Comparative study of CUDA-based parallel programming in C and Python for GPU acceleration of the 4th order Runge-Kutta method
•Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations. In this paper, a comparative study is presented on the application of General-purpose Computing on Graphics Processing Units for solving the point reactor kinetics equation...
Saved in:
| Published in | Nuclear engineering and design Vol. 421; p. 113050 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0029-5493 1872-759X |
| DOI | 10.1016/j.nucengdes.2024.113050 |
Cover
| Abstract | •Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations.
In this paper, a comparative study is presented on the application of General-purpose Computing on Graphics Processing Units for solving the point reactor kinetics equations through the utilization of the 4th Order Runge-Kutta (RK4) method using the programming languages C and Python. Sequential and parallel algorithms of the RK4 method were developed in C/C++ and Python, with parallel algorithms specifically designed to operate on Graphics Processing Units (GPUs) utilizing the NVIDIA Compute Unified Device Architecture (CUDA) as the programming platform. As an experiment, the execution time for the sequential and parallel algorithms were compared for a reactivity value of ρ = 0.003 and a simulation time of t = 100 s. The parallel C and Python algorithms achieved, respectively, speedups of 9.33 and 409.7 when comparing the execution time on the best GPU utilized (RTX 3070Ti) with the best CPU (3600XT), while still maintaining numerical precision. |
|---|---|
| AbstractList | •Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations.
In this paper, a comparative study is presented on the application of General-purpose Computing on Graphics Processing Units for solving the point reactor kinetics equations through the utilization of the 4th Order Runge-Kutta (RK4) method using the programming languages C and Python. Sequential and parallel algorithms of the RK4 method were developed in C/C++ and Python, with parallel algorithms specifically designed to operate on Graphics Processing Units (GPUs) utilizing the NVIDIA Compute Unified Device Architecture (CUDA) as the programming platform. As an experiment, the execution time for the sequential and parallel algorithms were compared for a reactivity value of ρ = 0.003 and a simulation time of t = 100 s. The parallel C and Python algorithms achieved, respectively, speedups of 9.33 and 409.7 when comparing the execution time on the best GPU utilized (RTX 3070Ti) with the best CPU (3600XT), while still maintaining numerical precision. |
| ArticleNumber | 113050 |
| Author | Silva, Adilson C. Lima, Alan M.M. Santos, Marcelo C. Fernandes, Davi F. |
| Author_xml | – sequence: 1 givenname: Davi F. surname: Fernandes fullname: Fernandes, Davi F. email: dfernandes@nuclear.ufrj.br – sequence: 2 givenname: Marcelo C. surname: Santos fullname: Santos, Marcelo C. email: marcelo@lmp.ufrj.br – sequence: 3 givenname: Adilson C. surname: Silva fullname: Silva, Adilson C. email: adilson@nuclear.ufrj.br – sequence: 4 givenname: Alan M.M. surname: Lima fullname: Lima, Alan M.M. email: alan@lmp.ufrj.br |
| BookMark | eNqNkM9qGzEQh0VxoM6fZ6heYB1Ju7K8hx7MtnFLAwkhhtyEPJq1ZXYlI8kGH_ru3Y1LD720c5iBGb4P5ndNJj54JOQTZzPO-Px-P_NHQL-1mGaCiWrGeckk-0CmfKFEoWT9NiFTxkRdyKouP5LrlPZsrFpMyc8m9AcTTXYnpCkf7ZmGljbrL8tiYxJaOh67Djt6iGEbTd87v6XO04Yab-nzOe-Cp22IdPW8pgYAOxxtw3Lw5B3SKu9oiBYjfTn6LRY_jjkb2uMA2lty1Zou4d3veUPWD19fm2_F49Pqe7N8LKDkMhdctJu5NAvgc6xqZTnOgW_KBQiFrBQVIirbDt0oCRIqACmBKyZLhRsQWN4QdfFCDClFbPUhut7Es-ZMjynqvf6Toh5T1JcUB_LzXyS4_P5fjsZ1_8EvLzwO750cRp3AoQe0LiJkbYP7p-MXdguYBw |
| CitedBy_id | crossref_primary_10_1007_s11831_024_10132_4 crossref_primary_10_1016_j_jhazmat_2024_134837 |
| Cites_doi | 10.1109/TPDS.2011.61 10.1109/JLT.2017.2715358 10.1063/1.4887558 10.1016/S0893-9659(04)90130-9 10.5753/eradrs.2022.19150 10.1016/S0306-4549(03)00033-1 10.1007/s00780-009-0101-4 10.13182/NSE89-A23663 10.1145/1281500.1281647 10.1016/j.anucene.2004.11.009 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.nucengdes.2024.113050 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-759X |
| ExternalDocumentID | 10_1016_j_nucengdes_2024_113050 S002954932400150X |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K TN5 UHS WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c315t-12fb65a8c16e497d1e6c1b38c27e0324eee7dfeeea75c5c4cc55c170537ebc2e3 |
| IEDL.DBID | .~1 |
| ISSN | 0029-5493 |
| IngestDate | Wed Oct 01 01:57:42 EDT 2025 Thu Apr 24 22:59:07 EDT 2025 Sat Jul 13 15:32:23 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Point reactor kinetics equations C GPU Runge-Kutta Method Python |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c315t-12fb65a8c16e497d1e6c1b38c27e0324eee7dfeeea75c5c4cc55c170537ebc2e3 |
| ParticipantIDs | crossref_primary_10_1016_j_nucengdes_2024_113050 crossref_citationtrail_10_1016_j_nucengdes_2024_113050 elsevier_sciencedirect_doi_10_1016_j_nucengdes_2024_113050 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Nuclear engineering and design |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Fang (b0050) 2019 Ninomiya, Ninomiya (b0090) 2009; 13 Kybernetika Hayes, J.G., Allen, E.J. 2005. Stochastic point-kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 32, pp. 572–587, (2005). Duderstadt, J. J., Hamilton, L. J. 1976. Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 140–144. Sánchez (b0100) 1989.On; 103 47.2 (2011): 251-272. Stallings (b0115) 2015 Brehler (b0010) 2017; 35 Burden, Faires (b0020) 2010 Oberhuber, T., et al. 2011. The CUDA implementation of the method of lines for the curvature dependent flows. Gan, Zheng (b0055) 2004; 17 10 July 2014; 1605 (1): 16–21. Silva, A. C., et al. 2007. Subcriticality Calculation in Nuclear Reactors with External Neutron Sources. In: International Nuclear Atlantic Conference – INAC, Santos, 2007, pp. 1-7. ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO SUL (ERAD-RS), 22., 2022, Curitiba. [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022. p. 17-20. ISSN 2595-4164. Hetrick (b0070) 1971 Seen, W, M. et al. 2014. GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method. Harris, M. 2013. CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops. https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/(2023)(last accessed). Aboanber, Hamada (b0005) 2014; 30 Buck, I. 2007. GPU computing with nVIDIA CUDA. In: International. Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, USA. Murray (b0080) 2012; 23 Moreira, N.L,et al. 2022. Análise e Geração de Resultados sobre Implementação de Método Runge-Kutta em CUDA. 10.1016/j.nucengdes.2024.113050_b0060 10.1016/j.nucengdes.2024.113050_b0095 Burden (10.1016/j.nucengdes.2024.113050_b0020) 2010 Stallings (10.1016/j.nucengdes.2024.113050_b0115) 2015 Brehler (10.1016/j.nucengdes.2024.113050_b0010) 2017; 35 Fang (10.1016/j.nucengdes.2024.113050_b0050) 2019 10.1016/j.nucengdes.2024.113050_b0045 Sánchez (10.1016/j.nucengdes.2024.113050_b0100) 1989; 103 10.1016/j.nucengdes.2024.113050_b0015 Gan (10.1016/j.nucengdes.2024.113050_b0055) 2004; 17 10.1016/j.nucengdes.2024.113050_b0075 10.1016/j.nucengdes.2024.113050_b0110 10.1016/j.nucengdes.2024.113050_b0065 10.1016/j.nucengdes.2024.113050_b0105 Hetrick (10.1016/j.nucengdes.2024.113050_b0070) 1971 Ninomiya (10.1016/j.nucengdes.2024.113050_b0090) 2009; 13 Aboanber (10.1016/j.nucengdes.2024.113050_b0005) 2014; 30 Murray (10.1016/j.nucengdes.2024.113050_b0080) 2012; 23 |
| References_xml | – year: 2015 ident: b0115 article-title: Computer organization and architecture: designing for performance – reference: Hayes, J.G., Allen, E.J. 2005. Stochastic point-kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 32, pp. 572–587, (2005). – year: 1971 ident: b0070 article-title: Dynamics of nuclear reactors – reference: Duderstadt, J. J., Hamilton, L. J. 1976. Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 140–144. – volume: 35 start-page: 3622 year: 2017 end-page: 3628 ident: b0010 article-title: A GPU-accelerated fourth-order runge-kutta in the interaction picture method for the simulation of nonlinear signal propagation in multimode fibers publication-title: J. Lightwave Technol. – reference: Silva, A. C., et al. 2007. Subcriticality Calculation in Nuclear Reactors with External Neutron Sources. In: International Nuclear Atlantic Conference – INAC, Santos, 2007, pp. 1-7. – reference: Seen, W, M. et al. 2014. GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method. – reference: Buck, I. 2007. GPU computing with nVIDIA CUDA. In: International. Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, USA. – volume: 13 start-page: 415 year: 2009 end-page: 4432 ident: b0090 article-title: A new higher-order weak approximation scheme for stochastic differential equationsand the runge-kutta method publication-title: Finance Stoch. – reference: Harris, M. 2013. CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops. https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/(2023)(last accessed). – reference: : ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO SUL (ERAD-RS), 22., 2022, Curitiba. – reference: [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022. p. 17-20. ISSN 2595-4164. – reference: Kybernetika – reference: 47.2 (2011): 251-272. – reference: 10 July 2014; 1605 (1): 16–21. – volume: 17 start-page: 585 year: 2004 end-page: 590 ident: b0055 article-title: Stability of multistep runge-kutta methods for systems of functional-differential and functional equations publication-title: Appl. Math. Lett. – volume: 30 start-page: 1111 year: 2014 end-page: 1122 ident: b0005 article-title: Power series solution (PWS) of nuclear reactor dynamics with newtonian temperature feedback” publication-title: Ann. Nucl. Energy – reference: Oberhuber, T., et al. 2011. The CUDA implementation of the method of lines for the curvature dependent flows. – year: 2019 ident: b0050 article-title: Analysis of GPR wave propagation using CUDA-implemented conformal symplectic partitioned runge-kutta method – reference: Moreira, N.L,et al. 2022. Análise e Geração de Resultados sobre Implementação de Método Runge-Kutta em CUDA. – volume: 23 start-page: 94 year: 2012 end-page: 101 ident: b0080 article-title: GPU acceleration of runge-kutta integrators publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 103 start-page: 94 year: 1989.On end-page: 99 ident: b0100 article-title: the numerical solution of the point reactor kinetics equations by generalized runge-kutta methods publication-title: Nucl. Sci. Eng. – year: 2010 ident: b0020 article-title: Numerical analysis – volume: 23 start-page: 94 year: 2012 ident: 10.1016/j.nucengdes.2024.113050_b0080 article-title: GPU acceleration of runge-kutta integrators publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2011.61 – ident: 10.1016/j.nucengdes.2024.113050_b0060 – volume: 35 start-page: 3622 issue: 17 year: 2017 ident: 10.1016/j.nucengdes.2024.113050_b0010 article-title: A GPU-accelerated fourth-order runge-kutta in the interaction picture method for the simulation of nonlinear signal propagation in multimode fibers publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2715358 – year: 2010 ident: 10.1016/j.nucengdes.2024.113050_b0020 – ident: 10.1016/j.nucengdes.2024.113050_b0105 doi: 10.1063/1.4887558 – ident: 10.1016/j.nucengdes.2024.113050_b0110 – year: 2015 ident: 10.1016/j.nucengdes.2024.113050_b0115 – volume: 17 start-page: 585 issue: 5 year: 2004 ident: 10.1016/j.nucengdes.2024.113050_b0055 article-title: Stability of multistep runge-kutta methods for systems of functional-differential and functional equations publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(04)90130-9 – ident: 10.1016/j.nucengdes.2024.113050_b0095 – ident: 10.1016/j.nucengdes.2024.113050_b0045 – ident: 10.1016/j.nucengdes.2024.113050_b0075 doi: 10.5753/eradrs.2022.19150 – year: 1971 ident: 10.1016/j.nucengdes.2024.113050_b0070 – year: 2019 ident: 10.1016/j.nucengdes.2024.113050_b0050 – volume: 30 start-page: 1111 year: 2014 ident: 10.1016/j.nucengdes.2024.113050_b0005 article-title: Power series solution (PWS) of nuclear reactor dynamics with newtonian temperature feedback” publication-title: Ann. Nucl. Energy doi: 10.1016/S0306-4549(03)00033-1 – volume: 13 start-page: 415 year: 2009 ident: 10.1016/j.nucengdes.2024.113050_b0090 article-title: A new higher-order weak approximation scheme for stochastic differential equationsand the runge-kutta method publication-title: Finance Stoch. doi: 10.1007/s00780-009-0101-4 – volume: 103 start-page: 94 year: 1989 ident: 10.1016/j.nucengdes.2024.113050_b0100 article-title: the numerical solution of the point reactor kinetics equations by generalized runge-kutta methods publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE89-A23663 – ident: 10.1016/j.nucengdes.2024.113050_b0015 doi: 10.1145/1281500.1281647 – ident: 10.1016/j.nucengdes.2024.113050_b0065 doi: 10.1016/j.anucene.2004.11.009 |
| SSID | ssj0000092 |
| Score | 2.4174204 |
| Snippet | •Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations.
In this paper, a comparative... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113050 |
| SubjectTerms | GPU Point reactor kinetics equations Python Runge-Kutta Method |
| Title | Comparative study of CUDA-based parallel programming in C and Python for GPU acceleration of the 4th order Runge-Kutta method |
| URI | https://dx.doi.org/10.1016/j.nucengdes.2024.113050 |
| Volume | 421 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-759X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: AKRWK dateStart: 19660101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lDl4jU3S3aT1VqK1WixFLPQWNrsTrdS0SHrwoL_dnTxqC0IPXgJJdkKYGWZm2W--YezSFYjKVMZWxn_J7VZkSdnilpYRGp8Rru1Rg_PjwOuN-MNYjCssKHthCFZZxP48pmfRunjSKLTZmE8m1OObnVERoxxt28fUwc59mmJw9e2slMBtt4R50Oo1jFdi1Je8aCTebpfTfBObGvD_ylArWae7x3aLchE6-R_tswomB2xnhUTwkH0FvwTekLHFwiyGYHTTsShFaaCX0ylOocBivRsxmCQQgEw0DD-JPQBM7Qp3wxFIpUwiyt2CvmPqQ-DpK2QUnfBkQgNa_UWaSshnTx-xUff2OehZxVAFSzUdkVqOG0eekC3leMjbvnbQU07UbCnXR9voEhF9HZur9IUSiislhCLOnaaPkXKxecyqySzBEwbtKJJmpdG_iLnWvB372uzgiELQlVzGNeaVigxVwThOgy-mYQktewuXFgjJAmFugRqzl4LznHRjs8h1aalwzX9Ckxo2CZ_-R_iMbdNdDoI8Z9X0Y4EXplBJo3rmiXW21bnv9wY_9l_qLA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8QwDI54DMCAeIo3HlgLbS5pe2yoPI7X6YSu0m1Vmrhw6CgIlYEBfjtxH3BISDewdEjiqrIt-4tqf2bsgEtEbZGxU_JfCjdMHaVC4RiVovUZyV2fGpxvu34nFlcDOZhiUdMLQ2WVdeyvYnoZreuVo1qbRy_DIfX4lv-oiFGOru2DaTYrJA_oBnb46Y1h4DZv6jzo-K8ir9zqL783SMTdXNCAE5c68P9KUWNp53yJLdZ4EU6qT1pmU5ivsIUxFsFV9hH9MHhDSRcLzxlE8emJQznKAG2ORjiCuhjryYrBMIcIVG6g9070AWDBK1z0YlBa20xU-QW9xwJEEMUDlBydcGdjAzrXb0WhoBo-vcbi87N-1HHqqQqObnmycDyepb5UofZ8FO3AeOhrL22FmgfoWmUiYmAy-1SB1FILraXURLrTCjDVHFvrbCZ_znGDQTtNlT1pDSAzYYxoZ4GxVzjiEORKqGyT-Y0iE11TjtPki1HS1JY9Jt8WSMgCSWWBTeZ-C75UrBuTRY4bSyW_HCixuWGS8NZ_hPfZXKd_e5PcXHavt9k87VQVkTtspnh9w12LWop0r_TKL22X68E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+CUDA-based+parallel+programming+in+C+and+Python+for+GPU+acceleration+of+the+4th+order+Runge-Kutta+method&rft.jtitle=Nuclear+engineering+and+design&rft.au=Fernandes%2C+Davi+F.&rft.au=Santos%2C+Marcelo+C.&rft.au=Silva%2C+Adilson+C.&rft.au=Lima%2C+Alan+M.M.&rft.date=2024-05-01&rft.pub=Elsevier+B.V&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=421&rft_id=info:doi/10.1016%2Fj.nucengdes.2024.113050&rft.externalDocID=S002954932400150X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon |