Genetic algorithm optimized BP neural network for fast reconstruction of three-dimensional radiation field

The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field...

Full description

Saved in:
Bibliographic Details
Published inApplied radiation and isotopes Vol. 217; p. 111668
Main Authors Zhang, Qian, Shi, Rui, Gou, Rui, Yang, Guang, Tuo, Xianguo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0969-8043
1872-9800
1872-9800
DOI10.1016/j.apradiso.2025.111668

Cover

Abstract The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field reconstruction algorithms concentrate on two-dimensional reconstruction and can only measure on a regular grid. With the progress of artificial intelligence technology, neural networks have great potential in radiation field reconstruction. In this work, an improved Genetic Algorithm Optimized Backpropagation (GA-BP) neural network was proposed, which can efficiently reconstruct the radiation dose rate at any given position within the three-dimensional space, even under the condition of a low sampling rate. The proposed method achieves a remarkable speed, capable of reconstructing nearly 500 spots in 0.01 s. Two Monte Carlo simulations corresponding to the shielded and unshielded cases verified the effectiveness of the proposed method. The method was further tested on datasets with equally spaced and randomly distributed data points. In both simulation scenarios, the proposed method demonstrated the ability to reconstruct the three-dimensional dose rate field using less than 6% of the data for the simulation cases with a low error level of 3% (unshielded) to 8% (shielded). In the real experimental validation, the error is at 15%, and the point error is less than 30% in most areas. •A new method for reconstructing the 3D gamma dose rate field using sparse data with an improved GA-BP network was proposed.•The method reconstructs radiation fields in seconds with a 5.6% sampling rate, achieving a simulation error of 3–8%.•The 0.01MB model easily deploys on mobile devices for radiation field monitoring and analysis.
AbstractList The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field reconstruction algorithms concentrate on two-dimensional reconstruction and can only measure on a regular grid. With the progress of artificial intelligence technology, neural networks have great potential in radiation field reconstruction. In this work, an improved Genetic Algorithm Optimized Backpropagation (GA-BP) neural network was proposed, which can efficiently reconstruct the radiation dose rate at any given position within the three-dimensional space, even under the condition of a low sampling rate. The proposed method achieves a remarkable speed, capable of reconstructing nearly 500 spots in 0.01 s. Two Monte Carlo simulations corresponding to the shielded and unshielded cases verified the effectiveness of the proposed method. The method was further tested on datasets with equally spaced and randomly distributed data points. In both simulation scenarios, the proposed method demonstrated the ability to reconstruct the three-dimensional dose rate field using less than 6% of the data for the simulation cases with a low error level of 3% (unshielded) to 8% (shielded). In the real experimental validation, the error is at 15%, and the point error is less than 30% in most areas.
The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field reconstruction algorithms concentrate on two-dimensional reconstruction and can only measure on a regular grid. With the progress of artificial intelligence technology, neural networks have great potential in radiation field reconstruction. In this work, an improved Genetic Algorithm Optimized Backpropagation (GA-BP) neural network was proposed, which can efficiently reconstruct the radiation dose rate at any given position within the three-dimensional space, even under the condition of a low sampling rate. The proposed method achieves a remarkable speed, capable of reconstructing nearly 500 spots in 0.01 s. Two Monte Carlo simulations corresponding to the shielded and unshielded cases verified the effectiveness of the proposed method. The method was further tested on datasets with equally spaced and randomly distributed data points. In both simulation scenarios, the proposed method demonstrated the ability to reconstruct the three-dimensional dose rate field using less than 6% of the data for the simulation cases with a low error level of 3% (unshielded) to 8% (shielded). In the real experimental validation, the error is at 15%, and the point error is less than 30% in most areas.The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field reconstruction algorithms concentrate on two-dimensional reconstruction and can only measure on a regular grid. With the progress of artificial intelligence technology, neural networks have great potential in radiation field reconstruction. In this work, an improved Genetic Algorithm Optimized Backpropagation (GA-BP) neural network was proposed, which can efficiently reconstruct the radiation dose rate at any given position within the three-dimensional space, even under the condition of a low sampling rate. The proposed method achieves a remarkable speed, capable of reconstructing nearly 500 spots in 0.01 s. Two Monte Carlo simulations corresponding to the shielded and unshielded cases verified the effectiveness of the proposed method. The method was further tested on datasets with equally spaced and randomly distributed data points. In both simulation scenarios, the proposed method demonstrated the ability to reconstruct the three-dimensional dose rate field using less than 6% of the data for the simulation cases with a low error level of 3% (unshielded) to 8% (shielded). In the real experimental validation, the error is at 15%, and the point error is less than 30% in most areas.
The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field reconstruction algorithms concentrate on two-dimensional reconstruction and can only measure on a regular grid. With the progress of artificial intelligence technology, neural networks have great potential in radiation field reconstruction. In this work, an improved Genetic Algorithm Optimized Backpropagation (GA-BP) neural network was proposed, which can efficiently reconstruct the radiation dose rate at any given position within the three-dimensional space, even under the condition of a low sampling rate. The proposed method achieves a remarkable speed, capable of reconstructing nearly 500 spots in 0.01 s. Two Monte Carlo simulations corresponding to the shielded and unshielded cases verified the effectiveness of the proposed method. The method was further tested on datasets with equally spaced and randomly distributed data points. In both simulation scenarios, the proposed method demonstrated the ability to reconstruct the three-dimensional dose rate field using less than 6% of the data for the simulation cases with a low error level of 3% (unshielded) to 8% (shielded). In the real experimental validation, the error is at 15%, and the point error is less than 30% in most areas. •A new method for reconstructing the 3D gamma dose rate field using sparse data with an improved GA-BP network was proposed.•The method reconstructs radiation fields in seconds with a 5.6% sampling rate, achieving a simulation error of 3–8%.•The 0.01MB model easily deploys on mobile devices for radiation field monitoring and analysis.
ArticleNumber 111668
Author Zhang, Qian
Yang, Guang
Shi, Rui
Gou, Rui
Tuo, Xianguo
Author_xml – sequence: 1
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: School of Computer Science and Engineering, Sichuan University of Science and Engineering, Yibin, 644005, China
– sequence: 2
  givenname: Rui
  orcidid: 0000-0002-3900-6640
  surname: Shi
  fullname: Shi, Rui
  email: shirui@suse.edu.cn
  organization: School of Computer Science and Engineering, Sichuan University of Science and Engineering, Yibin, 644005, China
– sequence: 3
  givenname: Rui
  surname: Gou
  fullname: Gou, Rui
  organization: School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Yibin, 644005, China
– sequence: 4
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
  organization: College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610059, China
– sequence: 5
  givenname: Xianguo
  surname: Tuo
  fullname: Tuo, Xianguo
  organization: School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Yibin, 644005, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39813958$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS0URCaBX4i8ZNODH90eewdEEJAiwQLWlh9l4qHbHmx3EHw9HiZhy6qkqnPrdS_QWcoJELqiZEsJFa_2W3Moxseat4ywaUspFUI-QRsqd2xQkpAztCFKqEGSkZ-ji1r3hJBRKvYMnXMlKVeT3KD9DSRo0WEzf8sltrsF50OLS_wNHr_9jBOsxcw9tJ-5fMchFxxMbbiAy6m2sroWc8I54HZXAAYfF0i1p7rouJ_5Ww4RZv8cPQ1mrvDiIV6ir-_ffbn-MNx-uvl4_eZ2cJxObaCEuBCsspOESUBgYccZdURKAdYSSQKFkQrORyM5YXSy3Dom7RRGZcF7folenvoeSv6xQm16idXBPJsEea26TxETE7ud6ujVA7raBbw-lLiY8ks__qcD4gS4kmstEP4hlOijEXqvH43QRyP0yYgufH0SQr_0PkLR1UVIDnzsr2va5_i_Fn8AbTaWCw
Cites_doi 10.1016/j.scitotenv.2022.157526
10.1109/TNNLS.2020.2979228
10.1016/j.esr.2021.100630
10.1016/j.anucene.2022.109247
10.1016/j.anucene.2017.09.032
10.1007/s41365-018-0410-4
10.1016/j.radphyschem.2018.09.003
10.1016/j.ijleo.2023.170600
10.1016/S0168-9002(03)01368-8
10.1088/1361-6498/aac392
10.1007/s41365-023-01305-0
10.3389/fenrg.2023.1151364
10.1016/S0022-4073(99)00107-7
10.1093/rpd/nch190
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.apradiso.2025.111668
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1872-9800
ExternalDocumentID 39813958
10_1016_j_apradiso_2025_111668
S0969804325000132
Genre Journal Article
GroupedDBID ---
--K
--M
.55
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WH7
WUQ
X7M
XPP
XUV
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c315t-100cffb9b58e56ef2f7321c0886ebb080f1e416334a830215b3bc28b5f49bedd3
IEDL.DBID .~1
ISSN 0969-8043
1872-9800
IngestDate Sun Sep 28 11:14:15 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
Wed Oct 01 06:51:45 EDT 2025
Sat Feb 01 16:09:03 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Radiation field reconstruction
Three-dimensional reconstruction
GA-BP neural network
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-100cffb9b58e56ef2f7321c0886ebb080f1e416334a830215b3bc28b5f49bedd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3900-6640
PMID 39813958
PQID 3156526779
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3156526779
pubmed_primary_39813958
crossref_primary_10_1016_j_apradiso_2025_111668
elsevier_sciencedirect_doi_10_1016_j_apradiso_2025_111668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-Mar
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Applied radiation and isotopes
PublicationTitleAlternate Appl Radiat Isot
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Zhu, Lv (bib11) 2023; 34
Lux, Koblinger (bib12) 2017
Wang, Huang, Sun (bib17) 2022; 41
He, Tang, Gong (bib5) 2018; 112
Yang, He, Wang (bib20) 2021; 42
Wang, Zeng, Lin (bib16) 2021; 32
Zheng, Tuo, Peng (bib24) 2018; 29
Hua, Yuan, Liu (bib6) 2019; 39
Zhu, Zhuang, Sheng (bib26) 2022; 175
Kingma, Ba (bib7) 2014
Yisheng, Wu, Pu (bib21) 2023; 11
Agostinelli, Allison, Amako (bib1) 2003; 506
Zhan, Bo, Lin (bib23) 2021; 34
Wen, Sun, Yang (bib18) 2021; 12
Li, Wang, Ding (bib9) 2017; 49
(bib19) 2003; 1
Wang, Cai (bib15) 2018; 153
Zhu, Cao, Fang (bib25) 2022
Guo, Song, Lu (bib3) 2018; 38
Yu, Yin, Xu (bib22) 2023; 275
Dragović (bib2) 2022; 847
Lacoste, Gressier (bib8) 2004; 110
Guo, Zhang, Liu (bib4) 2021; 41
Li, Liu, Peng (bib10) 2018; 38
Sghaier, Sifaoui, Soufiani (bib14) 2000; 64
Prokhorets, Prokhorets (bib13) 2007; 48
Hua (10.1016/j.apradiso.2025.111668_bib6) 2019; 39
(10.1016/j.apradiso.2025.111668_bib19) 2003; 1
Zhu (10.1016/j.apradiso.2025.111668_bib26) 2022; 175
He (10.1016/j.apradiso.2025.111668_bib5) 2018; 112
Yisheng (10.1016/j.apradiso.2025.111668_bib21) 2023; 11
Zhu (10.1016/j.apradiso.2025.111668_bib25) 2022
Yu (10.1016/j.apradiso.2025.111668_bib22) 2023; 275
Agostinelli (10.1016/j.apradiso.2025.111668_bib1) 2003; 506
Sghaier (10.1016/j.apradiso.2025.111668_bib14) 2000; 64
Wang (10.1016/j.apradiso.2025.111668_bib16) 2021; 32
Lacoste (10.1016/j.apradiso.2025.111668_bib8) 2004; 110
Li (10.1016/j.apradiso.2025.111668_bib9) 2017; 49
Guo (10.1016/j.apradiso.2025.111668_bib3) 2018; 38
Wang (10.1016/j.apradiso.2025.111668_bib15) 2018; 153
Wang (10.1016/j.apradiso.2025.111668_bib17) 2022; 41
Lux (10.1016/j.apradiso.2025.111668_bib12) 2017
Yang (10.1016/j.apradiso.2025.111668_bib20) 2021; 42
Guo (10.1016/j.apradiso.2025.111668_bib4) 2021; 41
Zhan (10.1016/j.apradiso.2025.111668_bib23) 2021; 34
Dragović (10.1016/j.apradiso.2025.111668_bib2) 2022; 847
Li (10.1016/j.apradiso.2025.111668_bib11) 2023; 34
Kingma (10.1016/j.apradiso.2025.111668_bib7) 2014
Li (10.1016/j.apradiso.2025.111668_bib10) 2018; 38
Prokhorets (10.1016/j.apradiso.2025.111668_bib13) 2007; 48
Wen (10.1016/j.apradiso.2025.111668_bib18) 2021; 12
Zheng (10.1016/j.apradiso.2025.111668_bib24) 2018; 29
References_xml – volume: 112
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib5
  article-title: Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network
  publication-title: Ann. Nucl. Energy
– volume: 64
  start-page: 339
  year: 2000
  end-page: 351
  ident: bib14
  article-title: Study of radiation in spherical media using discrete ordinates method associated with the finite Legendre transform
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 39
  start-page: 475
  year: 2019
  end-page: 482
  ident: bib6
  article-title: Interpolation reconstruction and visualization of radiation dose field based on Kriging theory
  publication-title: Radiat. Protect.
– volume: 29
  start-page: 61
  year: 2018
  ident: bib24
  article-title: Determination of Gamma point source efficiency based on a back-propagation neural network
  publication-title: Nucl. Sci. Tech.
– volume: 506
  start-page: 250
  year: 2003
  end-page: 303
  ident: bib1
  article-title: GEANT4—a simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 38
  start-page: 1002
  year: 2018
  end-page: 1007
  ident: bib3
  article-title: Calculation of decommissioned radiation field of nuclear facilities using the Monte Carlo point nuclear coupling method
  publication-title: Nucl. Sci. Eng.
– volume: 153
  start-page: 27
  year: 2018
  end-page: 34
  ident: bib15
  article-title: Inversion of radiation field on nuclear facilities: a method based on net function interpolation
  publication-title: Radiat. Phys. Chem.
– volume: 275
  year: 2023
  ident: bib22
  article-title: Grain size characterization of TA1 with GA-BP neural network using laser ultrasonics
  publication-title: Optik
– year: 2022
  ident: bib25
  article-title: 3-D gamma dose rate reconstruction for a radioactive waste processing facility using sparse and arbitrarily-positioned measurements
  publication-title: Prog. Nucl. Energy
– volume: 11
  year: 2023
  ident: bib21
  article-title: Validation of the neural network for 3D photon radiation field reconstruction under various source distributions
  publication-title: Front. Energy Res.
– volume: 41
  start-page: 459
  year: 2021
  end-page: 466
  ident: bib4
  article-title: Calculation of decommissioning radiation field in nuclear power plant based on Monte Carlo-point kernel integration coupling
  publication-title: Radiat. Protect.
– volume: 12
  year: 2021
  ident: bib18
  article-title: BP neural network based reconstruction method for radiation field applications
  publication-title: Nucl. Eng. Des.
– year: 2017
  ident: bib12
  article-title: Monte Carlo Particle Transport Methods: Neutron and Photon Calculations
– volume: 1
  year: 2003
  ident: bib19
  publication-title: MCNP—A General Monte Carlo N-Particle Transport Code
– volume: 32
  start-page: 748
  year: 2021
  end-page: 762
  ident: bib16
  article-title: Random sketching for neural networks with ReLU
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 38
  start-page: 892
  year: 2018
  end-page: 907
  ident: bib10
  article-title: A fast simulation method for radiation maps using interpolation in a virtual environment
  publication-title: J. Radiol. Prot.
– volume: 175
  year: 2022
  ident: bib26
  article-title: 3-D gamma radiation field reconstruction method using limited measurements for multiple radioactive sources
  publication-title: Ann. Nucl. Energy
– year: 2014
  ident: bib7
  article-title: Adam: A Method for Stochastic Optimization
– volume: 110
  start-page: 123
  year: 2004
  end-page: 127
  ident: bib8
  article-title: Monte Carlo simulation of the IRSN CANEL/T400 realistic mixed neutron-photon radiation field
  publication-title: Radiat. Protect. Dosim.
– volume: 49
  start-page: 1
  year: 2017
  end-page: 25
  ident: bib9
  article-title: Research and development of neural network ensembles: a survey
  publication-title: Artif. Intell. Rev.
– volume: 34
  year: 2021
  ident: bib23
  article-title: Development and outlook of advanced nuclear energy technology
  publication-title: Energy Strategy Rev.
– volume: 48
  start-page: 106
  year: 2007
  ident: bib13
  article-title: Point Kernel method for radiation fields simulation
  publication-title: Probl. At. Sci. Technol.
– volume: 42
  start-page: 95
  year: 2021
  end-page: 99
  ident: bib20
  article-title: Comparison of rapid estimation methods for gamma external irradiation dose in the cabin
  publication-title: Nucl. Power Eng.
– volume: 34
  start-page: 153
  year: 2023
  ident: bib11
  article-title: Artificial neural network algorithm for pulse shape discrimination in 2πα and 2πβ particle surface emission rate measurements
  publication-title: Nucl. Sci. Tech.
– volume: 847
  year: 2022
  ident: bib2
  article-title: Artificial neural network modeling in environmental radioactivity studies – a review
  publication-title: Sci. Total Environ.
– volume: 41
  start-page: 29
  year: 2022
  end-page: 35
  ident: bib17
  article-title: Application status of interpolation algorithm in radiation field reconstruction
  publication-title: Ordnance Industry Automation
– volume: 1
  year: 2003
  ident: 10.1016/j.apradiso.2025.111668_bib19
– volume: 847
  year: 2022
  ident: 10.1016/j.apradiso.2025.111668_bib2
  article-title: Artificial neural network modeling in environmental radioactivity studies – a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.157526
– volume: 32
  start-page: 748
  issue: 2
  year: 2021
  ident: 10.1016/j.apradiso.2025.111668_bib16
  article-title: Random sketching for neural networks with ReLU
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.2979228
– volume: 34
  year: 2021
  ident: 10.1016/j.apradiso.2025.111668_bib23
  article-title: Development and outlook of advanced nuclear energy technology
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2021.100630
– volume: 175
  year: 2022
  ident: 10.1016/j.apradiso.2025.111668_bib26
  article-title: 3-D gamma radiation field reconstruction method using limited measurements for multiple radioactive sources
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2022.109247
– volume: 112
  start-page: 1
  issue: FEB
  year: 2018
  ident: 10.1016/j.apradiso.2025.111668_bib5
  article-title: Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2017.09.032
– volume: 48
  start-page: 106
  year: 2007
  ident: 10.1016/j.apradiso.2025.111668_bib13
  article-title: Point Kernel method for radiation fields simulation
  publication-title: Probl. At. Sci. Technol.
– volume: 29
  start-page: 61
  year: 2018
  ident: 10.1016/j.apradiso.2025.111668_bib24
  article-title: Determination of Gamma point source efficiency based on a back-propagation neural network
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-018-0410-4
– volume: 41
  start-page: 29
  issue: 7
  year: 2022
  ident: 10.1016/j.apradiso.2025.111668_bib17
  article-title: Application status of interpolation algorithm in radiation field reconstruction
  publication-title: Ordnance Industry Automation
– issue: 2
  year: 2022
  ident: 10.1016/j.apradiso.2025.111668_bib25
  article-title: 3-D gamma dose rate reconstruction for a radioactive waste processing facility using sparse and arbitrarily-positioned measurements
  publication-title: Prog. Nucl. Energy
– volume: 153
  start-page: 27
  year: 2018
  ident: 10.1016/j.apradiso.2025.111668_bib15
  article-title: Inversion of radiation field on nuclear facilities: a method based on net function interpolation
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2018.09.003
– volume: 275
  year: 2023
  ident: 10.1016/j.apradiso.2025.111668_bib22
  article-title: Grain size characterization of TA1 with GA-BP neural network using laser ultrasonics
  publication-title: Optik
  doi: 10.1016/j.ijleo.2023.170600
– volume: 38
  start-page: 1002
  issue: 6
  year: 2018
  ident: 10.1016/j.apradiso.2025.111668_bib3
  article-title: Calculation of decommissioned radiation field of nuclear facilities using the Monte Carlo point nuclear coupling method
  publication-title: Nucl. Sci. Eng.
– volume: 506
  start-page: 250
  issue: 3
  year: 2003
  ident: 10.1016/j.apradiso.2025.111668_bib1
  article-title: GEANT4—a simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/S0168-9002(03)01368-8
– volume: 49
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.apradiso.2025.111668_bib9
  article-title: Research and development of neural network ensembles: a survey
  publication-title: Artif. Intell. Rev.
– volume: 41
  start-page: 459
  issue: 5
  year: 2021
  ident: 10.1016/j.apradiso.2025.111668_bib4
  article-title: Calculation of decommissioning radiation field in nuclear power plant based on Monte Carlo-point kernel integration coupling
  publication-title: Radiat. Protect.
– volume: 38
  start-page: 892
  issue: 3
  year: 2018
  ident: 10.1016/j.apradiso.2025.111668_bib10
  article-title: A fast simulation method for radiation maps using interpolation in a virtual environment
  publication-title: J. Radiol. Prot.
  doi: 10.1088/1361-6498/aac392
– volume: 34
  start-page: 153
  year: 2023
  ident: 10.1016/j.apradiso.2025.111668_bib11
  article-title: Artificial neural network algorithm for pulse shape discrimination in 2πα and 2πβ particle surface emission rate measurements
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-023-01305-0
– volume: 42
  start-page: 95
  issue: 1
  year: 2021
  ident: 10.1016/j.apradiso.2025.111668_bib20
  article-title: Comparison of rapid estimation methods for gamma external irradiation dose in the cabin
  publication-title: Nucl. Power Eng.
– volume: 11
  year: 2023
  ident: 10.1016/j.apradiso.2025.111668_bib21
  article-title: Validation of the neural network for 3D photon radiation field reconstruction under various source distributions
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1151364
– volume: 64
  start-page: 339
  year: 2000
  ident: 10.1016/j.apradiso.2025.111668_bib14
  article-title: Study of radiation in spherical media using discrete ordinates method associated with the finite Legendre transform
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/S0022-4073(99)00107-7
– year: 2017
  ident: 10.1016/j.apradiso.2025.111668_bib12
– year: 2014
  ident: 10.1016/j.apradiso.2025.111668_bib7
– volume: 39
  start-page: 475
  issue: 6
  year: 2019
  ident: 10.1016/j.apradiso.2025.111668_bib6
  article-title: Interpolation reconstruction and visualization of radiation dose field based on Kriging theory
  publication-title: Radiat. Protect.
– volume: 12
  issue: 3
  year: 2021
  ident: 10.1016/j.apradiso.2025.111668_bib18
  article-title: BP neural network based reconstruction method for radiation field applications
  publication-title: Nucl. Eng. Des.
– volume: 110
  start-page: 123
  year: 2004
  ident: 10.1016/j.apradiso.2025.111668_bib8
  article-title: Monte Carlo simulation of the IRSN CANEL/T400 realistic mixed neutron-photon radiation field
  publication-title: Radiat. Protect. Dosim.
  doi: 10.1093/rpd/nch190
SSID ssj0004892
Score 2.4307828
Snippet The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 111668
SubjectTerms GA-BP neural network
Radiation field reconstruction
Three-dimensional reconstruction
Title Genetic algorithm optimized BP neural network for fast reconstruction of three-dimensional radiation field
URI https://dx.doi.org/10.1016/j.apradiso.2025.111668
https://www.ncbi.nlm.nih.gov/pubmed/39813958
https://www.proquest.com/docview/3156526779
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9800
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004892
  issn: 0969-8043
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1872-9800
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004892
  issn: 0969-8043
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9800
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004892
  issn: 0969-8043
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9800
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004892
  issn: 0969-8043
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9800
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004892
  issn: 0969-8043
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hUKteEF9tly-5Uq9hN_HHxkdAoKUVqFJB4mbFsd3uqiQrNlw48NuZcRIKUlEPHBM5ie3nPD_LzzMAX9UoKCeCTnTBXUIbZ4mVuUqcs1lmNQ4pT6eRzy_U5Ep8u5bXS3Dcn4UhW2XH_S2nR7bu7gy73hzOp9PhTxTfOqeIcjIKGeJhIcaUxeDg4a_NQ-QxMTIVTqj0s1PCs4NifluQawfXiZkk9lAUcvXfE9RrAjRORKdrsNopSHbYVnIdlny1Ae_Puz3yDXgXTZ3lYhNmFFMaS7Hiz6_6dtr8vmE1MsTN9N47dvSDUSxLfFPVOsEZylcWikXD4iL5KbAsqwNrEHGfOMoE0EbxYNSiCCqLHrgtuDo9uTyeJF1uhaTkqWyQfUdlCFYjMF4qH7Iw5llaIucoby3KyJB60mpcFBQhLJWW2zLLrQxCW-8c_wjLVV35z8CkLvNSjBAwngrLXe54NuIuLZVNXeHEAIZ9h5p5G0LD9N6ymekhMASBaSEYgO773bwYDAZ5_r_PfumBMvin0PZHUfn6bmGw3UpmajzWA_jUIvhUH65zlMIy337Dl3fgA121BrVdWEaY_B4qlsbuxyG5DyuHZ98nF48mu-xb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swHP0JMfFxmUYHW_eFkbiGNnHsxscNDXXQokmAxM2KY5u1WpOKhgsH_vb9fk4CQ9q0w66J82E_5-VZfn4GOJRDL23qVaRybiOaOIuMyGRkrUkSo7BLOVqNPD2X46v09Fpcr8FxtxaGbJUt9zecHti6PTJoW3OwnM0GFyi-VUaJciIIGeThF_isEY3Ajh6efB5pFnZGptIRFf9tmfD8KF_e5mTbwYFiIog-JGWu_vkP9TcFGv5EJ6_gZSsh2efmLXdgzZU92Jy2k-Q92AiuzmL1GuYUKo2lWP7zprqd1T8WrEKKWMzunWVfvjMKs8Q7lY0VnKF-ZT5f1SyMkh-TZVnlWY2Qu8jSVgBNjAejGgVUWTDB7cLVydfL43HUbq4QFTwWNdLvsPDeKETGCel84kc8iQskHemMQR3pY0dijac5RYTFwnBTJJkRPlXGWcv3YL2sSvcWmFBFVqRDRIzHqeE2szwZchsX0sQ2t2kfBl2D6mWToaE7c9lcdxBogkA3EPRBde2un_UGjUT_z2sPOqA0fio0_5GXrrpbaay3FIkcjVQf3jQIPr4PVxlqYZG9-48n78PW-HI60ZNv52fvYZvONG61D7COkLmPKF9q8yl0z1-o0O3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+algorithm+optimized+BP+neural+network+for+fast+reconstruction+of+three-dimensional+radiation+field&rft.jtitle=Applied+radiation+and+isotopes&rft.au=Zhang%2C+Qian&rft.au=Shi%2C+Rui&rft.au=Gou%2C+Rui&rft.au=Yang%2C+Guang&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0969-8043&rft.volume=217&rft_id=info:doi/10.1016%2Fj.apradiso.2025.111668&rft.externalDocID=S0969804325000132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-8043&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-8043&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-8043&client=summon