Semi‐auto horizon tracking guided by strata histograms generated with transdimensional Markov‐chain Monte Carlo

ABSTRACT Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking alg...

Full description

Saved in:
Bibliographic Details
Published inGeophysical Prospecting Vol. 68; no. 5; pp. 1456 - 1475
Main Authors Cho, Yongchae, Jeong, Daein, Jun, Hyunggu
Format Journal Article
LanguageEnglish
Published Houten Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text
ISSN0016-8025
1365-2478
DOI10.1111/1365-2478.12933

Cover

Abstract ABSTRACT Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults.
AbstractList Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults.
ABSTRACT Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults.
Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults.
Author Jun, Hyunggu
Jeong, Daein
Cho, Yongchae
Author_xml – sequence: 1
  givenname: Yongchae
  orcidid: 0000-0001-6623-1694
  surname: Cho
  fullname: Cho, Yongchae
  organization: Presently at Shell International Exploration & Production Inc
– sequence: 2
  givenname: Daein
  surname: Jeong
  fullname: Jeong, Daein
  organization: Nihonbashi 3‐chome
– sequence: 3
  givenname: Hyunggu
  orcidid: 0000-0001-8963-535X
  surname: Jun
  fullname: Jun, Hyunggu
  email: hgjun1026@kiost.ac.kr
  organization: Korea Institute of Ocean Science & Technology
BookMark eNqFkMtOAyEUhompiW117ZbE9bQwDHNZmkarSRuNlzVhGKZDO4UK1KaufASf0SeRscaFG9mQ_Od8B843AD1ttATgHKMRDmeMSUqjOMnyEY4LQo5A_zfpgT5COI1yFNMTMHBuiRBBlCZ94B7lWn2-f_CtN7AxVr0ZDb3lYqX0Ai62qpIVLPfQhcxz2CjnzcLytYMLqWXIQnmnfNMx2lVqLbVTRvMWzrldmdcwWjRcaTg32ks44bY1p-C45q2TZz_3EDxfXz1NbqLZ3fR2cjmLBMGURJgKGdeiTCmNcYqqDBeiTKq85AWSGS5FwYkosqTOUcETTOq6iCmq6ppygSXKyRBcHOZurHnZSufZ0mxt-JtjcRJUkJSkSegaH7qENc5ZWbONVWtu9wwj1pllnUfWeWTfZgNB_xBCee7D2kGCav_ndqqV-_-eYdP7hwP3BTeWkVE
CitedBy_id crossref_primary_10_1190_geo2021_0754_1
crossref_primary_10_1016_j_petrol_2020_108333
crossref_primary_10_1109_TGRS_2024_3366952
crossref_primary_10_1093_gji_ggab397
crossref_primary_10_1111_1365_2478_13339
crossref_primary_10_1190_geo2024_0241_1
Cites_doi 10.1190/segam2018-2997085.1
10.1190/geo2018-0672.1
10.1190/1.1821918
10.1190/1.1438121
10.1046/j.1365-246X.2002.01847.x
10.1016/j.jmarsys.2019.05.006
10.1190/1.1816150
10.1190/1.3535431
10.1093/gji/ggx194
10.3997/2214-4609.201409923
10.1190/1.3628233
10.1190/1.1817590
10.1190/1.1444415
10.1093/biomet/82.4.711
10.1109/ICASSP.1992.226265
10.1111/j.1365-246X.2009.04226.x
10.1029/2011JB008560
10.1190/geo2016-0594.1
10.1190/1.2756869
10.1190/geo2014-0212.1
10.1190/1.1598121
10.1190/INT-2018-0053.1
10.1111/j.1365-246X.2006.03155.x
10.1190/segam2017-17635454.1
10.1190/1.1444718
10.1190/1.3255384
10.1190/INT-2017-0136.1
10.3997/2214-4609.20147601
10.1007/978-3-319-24574-4_28
ContentType Journal Article
Copyright 2020 European Association of Geoscientists & Engineers
Copyright_xml – notice: 2020 European Association of Geoscientists & Engineers
DBID AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
DOI 10.1111/1365-2478.12933
DatabaseName CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 1475
ExternalDocumentID 10_1111_1365_2478_12933
GPR12933
Genre article
GrantInformation_xml – fundername: Korea Institute of Ocean Science and Technology
  funderid: PE99741
– fundername: Crisman/Berg‐Hughes Center for Petroleum and Sedimentary Systems
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
DDYGU
FZ0
AAYXX
CITATION
PALCI
8FD
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-c3153-15ce2fcb6552160d719cb4d8ba90e71bc9a3c974f809a413ff9250dff5ac1e083
IEDL.DBID DR2
ISSN 0016-8025
IngestDate Mon Aug 25 00:02:59 EDT 2025
Tue Jul 01 01:43:26 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Sat Aug 24 01:07:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3153-15ce2fcb6552160d719cb4d8ba90e71bc9a3c974f809a413ff9250dff5ac1e083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8963-535X
0000-0001-6623-1694
PQID 2402536364
PQPubID 1066348
PageCount 20
ParticipantIDs proquest_journals_2402536364
crossref_primary_10_1111_1365_2478_12933
crossref_citationtrail_10_1111_1365_2478_12933
wiley_primary_10_1111_1365_2478_12933_GPR12933
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Houten
PublicationPlace_xml – name: Houten
PublicationTitle Geophysical Prospecting
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1919
2011
2002; 151
2000; 65
2009
2008
2011; 30
2009; 178
1994
2003
1992
2015; 80
2018; 83
2002
1998; 63
2017; 210
2018; 6
1998; 17
1995; 82
2019; 84
2000
2003; 68
2019
2018
2017
2015
2012; 117
2006; 167
2019; 197
2007; 26
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Bodin T. (e_1_2_9_6_1) 2012; 117
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
Yang L. (e_1_2_9_30_1) 2019
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Denison D.G. (e_1_2_9_9_1) 2002
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Aki K. (e_1_2_9_2_1) 2002
e_1_2_9_29_1
References_xml – volume: 65
  start-page: 275
  year: 2000
  end-page: 285
  article-title: Weighted average seismic attributes
  publication-title: Geophysics
– volume: 17
  start-page: 1262
  year: 1998
  end-page: 1262
  article-title: Modern 3‐D seismic interpretation
  publication-title: The Leading Edge
– year: 2011
– start-page: 234
  year: 2015
  end-page: 241
– year: 2009
– volume: 6
  start-page: SN47
  year: 2018
  end-page: SN56
  article-title: 3D structural‐orientation vector guided autotracking for weak seismic reflections: a new tool for shale reservoir visualization and interpretation
  publication-title: Interpretation
– volume: 30
  start-page: 38
  year: 2011
  end-page: 47
  article-title: A review of “global” interpretation methods for automated 3D horizon picking
  publication-title: The Leading Edge
– year: 2019
  article-title: Seismic horizon tracking using a deep convolutional neural network
  publication-title: Journal of Petroleum Science and Engineering
– volume: 83
  start-page: R321
  year: 2018
  end-page: R334
  article-title: Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method
  publication-title: Geophysics
– volume: 26
  start-page: 888
  year: 2007
  end-page: 897
  article-title: Volumetric flattening: an interpretation tool
  publication-title: The Leading Edge
– year: 2003
– year: 2000
– start-page: 105
  year: 1992
  end-page: 108
– start-page: 66
  year: 1919
  end-page: 84
– year: 2018
– year: 1992
– year: 1994
– volume: 178
  start-page: 1411
  year: 2009
  end-page: 1436
  article-title: Seismic tomography with the reversible jump algorithm
  publication-title: Geophysical Journal International
– volume: 210
  start-page: 534
  year: 2017
  end-page: 548
  article-title: Directional structure tensors in estimating seismic structural and stratigraphic orientations
  publication-title: Geophysical Journal International
– year: 2002
– volume: 117
  year: 2012
  article-title: Transdimensional inversion of receiver functions and surface wave dispersion
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 82
  start-page: 711
  year: 1995
  end-page: 732
  article-title: Reversible jump Markov chain Monte Carlo computation and bayesian model determination
  publication-title: Biometrika
– year: 2008
– volume: 151
  start-page: 675
  year: 2002
  end-page: 688
  article-title: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem
  publication-title: Geophysical Journal International
– volume: 84
  start-page: B403
  year: 2019
  end-page: B417
  article-title: Semiautomated seismic horizon interpretation using the encoder‐decoder convolutional neural network
  publication-title: Geophysics
– volume: 6
  start-page: T613
  year: 2018
  end-page: T624
  article-title: Quasi 3D transdimensional Markov‐chain Monte Carlo for seismic impedance inversion and uncertainty analysis
  publication-title: Interpretation
– volume: 68
  start-page: 1286
  year: 2003
  end-page: 1293
  article-title: Fast structural interpretation with structure‐oriented filtering
  publication-title: Geophysics
– volume: 80
  start-page: IM21
  year: 2015
  end-page: IM33
  article-title: Horizon volumes with interpreted constraints
  publication-title: Geophysics
– year: 2017
– volume: 167
  start-page: 528
  year: 2006
  end-page: 542
  article-title: Trans‐dimensional inverse problems, model comparison and the evidence
  publication-title: Geophysical Journal International
– volume: 197
  year: 2019
  article-title: Trans‐dimensional Markov chain Monte Carlo inversion of sound speed and temperature: application to yellow sea multichannel seismic data
  publication-title: Journal of Marine Systems
– volume: 63
  start-page: 1150
  year: 1998
  end-page: 1165
  article-title: 3‐D seismic attributes using a semblance‐based coherency algorithm
  publication-title: Geophysics
– ident: e_1_2_9_32_1
  doi: 10.1190/segam2018-2997085.1
– ident: e_1_2_9_27_1
  doi: 10.1190/geo2018-0672.1
– ident: e_1_2_9_19_1
  doi: 10.1190/1.1821918
– ident: e_1_2_9_11_1
  doi: 10.1190/1.1438121
– ident: e_1_2_9_22_1
  doi: 10.1046/j.1365-246X.2002.01847.x
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jmarsys.2019.05.006
– ident: e_1_2_9_3_1
  doi: 10.1190/1.1816150
– ident: e_1_2_9_16_1
  doi: 10.1190/1.3535431
– ident: e_1_2_9_29_1
  doi: 10.1093/gji/ggx194
– ident: e_1_2_9_20_1
  doi: 10.3997/2214-4609.201409923
– ident: e_1_2_9_31_1
  doi: 10.1190/1.3628233
– volume-title: Quantitative Seismology
  year: 2002
  ident: e_1_2_9_2_1
– ident: e_1_2_9_7_1
  doi: 10.1190/1.1817590
– volume-title: Bayesian Methods for Nonlinear Classification and Regression
  year: 2002
  ident: e_1_2_9_9_1
– ident: e_1_2_9_23_1
  doi: 10.1190/1.1444415
– ident: e_1_2_9_13_1
  doi: 10.1093/biomet/82.4.711
– ident: e_1_2_9_15_1
  doi: 10.1109/ICASSP.1992.226265
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365-246X.2009.04226.x
– volume: 117
  start-page: B02301
  year: 2012
  ident: e_1_2_9_6_1
  article-title: Transdimensional inversion of receiver functions and surface wave dispersion
  publication-title: Journal of Geophysical Research: Solid Earth
  doi: 10.1029/2011JB008560
– ident: e_1_2_9_33_1
  doi: 10.1190/geo2016-0594.1
– ident: e_1_2_9_21_1
  doi: 10.1190/1.2756869
– ident: e_1_2_9_28_1
  doi: 10.1190/geo2014-0212.1
– ident: e_1_2_9_12_1
  doi: 10.1190/1.1598121
– ident: e_1_2_9_10_1
  doi: 10.1190/INT-2018-0053.1
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1365-246X.2006.03155.x
– start-page: 106709
  year: 2019
  ident: e_1_2_9_30_1
  article-title: Seismic horizon tracking using a deep convolutional neural network
  publication-title: Journal of Petroleum Science and Engineering
– ident: e_1_2_9_17_1
  doi: 10.1190/segam2017-17635454.1
– ident: e_1_2_9_4_1
  doi: 10.1190/1.1444718
– ident: e_1_2_9_24_1
  doi: 10.1190/1.3255384
– ident: e_1_2_9_8_1
  doi: 10.1190/INT-2017-0136.1
– ident: e_1_2_9_14_1
  doi: 10.3997/2214-4609.20147601
– ident: e_1_2_9_34_1
– ident: e_1_2_9_25_1
  doi: 10.1007/978-3-319-24574-4_28
SSID ssj0030554
ssj0017384
Score 2.3006418
Snippet ABSTRACT Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a...
Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1456
SubjectTerms Algorithms
Automatic picking
Bayesian inversion
Chains
Computation
Computer simulation
Data acquisition
Diapirs
Geological structures
Histograms
Horizon
Labour
Markov chains
Monte Carlo simulation
Seismic data
Seismic interpretation
Statistical methods
Strata
Tracking
Wave propagation
Waveforms
Workflow
Title Semi‐auto horizon tracking guided by strata histograms generated with transdimensional Markov‐chain Monte Carlo
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.12933
https://www.proquest.com/docview/2402536364
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0016-8025
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDDAR98C5Op-TBB1862jXp5VGGmwgT8QK-lVzncLaydoI--RH8jH4Sc9J2TkFEfGuhSdvkJPknOecXhA47plLd2Cg3KgVxSCRdh7M4driIPMH9SEsbITc4D05vyNktrb0JIRam5EPMFtygZdj-Gho44_lcIy_9s0gYtWHIAt6n51O7UXs5A0h5oQ9hmOUNsK1KKLMHDN4OrUg_4NjzLbOvg9Sn8pzXr3YA6q0iXn966Xdy354WvC1evlEd__Vva2ilkqf4uLSndbSg0g20PAct3ECLfXsY8PMmyq_Uw-j99Y1NiwzfZZPRS5biYsIELL_j4XQklcT8GVs0L8MWbQzOYDkeWti1EbsY1oEhTZpLOGegZIRgiCDKnkzW4o6NUjwAhBbussk420I3vZPr7qlTHeLgCN_0po5HhepowQNqhELgytCLBScyMhbhqtDjIma-MJMaHbkxMyOq1rFRZVJryoSnjEDcRo00S9UOwkTygPuEEiGBc6a5YK6xQR2GkkTKZU3UrmstERXhHA7aGCf1TAfKNYFyTWy5NtHRLMFjCff4-dFWbQZJ1crzBHamqB_4ATGvtvX5WzZJ_-LSXuz-NcEeWurAVN8uALVQo5hM1b7RQwU_sCb_AQa8ACU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKhw4NUiKFB86IFLVsnGeR0rXtuWRRUPiVtkj21YFRK0m0WCEz-B38gvweNklwUJVVVviRQ7iT3j-Tye-QbgW9tOqp9Z5BYp5B5Ple9JkWWexDRAGaZGuQy57mHcOeU_z6KziVyYmh9i7HAjzXDrNSk4OaQntLwO0OJJ2iKbFb6HD3RKR8q5czSmkAqSkBIx6xtit6ppmQNi4W1HDdcPhfa86u2lmXrGnpMI1pmgvXnA0cfXkSd_WsNKtvDuFa_j__3dAsw1CJV9r0VqEd7pYglmJ3gLl2B639UDvv0Eg2N91Xu8fxDDqmQXZb93Vxas6gskDzw7H_aUVkzeMsfOK5hjN6Z4sAE7d3zXFu8ycgVTm2KgqNRATRPCKImovLFd44XoFaxLLFpsW_Qvy89wurd7st3xmjoOHoZ2QfWCCHXboIwjixViXyVBhpKr1AqFr5NAYiZCtPsak_qZsEbVmMwCM2VMJDDQFiMuw1RRFnoFGFcyliGPOCqiOjMShW_F0CSJ4qn2xSq0RtOWY0NyTrU2LvPRZofGNadxzd24rsLWuMF1ze_x9qPrIznIG0Uf5HQ4FYVxGHP7ajehf-sm3_995C6-_GuDTfjYOeke5Ac_Dn-twUybdv7OH7QOU1V_qDcsPKrkVyf_Tw7vBEE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0REFFyCEtAgbD0gQMXj-xxezsiwrDOCLFIuVm9zowgNvLYkeCUT8g35kvS1baHASmKotxsyd22u6tcr8pVrwD2umZT3cQgt0AK6tBYug5nSeJwEXuC-7GWtkKuPwhPbunZ16DNJsRamJofYhpwQ82w32tU8AepZ5S8zs-iUdxBk-W_gQUaGh8LcdHVlEHKi3ysw6xPkNyqZmX2kIS3GzRUP5jZ82q2l1bqGXrOAlhrgXpLwNtnrxNP7jpVyTvi6RWt43-93DJ8aPApOagFagXmVLYK72dYC1dh8dh2A378CJNr9W3868dPVpU5GeXF-CnPSFkwgfF3MqzGUknCH4nl5mXEchtjNtiEDC3btUG7BAPBOCabSGw0UJOEECwhyr-bqcWIjTPSRw4tcsiK-3wNbntHN4cnTtPFwRG--Zw6XiBUVwseBgYphK6MvERwKmMjEq6KPC4S5gvj1ejYTZgxqVonBpZJrQMmPGUQ4jrMZ3mmPgGhkofcpwEVEonONBfMNUKoo0jSWLlsAzrtrqWioTjHThv3aevq4LqmuK6pXdcN2J8OeKjZPf586VYrBmmj5pMUf00FfuiH1Nza7uffpkmPL6_swea_DtiFt5dfeunF6eD8M7zrottvg0FbMF8Wldo22KjkO1b6fwP5WgLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi%E2%80%90auto+horizon+tracking+guided+by+strata+histograms+generated+with+transdimensional+Markov%E2%80%90chain+Monte+Carlo&rft.jtitle=Geophysical+Prospecting&rft.au=Cho%2C+Yongchae&rft.au=Jeong%2C+Daein&rft.au=Jun%2C+Hyunggu&rft.date=2020-06-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=68&rft.issue=5&rft.spage=1456&rft.epage=1475&rft_id=info:doi/10.1111%2F1365-2478.12933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2478_12933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon