1103/PhysRevE.50.15431381874
– reference: ZakharovVEShabatABA scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem IFunt. Anal. Appl.1974822623510.1007/BF010756960303.35024
– reference: ChowdhuryARBasakBOn the complete solution of the Hirota-Satsuma system through the ‘dressing’ operator techniqueJ. Phys. A.198417L863L86810.1088/0305-4470/17/16/0010559.35082
– reference: HasegawaAGeneration of a train of soliton pulses by induced modulational instability in optical fibersOptics Letters1984928829010.1364/OL.9.000288
– reference: JeffreyADaiHHOn the application of a generalizzed version of the dressing method to the integration of variable-coefficient KdV equationRendiconti.di Mathematica, Serie VII1990104394550748.350401080309
– reference: BenneyDJRoskesGJWave instabilitiesStud. Appl. Math.1969483773850216.52904
– reference: TasgalRSPotasekMJSoliton solutions to coupled higher-order nonlinear Schrödinger equationsJ. Math. Phys.1992331028121510.1063/1.5297321149244
– volume: 41
  start-page: 2889
  year: 2000
  ident: 439_CR9
  publication-title: J. Math. Phys
  doi: 10.1063/1.533278
– volume-title: Nonlinear Fiber Optics
  year: 2001
  ident: 439_CR1
– volume: 34
  start-page: 62
  year: 1972
  ident: 439_CR18
  publication-title: Sov. Phys. JETP.
– volume: 139
  start-page: 369
  year: 1989
  ident: 439_CR8
  publication-title: Phys. Lett. A.
  doi: 10.1016/0375-9601(89)90579-3
– volume: 10
  start-page: 439
  year: 1990
  ident: 439_CR11
  publication-title: Rendiconti.di Mathematica, Serie VII
– volume: 8
  start-page: 226
  year: 1974
  ident: 439_CR16
  publication-title: Funt. Anal. Appl.
  doi: 10.1007/BF01075696
– volume-title: Nonlinear and Fiber Optics
  year: 1989
  ident: 439_CR2
– volume: 60
  start-page: 409
  year: 1991
  ident: 439_CR14
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.60.409
– volume: 50
  start-page: 1543
  year: 1994
  ident: 439_CR13
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.50.1543
– volume: 215
  start-page: 57
  year: 1996
  ident: 439_CR5
  publication-title: Phys. Lett. A.
  doi: 10.1016/0375-9601(96)00208-3
– volume: 17
  start-page: 885
  year: 2001
  ident: 439_CR12
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/17/4/321
– volume: 78
  start-page: 646
  year: 1997
  ident: 439_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.646
– volume: 33
  start-page: 1028
  year: 1992
  ident: 439_CR15
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529732
– volume: 48
  start-page: 377
  year: 1969
  ident: 439_CR4
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm1969484377
– volume: 9
  start-page: 288
  year: 1984
  ident: 439_CR10
  publication-title: Optics Letters
  doi: 10.1364/OL.9.000288
– volume: 13
  start-page: 166
  year: 1979
  ident: 439_CR17
  publication-title: Funt. Anal. Appl.
  doi: 10.1007/BF01077483
– volume: 17
  start-page: L863
  year: 1984
  ident: 439_CR6
  publication-title: J. Phys. A.
  doi: 10.1088/0305-4470/17/16/001
– volume: 46
  start-page: 133
  year: 1967
  ident: 439_CR3
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm1967461133
SSID ssj0017367
Score 1.961421
Snippet Based on the generalized dressing method, we propose integrable variable coefficient coupled cylin-drical nonlinear SchrSdinger equations and their Lax pairs....
Based on the generalized dressing method, we propose integrable variable coefficient coupled cylindrical nonlinear Schrödinger equations and their Lax pairs....
SourceID crossref
springer
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 1017
SubjectTerms Applications of Mathematics
Lax对
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
NLS方程
Theoretical
变系数
可积
圆柱
精确解
耦合
非线性
Title Integrable Variable-coefficient Coupled Cylindrical NLS Equations and Their Explicit Solutions
URI http://lib.cqvip.com/qk/85829X/201404/664798055.html
https://link.springer.com/article/10.1007/s10255-014-0439-z
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1618-3932
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017367
  issn: 0168-9673
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1618-3932
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017367
  issn: 0168-9673
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5VIO9AVioUU-cCoych62s8cVgtIHXGAluBBlxg5UXWWBzSK6vx47Lx6ilbjl4NjJzHjmG834M8AWCaQkMQEnjBWPERVHK5AHCSUkjM5kRcdweKQORvGPU3nanOOett3ubUmy8tSPDrs5-OtSX984EQ34fAEWpc9PerA4_Hb2c68rHuhI1aekldvLSkdtMfOlSTylwuWkuLh2Cz4NTU_rolW42X8HJ-2H1l0mf3ZmJe7Q_BmH4yv_5D0sN_CTDWt7-QBvbPERlg477tbpJzj_XjNI4NiyW5dJ-wdOE1txTbgQxWgyuxpbw-ivW9xUFCPs6Ncxs9c1bfiUZYVhVQWC2TtfH_9dss7EV2C0v3eye8CbWxg4RYEseWAxz7VGQucWjdCZUbkygbHOM2SCUJNPr1HnCYYm1FJiiIkVeWLIYSEZR6vQKyaFXQMWZw7tSBu4wOxQhc4HlFEc5VHmYZZQog8bnTLSq5ptI1Uq1oNESNkH0aonpYbA3N-jMU4fqJe9YFMn2NQLNp334Wv3SjvffwZvt-pKm408_ffo9VeN3oC3odd31QX4GXrlzcx-cWimxM3GejdhYRQO7wEqgu5X
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB2V9AAcoBQQoUB94FTkypv1V45V1ZK2SS6kUrlgrcfegog2LdkgyK-vvV9QBEi97cFr787Ynme9mWeAt8gsau0SipZLyq2V1HpmaaJRI3MqE5Ucw2QqR-f89EJcNHXcyzbbvaUkq536t2K3AH_D0TcmTqRDur4HmzzRmvdg8-D9x7OjjjxQqayrpGVYy1KlLZn5t06ipMLnRXF5HQa8HZpu86JVuDl-DLP2Q-ssk6_7q9Lu4_oPDcc7_skWPGrgJzmo58sT2PDFNjycdNqty6fw6aRWkLBzT76Hk3R8oLjwldZECFEEF6uruXcEf4bBXSUxQqbjD8Rf17LhS5IVjlQMBPE_Ij_-pSTdFH8G58dHs8MRbW5hoJgmoqSJt3mulEUbtkXHVOZkLl3ifNgZMoZWYTxeW5VrO3ADJYQdWO1Zrh0GLCR4-hx6xaLwL4DwLKAd4ZMQmAOqUPkQM-RpnmYRZjHJ-rDTOcNc1WobRkquhpoJ0QfWusdgI2Ae79GYm1_Sy9GwJhjWRMOadR_2ulfa_v7T-F3rLtMs5OW_W7-8U-tduD-aTcZmfDI924EHg-j7KiPwFfTKbyv_OiCb0r5pZvIN7KjwXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrHWRw6elNDsI8n2WNRStS2CFnoybB6rQtm2divaX2-yLy2o4G0Ps1mSmdn5hsl8A8CpxEIGgXKQFD5FvhAUCY0FcgIZSKxYSFI6hm6Ptvv-zYAM8jmn0-K2e1GSzHoaLEtTnNTHKqp_a3wzUNikwfYShddA82Ww4ptQbbOvvtssywjMo1m_NDVeTZlXlDV_WsKSKzyP4qeJ-fRikFqskKaBp7UJNnLECJuZirfAko63wXq3pFud7oDH64z0QQw1fDPJr31AcqRTegizKyhHs_FQKyg_zM5VygoCe517qCcZ0_cUhrGCadEA6ndb0n5JYGmVu6Dfunq4aKN8cAKSnkMS5GgRRYwJKcyfTGEWKhpR5ShtnDnEUjBpM2LBokC4ymWECFcEGkeBkga-EN_bA5V4FOt9AP3QABSiHRNLDRBgUUOG0vciL7TICFNcBbXy1Pg4I8jglPqsEWBCqgAX58hlzjluR18M-RdbslUDN2rgVg18XgVn5SvFen8InxfK4bnvTX-XPviX9AlYvbts8c5177YG1lxrKOkdvkNQSV5n-shgkUQcp_b2CZYN15g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrable+Variable-coefficient+Coupled+Cylindrical+NLS+Equations+and+Their+Explicit+Solutions&rft.jtitle=%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Ting+SU+Guo-hua+DING+Jian-yin+FANG&rft.date=2014-10-01&rft.issn=0168-9673&rft.eissn=1618-3932&rft.issue=4&rft.spage=1017&rft.epage=1024&rft_id=info:doi/10.1007%2Fs10255-014-0439-z&rft.externalDocID=664798055
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85829X%2F85829X.jpg