Theoretical and experimental analysis of the effects of the series resistance on luminous efficacy in GaN-based light emitting diodes
In this paper, a new equivalent circuit model of GaN-based light emitting diodes (LEDs) is established. The impact of the series resistance to luminous efficacy is simulated using the MATLAB software. GaN-based LEDs with different n- contact electrode materials (LEDs with Ni/Au and LEDs with Cr/Au)...
Saved in:
Published in | Chinese physics B Vol. 23; no. 11; pp. 630 - 633 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/23/11/118507 |
Cover
Summary: | In this paper, a new equivalent circuit model of GaN-based light emitting diodes (LEDs) is established. The impact of the series resistance to luminous efficacy is simulated using the MATLAB software. GaN-based LEDs with different n- contact electrode materials (LEDs with Ni/Au and LEDs with Cr/Au) are fabricated. By comparing and analyzing the results of performances, we concluded that both the series resistance and the carrier loss could affect the luminous efficacy severely. LEDs with lower series resistance have higher luminous efficacy and its efficiency droop is alleviated simultaneously. To improve luminous efficacy, the fabrication process should be optimized for lower series resistance. |
---|---|
Bibliography: | GaN-based light emitting diodes, series resistance, luminous efficacy In this paper, a new equivalent circuit model of GaN-based light emitting diodes (LEDs) is established. The impact of the series resistance to luminous efficacy is simulated using the MATLAB software. GaN-based LEDs with different n- contact electrode materials (LEDs with Ni/Au and LEDs with Cr/Au) are fabricated. By comparing and analyzing the results of performances, we concluded that both the series resistance and the carrier loss could affect the luminous efficacy severely. LEDs with lower series resistance have higher luminous efficacy and its efficiency droop is alleviated simultaneously. To improve luminous efficacy, the fabrication process should be optimized for lower series resistance. Ma Li, Shen Guang-Di, Liu Jian-Peng, Gao Zhi-Yuan, Xu Chen, and Wang Xun( Key Laboratory of Opto-electronics Technology of Ministry of Education, Beijing University of Technology, Beijing 100124, China) 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/23/11/118507 |