Comparative study of CUDA-based parallel programming in C and Python for GPU acceleration of the 4th order Runge-Kutta method

•Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations. In this paper, a comparative study is presented on the application of General-purpose Computing on Graphics Processing Units for solving the point reactor kinetics equation...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and design Vol. 421; p. 113050
Main Authors Fernandes, Davi F., Santos, Marcelo C., Silva, Adilson C., Lima, Alan M.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2024
Subjects
Online AccessGet full text
ISSN0029-5493
1872-759X
DOI10.1016/j.nucengdes.2024.113050

Cover

Abstract •Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations. In this paper, a comparative study is presented on the application of General-purpose Computing on Graphics Processing Units for solving the point reactor kinetics equations through the utilization of the 4th Order Runge-Kutta (RK4) method using the programming languages C and Python. Sequential and parallel algorithms of the RK4 method were developed in C/C++ and Python, with parallel algorithms specifically designed to operate on Graphics Processing Units (GPUs) utilizing the NVIDIA Compute Unified Device Architecture (CUDA) as the programming platform. As an experiment, the execution time for the sequential and parallel algorithms were compared for a reactivity value of ρ = 0.003 and a simulation time of t = 100 s. The parallel C and Python algorithms achieved, respectively, speedups of 9.33 and 409.7 when comparing the execution time on the best GPU utilized (RTX 3070Ti) with the best CPU (3600XT), while still maintaining numerical precision.
AbstractList •Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations. In this paper, a comparative study is presented on the application of General-purpose Computing on Graphics Processing Units for solving the point reactor kinetics equations through the utilization of the 4th Order Runge-Kutta (RK4) method using the programming languages C and Python. Sequential and parallel algorithms of the RK4 method were developed in C/C++ and Python, with parallel algorithms specifically designed to operate on Graphics Processing Units (GPUs) utilizing the NVIDIA Compute Unified Device Architecture (CUDA) as the programming platform. As an experiment, the execution time for the sequential and parallel algorithms were compared for a reactivity value of ρ = 0.003 and a simulation time of t = 100 s. The parallel C and Python algorithms achieved, respectively, speedups of 9.33 and 409.7 when comparing the execution time on the best GPU utilized (RTX 3070Ti) with the best CPU (3600XT), while still maintaining numerical precision.
ArticleNumber 113050
Author Silva, Adilson C.
Lima, Alan M.M.
Santos, Marcelo C.
Fernandes, Davi F.
Author_xml – sequence: 1
  givenname: Davi F.
  surname: Fernandes
  fullname: Fernandes, Davi F.
  email: dfernandes@nuclear.ufrj.br
– sequence: 2
  givenname: Marcelo C.
  surname: Santos
  fullname: Santos, Marcelo C.
  email: marcelo@lmp.ufrj.br
– sequence: 3
  givenname: Adilson C.
  surname: Silva
  fullname: Silva, Adilson C.
  email: adilson@nuclear.ufrj.br
– sequence: 4
  givenname: Alan M.M.
  surname: Lima
  fullname: Lima, Alan M.M.
  email: alan@lmp.ufrj.br
BookMark eNqNkM9qGzEQh0VxoM6fZ6heYB1Ju7K8hx7MtnFLAwkhhtyEPJq1ZXYlI8kGH_ru3Y1LD720c5iBGb4P5ndNJj54JOQTZzPO-Px-P_NHQL-1mGaCiWrGeckk-0CmfKFEoWT9NiFTxkRdyKouP5LrlPZsrFpMyc8m9AcTTXYnpCkf7ZmGljbrL8tiYxJaOh67Djt6iGEbTd87v6XO04Yab-nzOe-Cp22IdPW8pgYAOxxtw3Lw5B3SKu9oiBYjfTn6LRY_jjkb2uMA2lty1Zou4d3veUPWD19fm2_F49Pqe7N8LKDkMhdctJu5NAvgc6xqZTnOgW_KBQiFrBQVIirbDt0oCRIqACmBKyZLhRsQWN4QdfFCDClFbPUhut7Es-ZMjynqvf6Toh5T1JcUB_LzXyS4_P5fjsZ1_8EvLzwO750cRp3AoQe0LiJkbYP7p-MXdguYBw
CitedBy_id crossref_primary_10_1007_s11831_024_10132_4
crossref_primary_10_1016_j_jhazmat_2024_134837
Cites_doi 10.1109/TPDS.2011.61
10.1109/JLT.2017.2715358
10.1063/1.4887558
10.1016/S0893-9659(04)90130-9
10.5753/eradrs.2022.19150
10.1016/S0306-4549(03)00033-1
10.1007/s00780-009-0101-4
10.13182/NSE89-A23663
10.1145/1281500.1281647
10.1016/j.anucene.2004.11.009
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.nucengdes.2024.113050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-759X
ExternalDocumentID 10_1016_j_nucengdes_2024_113050
S002954932400150X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c315t-12fb65a8c16e497d1e6c1b38c27e0324eee7dfeeea75c5c4cc55c170537ebc2e3
IEDL.DBID .~1
ISSN 0029-5493
IngestDate Wed Oct 01 01:57:42 EDT 2025
Thu Apr 24 22:59:07 EDT 2025
Sat Jul 13 15:32:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Point reactor kinetics equations
C
GPU
Runge-Kutta Method
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-12fb65a8c16e497d1e6c1b38c27e0324eee7dfeeea75c5c4cc55c170537ebc2e3
ParticipantIDs crossref_primary_10_1016_j_nucengdes_2024_113050
crossref_citationtrail_10_1016_j_nucengdes_2024_113050
elsevier_sciencedirect_doi_10_1016_j_nucengdes_2024_113050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Nuclear engineering and design
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fang (b0050) 2019
Ninomiya, Ninomiya (b0090) 2009; 13
Kybernetika
Hayes, J.G., Allen, E.J. 2005. Stochastic point-kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 32, pp. 572–587, (2005).
Duderstadt, J. J., Hamilton, L. J. 1976. Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 140–144.
Sánchez (b0100) 1989.On; 103
47.2 (2011): 251-272.
Stallings (b0115) 2015
Brehler (b0010) 2017; 35
Burden, Faires (b0020) 2010
Oberhuber, T., et al. 2011. The CUDA implementation of the method of lines for the curvature dependent flows.
Gan, Zheng (b0055) 2004; 17
10 July 2014; 1605 (1): 16–21.
Silva, A. C., et al. 2007. Subcriticality Calculation in Nuclear Reactors with External Neutron Sources. In: International Nuclear Atlantic Conference – INAC, Santos, 2007, pp. 1-7.
ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO SUL (ERAD-RS), 22., 2022, Curitiba.
[...]. Porto Alegre: Sociedade Brasileira de Computação, 2022. p. 17-20. ISSN 2595-4164.
Hetrick (b0070) 1971
Seen, W, M. et al. 2014. GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method.
Harris, M. 2013. CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops. https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/(2023)(last accessed).
Aboanber, Hamada (b0005) 2014; 30
Buck, I. 2007. GPU computing with nVIDIA CUDA. In: International. Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, USA.
Murray (b0080) 2012; 23
Moreira, N.L,et al. 2022. Análise e Geração de Resultados sobre Implementação de Método Runge-Kutta em CUDA.
10.1016/j.nucengdes.2024.113050_b0060
10.1016/j.nucengdes.2024.113050_b0095
Burden (10.1016/j.nucengdes.2024.113050_b0020) 2010
Stallings (10.1016/j.nucengdes.2024.113050_b0115) 2015
Brehler (10.1016/j.nucengdes.2024.113050_b0010) 2017; 35
Fang (10.1016/j.nucengdes.2024.113050_b0050) 2019
10.1016/j.nucengdes.2024.113050_b0045
Sánchez (10.1016/j.nucengdes.2024.113050_b0100) 1989; 103
10.1016/j.nucengdes.2024.113050_b0015
Gan (10.1016/j.nucengdes.2024.113050_b0055) 2004; 17
10.1016/j.nucengdes.2024.113050_b0075
10.1016/j.nucengdes.2024.113050_b0110
10.1016/j.nucengdes.2024.113050_b0065
10.1016/j.nucengdes.2024.113050_b0105
Hetrick (10.1016/j.nucengdes.2024.113050_b0070) 1971
Ninomiya (10.1016/j.nucengdes.2024.113050_b0090) 2009; 13
Aboanber (10.1016/j.nucengdes.2024.113050_b0005) 2014; 30
Murray (10.1016/j.nucengdes.2024.113050_b0080) 2012; 23
References_xml – year: 2015
  ident: b0115
  article-title: Computer organization and architecture: designing for performance
– reference: Hayes, J.G., Allen, E.J. 2005. Stochastic point-kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 32, pp. 572–587, (2005).
– year: 1971
  ident: b0070
  article-title: Dynamics of nuclear reactors
– reference: Duderstadt, J. J., Hamilton, L. J. 1976. Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 140–144.
– volume: 35
  start-page: 3622
  year: 2017
  end-page: 3628
  ident: b0010
  article-title: A GPU-accelerated fourth-order runge-kutta in the interaction picture method for the simulation of nonlinear signal propagation in multimode fibers
  publication-title: J. Lightwave Technol.
– reference: Silva, A. C., et al. 2007. Subcriticality Calculation in Nuclear Reactors with External Neutron Sources. In: International Nuclear Atlantic Conference – INAC, Santos, 2007, pp. 1-7.
– reference: Seen, W, M. et al. 2014. GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method.
– reference: Buck, I. 2007. GPU computing with nVIDIA CUDA. In: International. Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, USA.
– volume: 13
  start-page: 415
  year: 2009
  end-page: 4432
  ident: b0090
  article-title: A new higher-order weak approximation scheme for stochastic differential equationsand the runge-kutta method
  publication-title: Finance Stoch.
– reference: Harris, M. 2013. CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops. https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/(2023)(last accessed).
– reference: : ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO SUL (ERAD-RS), 22., 2022, Curitiba.
– reference: [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022. p. 17-20. ISSN 2595-4164.
– reference: Kybernetika
– reference: 47.2 (2011): 251-272.
– reference: 10 July 2014; 1605 (1): 16–21.
– volume: 17
  start-page: 585
  year: 2004
  end-page: 590
  ident: b0055
  article-title: Stability of multistep runge-kutta methods for systems of functional-differential and functional equations
  publication-title: Appl. Math. Lett.
– volume: 30
  start-page: 1111
  year: 2014
  end-page: 1122
  ident: b0005
  article-title: Power series solution (PWS) of nuclear reactor dynamics with newtonian temperature feedback”
  publication-title: Ann. Nucl. Energy
– reference: Oberhuber, T., et al. 2011. The CUDA implementation of the method of lines for the curvature dependent flows.
– year: 2019
  ident: b0050
  article-title: Analysis of GPR wave propagation using CUDA-implemented conformal symplectic partitioned runge-kutta method
– reference: Moreira, N.L,et al. 2022. Análise e Geração de Resultados sobre Implementação de Método Runge-Kutta em CUDA.
– volume: 23
  start-page: 94
  year: 2012
  end-page: 101
  ident: b0080
  article-title: GPU acceleration of runge-kutta integrators
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 103
  start-page: 94
  year: 1989.On
  end-page: 99
  ident: b0100
  article-title: the numerical solution of the point reactor kinetics equations by generalized runge-kutta methods
  publication-title: Nucl. Sci. Eng.
– year: 2010
  ident: b0020
  article-title: Numerical analysis
– volume: 23
  start-page: 94
  year: 2012
  ident: 10.1016/j.nucengdes.2024.113050_b0080
  article-title: GPU acceleration of runge-kutta integrators
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2011.61
– ident: 10.1016/j.nucengdes.2024.113050_b0060
– volume: 35
  start-page: 3622
  issue: 17
  year: 2017
  ident: 10.1016/j.nucengdes.2024.113050_b0010
  article-title: A GPU-accelerated fourth-order runge-kutta in the interaction picture method for the simulation of nonlinear signal propagation in multimode fibers
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2715358
– year: 2010
  ident: 10.1016/j.nucengdes.2024.113050_b0020
– ident: 10.1016/j.nucengdes.2024.113050_b0105
  doi: 10.1063/1.4887558
– ident: 10.1016/j.nucengdes.2024.113050_b0110
– year: 2015
  ident: 10.1016/j.nucengdes.2024.113050_b0115
– volume: 17
  start-page: 585
  issue: 5
  year: 2004
  ident: 10.1016/j.nucengdes.2024.113050_b0055
  article-title: Stability of multistep runge-kutta methods for systems of functional-differential and functional equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(04)90130-9
– ident: 10.1016/j.nucengdes.2024.113050_b0095
– ident: 10.1016/j.nucengdes.2024.113050_b0045
– ident: 10.1016/j.nucengdes.2024.113050_b0075
  doi: 10.5753/eradrs.2022.19150
– year: 1971
  ident: 10.1016/j.nucengdes.2024.113050_b0070
– year: 2019
  ident: 10.1016/j.nucengdes.2024.113050_b0050
– volume: 30
  start-page: 1111
  year: 2014
  ident: 10.1016/j.nucengdes.2024.113050_b0005
  article-title: Power series solution (PWS) of nuclear reactor dynamics with newtonian temperature feedback”
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/S0306-4549(03)00033-1
– volume: 13
  start-page: 415
  year: 2009
  ident: 10.1016/j.nucengdes.2024.113050_b0090
  article-title: A new higher-order weak approximation scheme for stochastic differential equationsand the runge-kutta method
  publication-title: Finance Stoch.
  doi: 10.1007/s00780-009-0101-4
– volume: 103
  start-page: 94
  year: 1989
  ident: 10.1016/j.nucengdes.2024.113050_b0100
  article-title: the numerical solution of the point reactor kinetics equations by generalized runge-kutta methods
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE89-A23663
– ident: 10.1016/j.nucengdes.2024.113050_b0015
  doi: 10.1145/1281500.1281647
– ident: 10.1016/j.nucengdes.2024.113050_b0065
  doi: 10.1016/j.anucene.2004.11.009
SSID ssj0000092
Score 2.4174204
Snippet •Point reactor kinetics equations.•4th Order Runge-Kutta method.•Acceleration by GPU.•Python and C codes.•Speedup calculations. In this paper, a comparative...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113050
SubjectTerms GPU
Point reactor kinetics equations
Python
Runge-Kutta Method
Title Comparative study of CUDA-based parallel programming in C and Python for GPU acceleration of the 4th order Runge-Kutta method
URI https://dx.doi.org/10.1016/j.nucengdes.2024.113050
Volume 421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AKRWK
  dateStart: 19660101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lDl4jU3S3aT1VqK1WixFLPQWNrsTrdS0SHrwoL_dnTxqC0IPXgJJdkKYGWZm2W--YezSFYjKVMZWxn_J7VZkSdnilpYRGp8Rru1Rg_PjwOuN-MNYjCssKHthCFZZxP48pmfRunjSKLTZmE8m1OObnVERoxxt28fUwc59mmJw9e2slMBtt4R50Oo1jFdi1Je8aCTebpfTfBObGvD_ylArWae7x3aLchE6-R_tswomB2xnhUTwkH0FvwTekLHFwiyGYHTTsShFaaCX0ylOocBivRsxmCQQgEw0DD-JPQBM7Qp3wxFIpUwiyt2CvmPqQ-DpK2QUnfBkQgNa_UWaSshnTx-xUff2OehZxVAFSzUdkVqOG0eekC3leMjbvnbQU07UbCnXR9voEhF9HZur9IUSiislhCLOnaaPkXKxecyqySzBEwbtKJJmpdG_iLnWvB372uzgiELQlVzGNeaVigxVwThOgy-mYQktewuXFgjJAmFugRqzl4LznHRjs8h1aalwzX9Ckxo2CZ_-R_iMbdNdDoI8Z9X0Y4EXplBJo3rmiXW21bnv9wY_9l_qLA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8QwDI54DMCAeIo3HlgLbS5pe2yoPI7X6YSu0m1Vmrhw6CgIlYEBfjtxH3BISDewdEjiqrIt-4tqf2bsgEtEbZGxU_JfCjdMHaVC4RiVovUZyV2fGpxvu34nFlcDOZhiUdMLQ2WVdeyvYnoZreuVo1qbRy_DIfX4lv-oiFGOru2DaTYrJA_oBnb46Y1h4DZv6jzo-K8ir9zqL783SMTdXNCAE5c68P9KUWNp53yJLdZ4EU6qT1pmU5ivsIUxFsFV9hH9MHhDSRcLzxlE8emJQznKAG2ORjiCuhjryYrBMIcIVG6g9070AWDBK1z0YlBa20xU-QW9xwJEEMUDlBydcGdjAzrXb0WhoBo-vcbi87N-1HHqqQqObnmycDyepb5UofZ8FO3AeOhrL22FmgfoWmUiYmAy-1SB1FILraXURLrTCjDVHFvrbCZ_znGDQTtNlT1pDSAzYYxoZ4GxVzjiEORKqGyT-Y0iE11TjtPki1HS1JY9Jt8WSMgCSWWBTeZ-C75UrBuTRY4bSyW_HCixuWGS8NZ_hPfZXKd_e5PcXHavt9k87VQVkTtspnh9w12LWop0r_TKL22X68E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+CUDA-based+parallel+programming+in+C+and+Python+for+GPU+acceleration+of+the+4th+order+Runge-Kutta+method&rft.jtitle=Nuclear+engineering+and+design&rft.au=Fernandes%2C+Davi+F.&rft.au=Santos%2C+Marcelo+C.&rft.au=Silva%2C+Adilson+C.&rft.au=Lima%2C+Alan+M.M.&rft.date=2024-05-01&rft.pub=Elsevier+B.V&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=421&rft_id=info:doi/10.1016%2Fj.nucengdes.2024.113050&rft.externalDocID=S002954932400150X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon