Semi‐auto horizon tracking guided by strata histograms generated with transdimensional Markov‐chain Monte Carlo
ABSTRACT Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking alg...
Saved in:
Published in | Geophysical Prospecting Vol. 68; no. 5; pp. 1456 - 1475 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Houten
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-8025 1365-2478 |
DOI | 10.1111/1365-2478.12933 |
Cover
Abstract | ABSTRACT
Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults. |
---|---|
AbstractList | Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults. ABSTRACT Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults. Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults. |
Author | Jun, Hyunggu Jeong, Daein Cho, Yongchae |
Author_xml | – sequence: 1 givenname: Yongchae orcidid: 0000-0001-6623-1694 surname: Cho fullname: Cho, Yongchae organization: Presently at Shell International Exploration & Production Inc – sequence: 2 givenname: Daein surname: Jeong fullname: Jeong, Daein organization: Nihonbashi 3‐chome – sequence: 3 givenname: Hyunggu orcidid: 0000-0001-8963-535X surname: Jun fullname: Jun, Hyunggu email: hgjun1026@kiost.ac.kr organization: Korea Institute of Ocean Science & Technology |
BookMark | eNqFkMtOAyEUhompiW117ZbE9bQwDHNZmkarSRuNlzVhGKZDO4UK1KaufASf0SeRscaFG9mQ_Od8B843AD1ttATgHKMRDmeMSUqjOMnyEY4LQo5A_zfpgT5COI1yFNMTMHBuiRBBlCZ94B7lWn2-f_CtN7AxVr0ZDb3lYqX0Ai62qpIVLPfQhcxz2CjnzcLytYMLqWXIQnmnfNMx2lVqLbVTRvMWzrldmdcwWjRcaTg32ks44bY1p-C45q2TZz_3EDxfXz1NbqLZ3fR2cjmLBMGURJgKGdeiTCmNcYqqDBeiTKq85AWSGS5FwYkosqTOUcETTOq6iCmq6ppygSXKyRBcHOZurHnZSufZ0mxt-JtjcRJUkJSkSegaH7qENc5ZWbONVWtu9wwj1pllnUfWeWTfZgNB_xBCee7D2kGCav_ndqqV-_-eYdP7hwP3BTeWkVE |
CitedBy_id | crossref_primary_10_1190_geo2021_0754_1 crossref_primary_10_1016_j_petrol_2020_108333 crossref_primary_10_1109_TGRS_2024_3366952 crossref_primary_10_1093_gji_ggab397 crossref_primary_10_1111_1365_2478_13339 crossref_primary_10_1190_geo2024_0241_1 |
Cites_doi | 10.1190/segam2018-2997085.1 10.1190/geo2018-0672.1 10.1190/1.1821918 10.1190/1.1438121 10.1046/j.1365-246X.2002.01847.x 10.1016/j.jmarsys.2019.05.006 10.1190/1.1816150 10.1190/1.3535431 10.1093/gji/ggx194 10.3997/2214-4609.201409923 10.1190/1.3628233 10.1190/1.1817590 10.1190/1.1444415 10.1093/biomet/82.4.711 10.1109/ICASSP.1992.226265 10.1111/j.1365-246X.2009.04226.x 10.1029/2011JB008560 10.1190/geo2016-0594.1 10.1190/1.2756869 10.1190/geo2014-0212.1 10.1190/1.1598121 10.1190/INT-2018-0053.1 10.1111/j.1365-246X.2006.03155.x 10.1190/segam2017-17635454.1 10.1190/1.1444718 10.1190/1.3255384 10.1190/INT-2017-0136.1 10.3997/2214-4609.20147601 10.1007/978-3-319-24574-4_28 |
ContentType | Journal Article |
Copyright | 2020 European Association of Geoscientists & Engineers |
Copyright_xml | – notice: 2020 European Association of Geoscientists & Engineers |
DBID | AAYXX CITATION 8FD F1W FR3 H96 KR7 L.G |
DOI | 10.1111/1365-2478.12933 |
DatabaseName | CrossRef Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1365-2478 |
EndPage | 1475 |
ExternalDocumentID | 10_1111_1365_2478_12933 GPR12933 |
Genre | article |
GrantInformation_xml | – fundername: Korea Institute of Ocean Science and Technology funderid: PE99741 – fundername: Crisman/Berg‐Hughes Center for Petroleum and Sedimentary Systems |
GroupedDBID | -~X 1OB 1OC ALMA_UNASSIGNED_HOLDINGS BDRZF BRZYM DDYGU FZ0 AAYXX CITATION PALCI 8FD F1W FR3 H96 KR7 L.G |
ID | FETCH-LOGICAL-c3153-15ce2fcb6552160d719cb4d8ba90e71bc9a3c974f809a413ff9250dff5ac1e083 |
IEDL.DBID | DR2 |
ISSN | 0016-8025 |
IngestDate | Mon Aug 25 00:02:59 EDT 2025 Tue Jul 01 01:43:26 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Sat Aug 24 01:07:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3153-15ce2fcb6552160d719cb4d8ba90e71bc9a3c974f809a413ff9250dff5ac1e083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8963-535X 0000-0001-6623-1694 |
PQID | 2402536364 |
PQPubID | 1066348 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2402536364 crossref_primary_10_1111_1365_2478_12933 crossref_citationtrail_10_1111_1365_2478_12933 wiley_primary_10_1111_1365_2478_12933_GPR12933 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Houten |
PublicationPlace_xml | – name: Houten |
PublicationTitle | Geophysical Prospecting |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1919 2011 2002; 151 2000; 65 2009 2008 2011; 30 2009; 178 1994 2003 1992 2015; 80 2018; 83 2002 1998; 63 2017; 210 2018; 6 1998; 17 1995; 82 2019; 84 2000 2003; 68 2019 2018 2017 2015 2012; 117 2006; 167 2019; 197 2007; 26 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Bodin T. (e_1_2_9_6_1) 2012; 117 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 Yang L. (e_1_2_9_30_1) 2019 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Denison D.G. (e_1_2_9_9_1) 2002 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Aki K. (e_1_2_9_2_1) 2002 e_1_2_9_29_1 |
References_xml | – volume: 65 start-page: 275 year: 2000 end-page: 285 article-title: Weighted average seismic attributes publication-title: Geophysics – volume: 17 start-page: 1262 year: 1998 end-page: 1262 article-title: Modern 3‐D seismic interpretation publication-title: The Leading Edge – year: 2011 – start-page: 234 year: 2015 end-page: 241 – year: 2009 – volume: 6 start-page: SN47 year: 2018 end-page: SN56 article-title: 3D structural‐orientation vector guided autotracking for weak seismic reflections: a new tool for shale reservoir visualization and interpretation publication-title: Interpretation – volume: 30 start-page: 38 year: 2011 end-page: 47 article-title: A review of “global” interpretation methods for automated 3D horizon picking publication-title: The Leading Edge – year: 2019 article-title: Seismic horizon tracking using a deep convolutional neural network publication-title: Journal of Petroleum Science and Engineering – volume: 83 start-page: R321 year: 2018 end-page: R334 article-title: Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method publication-title: Geophysics – volume: 26 start-page: 888 year: 2007 end-page: 897 article-title: Volumetric flattening: an interpretation tool publication-title: The Leading Edge – year: 2003 – year: 2000 – start-page: 105 year: 1992 end-page: 108 – start-page: 66 year: 1919 end-page: 84 – year: 2018 – year: 1992 – year: 1994 – volume: 178 start-page: 1411 year: 2009 end-page: 1436 article-title: Seismic tomography with the reversible jump algorithm publication-title: Geophysical Journal International – volume: 210 start-page: 534 year: 2017 end-page: 548 article-title: Directional structure tensors in estimating seismic structural and stratigraphic orientations publication-title: Geophysical Journal International – year: 2002 – volume: 117 year: 2012 article-title: Transdimensional inversion of receiver functions and surface wave dispersion publication-title: Journal of Geophysical Research: Solid Earth – volume: 82 start-page: 711 year: 1995 end-page: 732 article-title: Reversible jump Markov chain Monte Carlo computation and bayesian model determination publication-title: Biometrika – year: 2008 – volume: 151 start-page: 675 year: 2002 end-page: 688 article-title: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem publication-title: Geophysical Journal International – volume: 84 start-page: B403 year: 2019 end-page: B417 article-title: Semiautomated seismic horizon interpretation using the encoder‐decoder convolutional neural network publication-title: Geophysics – volume: 6 start-page: T613 year: 2018 end-page: T624 article-title: Quasi 3D transdimensional Markov‐chain Monte Carlo for seismic impedance inversion and uncertainty analysis publication-title: Interpretation – volume: 68 start-page: 1286 year: 2003 end-page: 1293 article-title: Fast structural interpretation with structure‐oriented filtering publication-title: Geophysics – volume: 80 start-page: IM21 year: 2015 end-page: IM33 article-title: Horizon volumes with interpreted constraints publication-title: Geophysics – year: 2017 – volume: 167 start-page: 528 year: 2006 end-page: 542 article-title: Trans‐dimensional inverse problems, model comparison and the evidence publication-title: Geophysical Journal International – volume: 197 year: 2019 article-title: Trans‐dimensional Markov chain Monte Carlo inversion of sound speed and temperature: application to yellow sea multichannel seismic data publication-title: Journal of Marine Systems – volume: 63 start-page: 1150 year: 1998 end-page: 1165 article-title: 3‐D seismic attributes using a semblance‐based coherency algorithm publication-title: Geophysics – ident: e_1_2_9_32_1 doi: 10.1190/segam2018-2997085.1 – ident: e_1_2_9_27_1 doi: 10.1190/geo2018-0672.1 – ident: e_1_2_9_19_1 doi: 10.1190/1.1821918 – ident: e_1_2_9_11_1 doi: 10.1190/1.1438121 – ident: e_1_2_9_22_1 doi: 10.1046/j.1365-246X.2002.01847.x – ident: e_1_2_9_18_1 doi: 10.1016/j.jmarsys.2019.05.006 – ident: e_1_2_9_3_1 doi: 10.1190/1.1816150 – ident: e_1_2_9_16_1 doi: 10.1190/1.3535431 – ident: e_1_2_9_29_1 doi: 10.1093/gji/ggx194 – ident: e_1_2_9_20_1 doi: 10.3997/2214-4609.201409923 – ident: e_1_2_9_31_1 doi: 10.1190/1.3628233 – volume-title: Quantitative Seismology year: 2002 ident: e_1_2_9_2_1 – ident: e_1_2_9_7_1 doi: 10.1190/1.1817590 – volume-title: Bayesian Methods for Nonlinear Classification and Regression year: 2002 ident: e_1_2_9_9_1 – ident: e_1_2_9_23_1 doi: 10.1190/1.1444415 – ident: e_1_2_9_13_1 doi: 10.1093/biomet/82.4.711 – ident: e_1_2_9_15_1 doi: 10.1109/ICASSP.1992.226265 – ident: e_1_2_9_5_1 doi: 10.1111/j.1365-246X.2009.04226.x – volume: 117 start-page: B02301 year: 2012 ident: e_1_2_9_6_1 article-title: Transdimensional inversion of receiver functions and surface wave dispersion publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1029/2011JB008560 – ident: e_1_2_9_33_1 doi: 10.1190/geo2016-0594.1 – ident: e_1_2_9_21_1 doi: 10.1190/1.2756869 – ident: e_1_2_9_28_1 doi: 10.1190/geo2014-0212.1 – ident: e_1_2_9_12_1 doi: 10.1190/1.1598121 – ident: e_1_2_9_10_1 doi: 10.1190/INT-2018-0053.1 – ident: e_1_2_9_26_1 doi: 10.1111/j.1365-246X.2006.03155.x – start-page: 106709 year: 2019 ident: e_1_2_9_30_1 article-title: Seismic horizon tracking using a deep convolutional neural network publication-title: Journal of Petroleum Science and Engineering – ident: e_1_2_9_17_1 doi: 10.1190/segam2017-17635454.1 – ident: e_1_2_9_4_1 doi: 10.1190/1.1444718 – ident: e_1_2_9_24_1 doi: 10.1190/1.3255384 – ident: e_1_2_9_8_1 doi: 10.1190/INT-2017-0136.1 – ident: e_1_2_9_14_1 doi: 10.3997/2214-4609.20147601 – ident: e_1_2_9_34_1 – ident: e_1_2_9_25_1 doi: 10.1007/978-3-319-24574-4_28 |
SSID | ssj0030554 ssj0017384 |
Score | 2.3006418 |
Snippet | ABSTRACT
Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a... Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1456 |
SubjectTerms | Algorithms Automatic picking Bayesian inversion Chains Computation Computer simulation Data acquisition Diapirs Geological structures Histograms Horizon Labour Markov chains Monte Carlo simulation Seismic data Seismic interpretation Statistical methods Strata Tracking Wave propagation Waveforms Workflow |
Title | Semi‐auto horizon tracking guided by strata histograms generated with transdimensional Markov‐chain Monte Carlo |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.12933 https://www.proquest.com/docview/2402536364 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0016-8025 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2478 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017384 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDDAR98C5Op-TBB1862jXp5VGGmwgT8QK-lVzncLaydoI--RH8jH4Sc9J2TkFEfGuhSdvkJPknOecXhA47plLd2Cg3KgVxSCRdh7M4driIPMH9SEsbITc4D05vyNktrb0JIRam5EPMFtygZdj-Gho44_lcIy_9s0gYtWHIAt6n51O7UXs5A0h5oQ9hmOUNsK1KKLMHDN4OrUg_4NjzLbOvg9Sn8pzXr3YA6q0iXn966Xdy354WvC1evlEd__Vva2ilkqf4uLSndbSg0g20PAct3ECLfXsY8PMmyq_Uw-j99Y1NiwzfZZPRS5biYsIELL_j4XQklcT8GVs0L8MWbQzOYDkeWti1EbsY1oEhTZpLOGegZIRgiCDKnkzW4o6NUjwAhBbussk420I3vZPr7qlTHeLgCN_0po5HhepowQNqhELgytCLBScyMhbhqtDjIma-MJMaHbkxMyOq1rFRZVJryoSnjEDcRo00S9UOwkTygPuEEiGBc6a5YK6xQR2GkkTKZU3UrmstERXhHA7aGCf1TAfKNYFyTWy5NtHRLMFjCff4-dFWbQZJ1crzBHamqB_4ATGvtvX5WzZJ_-LSXuz-NcEeWurAVN8uALVQo5hM1b7RQwU_sCb_AQa8ACU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKhw4NUiKFB86IFLVsnGeR0rXtuWRRUPiVtkj21YFRK0m0WCEz-B38gvweNklwUJVVVviRQ7iT3j-Tye-QbgW9tOqp9Z5BYp5B5Ple9JkWWexDRAGaZGuQy57mHcOeU_z6KziVyYmh9i7HAjzXDrNSk4OaQntLwO0OJJ2iKbFb6HD3RKR8q5czSmkAqSkBIx6xtit6ppmQNi4W1HDdcPhfa86u2lmXrGnpMI1pmgvXnA0cfXkSd_WsNKtvDuFa_j__3dAsw1CJV9r0VqEd7pYglmJ3gLl2B639UDvv0Eg2N91Xu8fxDDqmQXZb93Vxas6gskDzw7H_aUVkzeMsfOK5hjN6Z4sAE7d3zXFu8ycgVTm2KgqNRATRPCKImovLFd44XoFaxLLFpsW_Qvy89wurd7st3xmjoOHoZ2QfWCCHXboIwjixViXyVBhpKr1AqFr5NAYiZCtPsak_qZsEbVmMwCM2VMJDDQFiMuw1RRFnoFGFcyliGPOCqiOjMShW_F0CSJ4qn2xSq0RtOWY0NyTrU2LvPRZofGNadxzd24rsLWuMF1ze_x9qPrIznIG0Uf5HQ4FYVxGHP7ajehf-sm3_995C6-_GuDTfjYOeke5Ac_Dn-twUybdv7OH7QOU1V_qDcsPKrkVyf_Tw7vBEE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0REFFyCEtAgbD0gQMXj-xxezsiwrDOCLFIuVm9zowgNvLYkeCUT8g35kvS1baHASmKotxsyd22u6tcr8pVrwD2umZT3cQgt0AK6tBYug5nSeJwEXuC-7GWtkKuPwhPbunZ16DNJsRamJofYhpwQ82w32tU8AepZ5S8zs-iUdxBk-W_gQUaGh8LcdHVlEHKi3ysw6xPkNyqZmX2kIS3GzRUP5jZ82q2l1bqGXrOAlhrgXpLwNtnrxNP7jpVyTvi6RWt43-93DJ8aPApOagFagXmVLYK72dYC1dh8dh2A378CJNr9W3868dPVpU5GeXF-CnPSFkwgfF3MqzGUknCH4nl5mXEchtjNtiEDC3btUG7BAPBOCabSGw0UJOEECwhyr-bqcWIjTPSRw4tcsiK-3wNbntHN4cnTtPFwRG--Zw6XiBUVwseBgYphK6MvERwKmMjEq6KPC4S5gvj1ejYTZgxqVonBpZJrQMmPGUQ4jrMZ3mmPgGhkofcpwEVEonONBfMNUKoo0jSWLlsAzrtrqWioTjHThv3aevq4LqmuK6pXdcN2J8OeKjZPf586VYrBmmj5pMUf00FfuiH1Nza7uffpkmPL6_swea_DtiFt5dfeunF6eD8M7zrottvg0FbMF8Wldo22KjkO1b6fwP5WgLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi%E2%80%90auto+horizon+tracking+guided+by+strata+histograms+generated+with+transdimensional+Markov%E2%80%90chain+Monte+Carlo&rft.jtitle=Geophysical+Prospecting&rft.au=Cho%2C+Yongchae&rft.au=Jeong%2C+Daein&rft.au=Jun%2C+Hyunggu&rft.date=2020-06-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=68&rft.issue=5&rft.spage=1456&rft.epage=1475&rft_id=info:doi/10.1111%2F1365-2478.12933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2478_12933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon |