Energy-based features and bi-LSTM neural network for EEG-based music and voice classification
The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication, amusement, warning, etc. In this context, the aim of this manuscript is to advance in the classification of brain responses to music of dive...
Saved in:
| Published in | Neural computing & applications Vol. 36; no. 2; pp. 791 - 802 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.01.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 1433-3058 |
| DOI | 10.1007/s00521-023-09061-3 |
Cover
| Abstract | The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication, amusement, warning, etc. In this context, the aim of this manuscript is to advance in the classification of brain responses to music of diverse genres and to sounds of different nature: speech and music. For this purpose, two different experiments have been designed to acquire EEG signals from subjects listening to songs of different musical genres and sentences in various languages. With this, a novel scheme is proposed to characterize brain signals for their classification; this scheme is based on the construction of a feature matrix built on relations between energy measured at the different EEG channels and the usage of a bi-LSTM neural network. With the data obtained, evaluations regarding EEG-based classification between speech and music, different musical genres, and whether the subject likes the song listened to or not are carried out. The experiments unveil satisfactory performance to the proposed scheme. The results obtained for binary audio type classification attain 98.66% of success. In multi-class classification between 4 musical genres, the accuracy attained is 61.59%, and results for binary classification of musical taste rise to 96.96%. |
|---|---|
| AbstractList | The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication, amusement, warning, etc. In this context, the aim of this manuscript is to advance in the classification of brain responses to music of diverse genres and to sounds of different nature: speech and music. For this purpose, two different experiments have been designed to acquire EEG signals from subjects listening to songs of different musical genres and sentences in various languages. With this, a novel scheme is proposed to characterize brain signals for their classification; this scheme is based on the construction of a feature matrix built on relations between energy measured at the different EEG channels and the usage of a bi-LSTM neural network. With the data obtained, evaluations regarding EEG-based classification between speech and music, different musical genres, and whether the subject likes the song listened to or not are carried out. The experiments unveil satisfactory performance to the proposed scheme. The results obtained for binary audio type classification attain 98.66% of success. In multi-class classification between 4 musical genres, the accuracy attained is 61.59%, and results for binary classification of musical taste rise to 96.96%. |
| Author | Barbancho, Ana M. Barbancho, Isabel Ariza, Isaac Tardón, Lorenzo J. |
| Author_xml | – sequence: 1 givenname: Isaac surname: Ariza fullname: Ariza, Isaac organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga – sequence: 2 givenname: Ana M. surname: Barbancho fullname: Barbancho, Ana M. organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga – sequence: 3 givenname: Lorenzo J. orcidid: 0000-0002-5441-225X surname: Tardón fullname: Tardón, Lorenzo J. email: ltg@uma.es organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga – sequence: 4 givenname: Isabel surname: Barbancho fullname: Barbancho, Isabel email: ibp@uma.es organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga |
| BookMark | eNqNkE1LAzEURYNUsK3-AVcDrqMvk_nILKXUKlRcWJcSXqYvZeo0U5MZS_-9Y1twJ67u4p1zedwRG7jGEWPXAm4FQH4XANJYcIglhwIyweUZG4pESi4hVQM2hCLpz1kiL9gohDUAJJlKh-x96siv9txgoGVkCdvOU4jQLSNT8fnr4jly1Hms-2h3jf-IbOOj6XR2MjZdqMoD_tVUJUVljSFUtiqxrRp3yc4t1oGuTjlmbw_TxeSRz19mT5P7OS-lSFpubKEkKkSZWxAkEkKp5FKUGRKZxApLhCqOizwlgyoHZaxZmtjKzKiUlBwzeezt3Bb3O6xrvfXVBv1eC9A_C-njQrpfSB8W0rK3bo7W1jefHYVWr5vOu_5RHRcCcpAK0p6Kj1TpmxA82f9Vnx4KPexW5H-r_7C-AWlkh4A |
| Cites_doi | 10.1109/RBME.2020.2969915 10.1016/j.bspc.2022.103885 10.1109/CAIS.2019.8769492 10.1109/NER.2009.5109327 10.1162/neco.1997.9.8.1735 10.1109/ACPR.2017.133 10.1109/NCC48643.2020.9056052 10.3390/electronics8020164 10.1109/ICCE-Asia49877.2020.9277291 10.1109/TNSRE.2018.2884641 10.1016/j.neucom.2015.11.046 10.1109/ICOEI.2019.8862560 10.1109/TNSRE.2012.2236576 10.1109/ACCESS.2020.3021051 10.1016/j.neuroscience.2015.10.061 10.1109/ICSENS.2017.8234433 10.1007/s00521-022-07292-4 10.1109/BHI.2018.8333380 10.1109/ICERA53111.2021.9538698 10.1109/ICASSP.2009.4959627 10.1109/IWW-BCI.2013.6506625 10.1109/ISM.2018.00-11 10.1137/060658242 10.1007/978-1-4471-6584-2 10.1109/NCC52529.2021.9530053 10.1023/A:1017181826899 10.1016/j.jfranklin.2015.11.013 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.1007/s00521-023-09061-3 |
| DatabaseName | SpringerLink - Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Music |
| EISSN | 1433-3058 |
| EndPage | 802 |
| ExternalDocumentID | 10.1007/s00521-023-09061-3 10_1007_s00521_023_09061_3 |
| GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación/AEI/FEDER UE grantid: PID2021-123207NB-I00; 10.13039 / 501100011033 – fundername: Funding for open access charge: Universidad de Málaga/CBUA – fundername: Universidad de Málaga – fundername: Junta de Andalucía. Proyectos de I+D+i grantid: PY20_00237 – fundername: Universidad de Málaga. Campus de Excelencia Internacional Andalucia Tech |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c314t-bf983a8aa37f01e14ea383d1c6aeeb4f1feea822975eba8708bfbdb2f36b85e83 |
| IEDL.DBID | BENPR |
| ISSN | 0941-0643 1433-3058 |
| IngestDate | Sun Oct 26 04:00:15 EDT 2025 Fri Jul 25 22:56:55 EDT 2025 Wed Oct 01 03:43:40 EDT 2025 Fri Feb 21 02:40:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Electroencephalogram (EEG) Music and voice classification Neural networks Long short-term memory (LSTM) |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-bf983a8aa37f01e14ea383d1c6aeeb4f1feea822975eba8708bfbdb2f36b85e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5441-225X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-023-09061-3.pdf |
| PQID | 2910703805 |
| PQPubID | 2043988 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1007_s00521_023_09061_3 proquest_journals_2910703805 crossref_primary_10_1007_s00521_023_09061_3 springer_journals_10_1007_s00521_023_09061_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240100 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | GarcíaAGarcíaFLópezARodríguezGde la VillaACálculo I. Teoría y problemas de análisis matemático en una variable20073MadridEditorial Clagsa Kim K, Carlson T, Lee S (2013) Design of a robotic wheelchair with a motor imagery based brain–computer interface. In: 2013 International winter workshop on brain–computer interface (BCI), pp 46–48. https://doi.org/10.1109/IWW-BCI.2013.6506625 Kumar SD, Subha D (2019) Prediction of depression from EEG signal using long short term memory (LSTM). In: 2019 3rd international conference on trends in electronics and informatics (ICOEI), pp 1248–1253. https://doi.org/10.1109/ICOEI.2019.8862560 Yu Y, Beuret S, Zeng D, Oyama K (2018) Deep learning of human perception in audio event classification. In: 2018 IEEE international symposium on multimedia (ISM), pp 188–189. https://doi.org/10.1109/ISM.2018.00-11 LiuYLiuWObaidMAbbasIExponential stability of Markovian jumping Cohen–Grossberg neural networks with mixed mode-dependent time-delaysNeurocomputing201510.1016/j.neucom.2015.11.046 SeoY-SHuhJ-HAutomatic emotion-based music classification for supporting intelligent IoT applicationsElectronics201910.3390/electronics8020164 Moschona DS (2020) An affective service based on multi-modal emotion recognition, using EEG enabled emotion tracking and speech emotion recognition. In: 2020 IEEE international conference on consumer electronics—Asia (ICCE-Asia), pp 1–3. https://doi.org/10.1109/ICCE-Asia49877.2020.9277291 Aggarwal S, Sharon R, Murthy HA (2020) P300 based stereo localization of single frequency audio stimulus. In: 2020 National conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC48643.2020.9056052 Hasib MM, Nayak T, Huang Y (2018) A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), pp 104–107. https://doi.org/10.1109/BHI.2018.8333380 Lin Y-P, Wang C-H, Wu T-L, Jeng S-K, Chen J-H (2009) EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine. In: 2009 IEEE international conference on acoustics, speech and signal processing, pp 489–492. IEEE PoikonenHAlluriVBratticoELartillotOTervaniemiMHuotilainenMEvent-related brain responses while listening to entire pieces of musicNeuroscience201510.1016/j.neuroscience.2015.10.061 Powers D (2008) Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Mach Learn Technol 2 HousseinEHHammadAAliAAHuman emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive reviewNeural Comput Appl20223415125271255710.1007/s00521-022-07292-4 Patel P, Satija U (2021) Performance analysis of convolutional neural network based EEG epileptic seizure classification in presence of ocular artifacts. In: 2021 national conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC52529.2021.9530053 ProvostFKohaviRGlossary of termsMach Learn199810.1023/A:1017181826899 ZhangPWangXZhangWChenJLearning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessmentIEEE Trans Neural Syst Rehabil Eng2019271314210.1109/TNSRE.2018.2884641 DuBLiuYAtiatallah AbbasIExistence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networksJ Frankl Inst20163532448461344815210.1016/j.jfranklin.2015.11.013 HosseiniM-PHosseiniAAhiKA review on machine learning for EEG signal processing in bioengineeringIEEE Rev Biomed Eng20211420421810.1109/RBME.2020.2969915 ArizaITardónLJBarbanchoAMDe-TorresIBarbanchoIBi-LSTM neural network for EEG-based error detection in musicians’ performanceBiomed Signal Process Control20227810388510.1016/j.bspc.2022.103885 Alturki FA, AlSharabi K, Aljalal M, Abdurraqeeb AM (2019) A DWT-band power-SVM based architecture for neurological brain disorders diagnosis using EEG signals. In: 2019 2nd international conference on computer applications information security (ICCAIS), pp 1–4. https://doi.org/10.1109/CAIS.2019.8769492 Kee Y, Lee M, Williamson J, Lee S (2017) A hierarchical classification strategy for robust detection of passive/active mental state using user-voluntary pitch imagery task. In: 2017 4th IAPR Asian conference on pattern recognition (ACPR), pp 906–910. https://doi.org/10.1109/ACPR.2017.133 HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 OberstUThe fast Fourier transformSIAM J Control Optim200746496540230903810.1137/060658242 Tzanetakis G, Essl G, Cook P (2001) Automatic musical genre classification of audio signals. In: Proceedings of the 2nd international symposium on music information retrieval, Indiana, vol 144. http://ismir2001.ismir.net/pdf/tzanetakis.pdf LuWWeiYYuanJDengYSongATractor assistant driving control method based on EEG combined with RNN-TL deep learning algorithmIEEE Access2020816326916327910.1109/ACCESS.2020.3021051 BrainVision (2021) actiCHamp Plus. BrainVision, accessed 27 July. https://brainvision.com SaneiSChambersJAEEG signal processing2008West SussexWiley WangQSourinaOReal-time mental arithmetic task recognition from EEG signalsIEEE Trans Neural Syst Rehabil Eng201321222523210.1109/TNSRE.2012.2236576 Pratiwi M, Wibawa AD, Purnomo MH (2021) EEG-based happy and sad emotions classification using LSTM and bidirectional LSTM. In: 2021 3rd international conference on electronics representation and algorithm (ICERA), pp 89–94. https://doi.org/10.1109/ICERA53111.2021.9538698 Shi S-J, Lu B-L (2009) EEG signal classification during listening to native and foreign languages songs. In: 2009 4th international IEEE/EMBS conference on neural engineering, pp 440–443. https://doi.org/10.1109/NER.2009.5109327 Psychology Software Tools (2022) E-Prime, accessed 8 March. https://pstnet.com/products/e-prime MirandaERCastetJGuide to brain–computer music interfacing2014LondonSpringer10.1007/978-1-4471-6584-2 Darmawan FF, Arifianto D, Huda MA, Taruno WP (2017) Human brain auditory activity observation using electrical capacitance volume tomography. In: 2017 IEEE SENSORS, pp 1–3. https://doi.org/10.1109/ICSENS.2017.8234433 9061_CR23 U Oberst (9061_CR25) 2007; 46 9061_CR22 A García (9061_CR26) 2007 9061_CR21 W Lu (9061_CR15) 2020; 8 Y Liu (9061_CR16) 2015 Q Wang (9061_CR10) 2013; 21 Y-S Seo (9061_CR18) 2019 9061_CR19 S Hochreiter (9061_CR27) 1997; 9 9061_CR33 9061_CR14 9061_CR13 9061_CR2 9061_CR3 9061_CR32 EH Houssein (9061_CR29) 2022; 34 9061_CR6 9061_CR7 I Ariza (9061_CR30) 2022; 78 9061_CR4 9061_CR5 B Du (9061_CR17) 2016; 353 9061_CR8 M-P Hosseini (9061_CR11) 2021; 14 9061_CR9 P Zhang (9061_CR12) 2019; 27 F Provost (9061_CR31) 1998 S Sanei (9061_CR1) 2008 H Poikonen (9061_CR20) 2015 ER Miranda (9061_CR24) 2014 9061_CR28 |
| References_xml | – reference: Aggarwal S, Sharon R, Murthy HA (2020) P300 based stereo localization of single frequency audio stimulus. In: 2020 National conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC48643.2020.9056052 – reference: HousseinEHHammadAAliAAHuman emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive reviewNeural Comput Appl20223415125271255710.1007/s00521-022-07292-4 – reference: Kee Y, Lee M, Williamson J, Lee S (2017) A hierarchical classification strategy for robust detection of passive/active mental state using user-voluntary pitch imagery task. In: 2017 4th IAPR Asian conference on pattern recognition (ACPR), pp 906–910. https://doi.org/10.1109/ACPR.2017.133 – reference: OberstUThe fast Fourier transformSIAM J Control Optim200746496540230903810.1137/060658242 – reference: Powers D (2008) Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Mach Learn Technol 2 – reference: Kumar SD, Subha D (2019) Prediction of depression from EEG signal using long short term memory (LSTM). In: 2019 3rd international conference on trends in electronics and informatics (ICOEI), pp 1248–1253. https://doi.org/10.1109/ICOEI.2019.8862560 – reference: Alturki FA, AlSharabi K, Aljalal M, Abdurraqeeb AM (2019) A DWT-band power-SVM based architecture for neurological brain disorders diagnosis using EEG signals. In: 2019 2nd international conference on computer applications information security (ICCAIS), pp 1–4. https://doi.org/10.1109/CAIS.2019.8769492 – reference: SeoY-SHuhJ-HAutomatic emotion-based music classification for supporting intelligent IoT applicationsElectronics201910.3390/electronics8020164 – reference: Yu Y, Beuret S, Zeng D, Oyama K (2018) Deep learning of human perception in audio event classification. In: 2018 IEEE international symposium on multimedia (ISM), pp 188–189. https://doi.org/10.1109/ISM.2018.00-11 – reference: Pratiwi M, Wibawa AD, Purnomo MH (2021) EEG-based happy and sad emotions classification using LSTM and bidirectional LSTM. In: 2021 3rd international conference on electronics representation and algorithm (ICERA), pp 89–94. https://doi.org/10.1109/ICERA53111.2021.9538698 – reference: WangQSourinaOReal-time mental arithmetic task recognition from EEG signalsIEEE Trans Neural Syst Rehabil Eng201321222523210.1109/TNSRE.2012.2236576 – reference: Lin Y-P, Wang C-H, Wu T-L, Jeng S-K, Chen J-H (2009) EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine. In: 2009 IEEE international conference on acoustics, speech and signal processing, pp 489–492. IEEE – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 – reference: Darmawan FF, Arifianto D, Huda MA, Taruno WP (2017) Human brain auditory activity observation using electrical capacitance volume tomography. In: 2017 IEEE SENSORS, pp 1–3. https://doi.org/10.1109/ICSENS.2017.8234433 – reference: MirandaERCastetJGuide to brain–computer music interfacing2014LondonSpringer10.1007/978-1-4471-6584-2 – reference: SaneiSChambersJAEEG signal processing2008West SussexWiley – reference: ArizaITardónLJBarbanchoAMDe-TorresIBarbanchoIBi-LSTM neural network for EEG-based error detection in musicians’ performanceBiomed Signal Process Control20227810388510.1016/j.bspc.2022.103885 – reference: ZhangPWangXZhangWChenJLearning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessmentIEEE Trans Neural Syst Rehabil Eng2019271314210.1109/TNSRE.2018.2884641 – reference: DuBLiuYAtiatallah AbbasIExistence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networksJ Frankl Inst20163532448461344815210.1016/j.jfranklin.2015.11.013 – reference: Shi S-J, Lu B-L (2009) EEG signal classification during listening to native and foreign languages songs. In: 2009 4th international IEEE/EMBS conference on neural engineering, pp 440–443. https://doi.org/10.1109/NER.2009.5109327 – reference: PoikonenHAlluriVBratticoELartillotOTervaniemiMHuotilainenMEvent-related brain responses while listening to entire pieces of musicNeuroscience201510.1016/j.neuroscience.2015.10.061 – reference: Psychology Software Tools (2022) E-Prime, accessed 8 March. https://pstnet.com/products/e-prime/ – reference: HosseiniM-PHosseiniAAhiKA review on machine learning for EEG signal processing in bioengineeringIEEE Rev Biomed Eng20211420421810.1109/RBME.2020.2969915 – reference: GarcíaAGarcíaFLópezARodríguezGde la VillaACálculo I. Teoría y problemas de análisis matemático en una variable20073MadridEditorial Clagsa – reference: ProvostFKohaviRGlossary of termsMach Learn199810.1023/A:1017181826899 – reference: Tzanetakis G, Essl G, Cook P (2001) Automatic musical genre classification of audio signals. In: Proceedings of the 2nd international symposium on music information retrieval, Indiana, vol 144. http://ismir2001.ismir.net/pdf/tzanetakis.pdf – reference: Kim K, Carlson T, Lee S (2013) Design of a robotic wheelchair with a motor imagery based brain–computer interface. In: 2013 International winter workshop on brain–computer interface (BCI), pp 46–48. https://doi.org/10.1109/IWW-BCI.2013.6506625 – reference: Patel P, Satija U (2021) Performance analysis of convolutional neural network based EEG epileptic seizure classification in presence of ocular artifacts. In: 2021 national conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC52529.2021.9530053 – reference: BrainVision (2021) actiCHamp Plus. BrainVision, accessed 27 July. https://brainvision.com/ – reference: LiuYLiuWObaidMAbbasIExponential stability of Markovian jumping Cohen–Grossberg neural networks with mixed mode-dependent time-delaysNeurocomputing201510.1016/j.neucom.2015.11.046 – reference: Hasib MM, Nayak T, Huang Y (2018) A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), pp 104–107. https://doi.org/10.1109/BHI.2018.8333380 – reference: LuWWeiYYuanJDengYSongATractor assistant driving control method based on EEG combined with RNN-TL deep learning algorithmIEEE Access2020816326916327910.1109/ACCESS.2020.3021051 – reference: Moschona DS (2020) An affective service based on multi-modal emotion recognition, using EEG enabled emotion tracking and speech emotion recognition. In: 2020 IEEE international conference on consumer electronics—Asia (ICCE-Asia), pp 1–3. https://doi.org/10.1109/ICCE-Asia49877.2020.9277291 – volume: 14 start-page: 204 year: 2021 ident: 9061_CR11 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2020.2969915 – volume: 78 start-page: 103885 year: 2022 ident: 9061_CR30 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103885 – ident: 9061_CR6 doi: 10.1109/CAIS.2019.8769492 – ident: 9061_CR21 doi: 10.1109/NER.2009.5109327 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 9061_CR27 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 9061_CR9 doi: 10.1109/ACPR.2017.133 – ident: 9061_CR4 doi: 10.1109/NCC48643.2020.9056052 – ident: 9061_CR32 – year: 2019 ident: 9061_CR18 publication-title: Electronics doi: 10.3390/electronics8020164 – ident: 9061_CR8 doi: 10.1109/ICCE-Asia49877.2020.9277291 – volume: 27 start-page: 31 issue: 1 year: 2019 ident: 9061_CR12 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2018.2884641 – year: 2015 ident: 9061_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.046 – volume-title: EEG signal processing year: 2008 ident: 9061_CR1 – ident: 9061_CR5 doi: 10.1109/ICOEI.2019.8862560 – volume: 21 start-page: 225 issue: 2 year: 2013 ident: 9061_CR10 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2012.2236576 – ident: 9061_CR22 – volume: 8 start-page: 163269 year: 2020 ident: 9061_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021051 – year: 2015 ident: 9061_CR20 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.10.061 – ident: 9061_CR3 doi: 10.1109/ICSENS.2017.8234433 – volume: 34 start-page: 12527 issue: 15 year: 2022 ident: 9061_CR29 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07292-4 – ident: 9061_CR28 doi: 10.1109/BHI.2018.8333380 – ident: 9061_CR14 doi: 10.1109/ICERA53111.2021.9538698 – ident: 9061_CR19 doi: 10.1109/ICASSP.2009.4959627 – ident: 9061_CR7 doi: 10.1109/IWW-BCI.2013.6506625 – ident: 9061_CR33 – ident: 9061_CR2 doi: 10.1109/ISM.2018.00-11 – volume-title: Cálculo I. Teoría y problemas de análisis matemático en una variable year: 2007 ident: 9061_CR26 – volume: 46 start-page: 496 year: 2007 ident: 9061_CR25 publication-title: SIAM J Control Optim doi: 10.1137/060658242 – volume-title: Guide to brain–computer music interfacing year: 2014 ident: 9061_CR24 doi: 10.1007/978-1-4471-6584-2 – ident: 9061_CR13 doi: 10.1109/NCC52529.2021.9530053 – ident: 9061_CR23 – year: 1998 ident: 9061_CR31 publication-title: Mach Learn doi: 10.1023/A:1017181826899 – volume: 353 start-page: 448 issue: 2 year: 2016 ident: 9061_CR17 publication-title: J Frankl Inst doi: 10.1016/j.jfranklin.2015.11.013 |
| SSID | ssj0004685 |
| Score | 2.3509324 |
| Snippet | The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication,... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 791 |
| SubjectTerms | Artificial Intelligence Brain Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Electroencephalography Genre Image Processing and Computer Vision Music Neural networks Original Article Probability and Statistics in Computer Science Signal classification Speech Stimuli Voice communication |
| SummonAdditionalLinks | – databaseName: SpringerLink - Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D-rBb3F-kYM3F2ibj2VHGZ1DnBc32EXKS5qCMLvhNsX_3iRttykiem77Cr-X5P2Sl_d7CF2FgQbe0gFJJReE6SaQltCGMFDMZCoIjS8X6z2I7oDdDfmwlMlxtTDf8vdO7NMGGGIjiztRcGcl62jDBinhE7OivVID6dtv2t2Ku8nDaFkg87ONr0FoySwXydBttDnPJ_DxDqPRSrzp7KGdkijim8Kz-2jN5Adot2rCgMs5eYieYl-9R1w4SnFmvFDnFEOeYvVM7h_7Pew0K62pvLjxjS1NxXF8W37x4ho9-9ffxnbRwNrRaXd_yLvsCA06cb_dJWXPBKJpyGZEZS1JQQLQZmaBDpkBuwdNQy3AGMWyMDMGnMh7kxsFdrJKlalURRkVSnIj6TGq5ePcnCBsqBYMmORuF-iyM4JCRBlIAda5XNbRdQViMimkMZKFCLKHPLGQJx7yhNbReYVzUk6TaRJZsmKXHBnwOmpU2C8f_2atsfDPH35--j_rZ2grstylOGk5R7XZ69xcWO4xU5d-0H0CMMPM9g priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BONAegPJQw0s-9FYcsutHnCOCAEKAKpVI9FCtxl5bQoQlgg1V-fXY3t1QEKpacbbXK3vG48_z-AzwJekaFH3TpbkSknLTQ9qXxlKOmlunu4mN5WJn5_J4yE8uxeUMHDS1MDHbvQlJVjUNgaWpKHfHududFr4Fb6a_Bqcs-BmCB6Xjm2dhTgqPyFswNzz_tvcj0uzxkNhT5dlzxqhXb1XXzrw90Mvz6Rl0TuOkH2F-Uozx9y8cjf44ig4XwTaTqDJQrjuTUnfM4yt-x_fOcgkWaqxK9irl-gQztliGxeYdCFKbhRX4OYgFhDSciDlxNnKF3hMscqKv6On3izMSaDP9UEWVdE48UiaDwVH9xU14azp2f7j1douYgOhDClPUmlUYHg4u9o9p_WwDNSzhJdWurxgqRNZzXtYJt-ivwXliJFqruUuctRh45nvCavT2Qmmnc506JrUSVrE1aBW3hf0MxDIjOXIlwkU0BIgkw5RxVBK9fgnVhq-NsLJxxc6RTXmY4-plfvWyuHoZa8NmI8-s3qn3Werxkrd6qivasNOI5Ln5b6PtTPXgH36-_n_dN-BD6uFT5ezZhFZ5N7FbHv6UervW7ice7_lz priority: 102 providerName: Unpaywall |
| Title | Energy-based features and bi-LSTM neural network for EEG-based music and voice classification |
| URI | https://link.springer.com/article/10.1007/s00521-023-09061-3 https://www.proquest.com/docview/2910703805 https://link.springer.com/content/pdf/10.1007/s00521-023-09061-3.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPwwMcAURiVH3hjFk3suO4DQqVKOwGrJlil7QFFZ8eRkEZaWAfiv-fOTdrxMvGSByexpbuz73xfP4BXycBjNvIDWdrMSO2HKEfGB6nR6VC5QRJiudjJ3Bwv9Ifz7HwP5m0tDKdVtmdiPKjLpWcf-ZuU9BpJpx1k71Y_JKNGcXS1hdDABlqhfBtbjO1DN-XOWB3ovs_np59vVEpGkE6603C-j1ZNGU0spmMPKY2min0X7JX5V1Xt7M9tyPQe3LmuV_jnN15e3tBK04dwvzEnxXjD_0ewF-oDeNBCNYhm5x5AN-I5P4aveaz1k6y8SlGF2NbzSmBdCvdNfvpydiK4wyVNWW_ywwUZtSLPZ80f33ma-PmvJR0xwrPxzdlGkcFPYDHNzybHskFYkF4lei1dNbIKLaIaVsSWRAekG2uZeIMhOF0lVQjILeGHWXBIW9u6ypUurZRxNgtWPYVOvazDMxBBeaNR24zvjBzLMQpTpdEaJFHIbA9et8QsVptGGsW2ZXIkfUGkLyLpC9WDw5beRbOproqdCPTgqOXB7vVtsx1t-fQfiz-_ffEXcDcly2bjhzmEzvrndXhJlsna9WHfTmd96I5nFx_zfiN8NDoxE3ou0jGNLean44u_vULiyw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxNBFH9BekAPiqixAjoHOcHE7s7sdnogBnCxSNsQLAkXsr6ZnU1McFttgfDP-bf5ZjrbwoV44bofbzZvfvu-5n0AfIxaBpOOafFCJSmXpo28kxrLJWppS92KrC8X6w_S7pn8dp6cL8HfuhbGpVXWMtEL6mJkXIz8U0x6jdCpWsnn8W_upka509V6hAaG0QrFrm8xFgo7ju3tDblwk92jL7TfW3F8mA0PujxMGeBGRHLKddlRAhWiaJf0aZG0SF5bEZkUrdWyjEpr0bVFbydWI8Fb6VIXOi5FqlVilSC6T6AhheyQ89fYzwYnp3cqM_1QUPKhXH6RFKFsxxfvuYgsXY2Fi5W4KNB91biwd-dHtM9g5aoa4-0NXl7e0YKHq_A8mK9sb4a3l7BkqzV4UY-GYEFSrEHDz49-BReZry3kTlkWrLS-jeiEYVUw_ZP3vg_7zHXUJJLVLB-dkRHNsuxreOOXI-Mfvx6RSGPGGfsuu8kD6jWcPQqv38ByNarsW2BWmFSiVInzUd3ZUSowFhJVigS9RDVhu2ZmPp417sjnLZo963Nife5Zn4smbNT8zsNPPMkXkGvCTr0Hi9sPUduZ79N_LP7u4cU_wEp32O_lvaPB8To8jcmqmsWANmB5-ufKbpJVNNXvA_QY_HhstP8DYxkcSg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SDwOvBHjmQM3iFibNMuOaGyM14TEJu2CKqdNJCQoEwwQ_54kbbchIQTntq5kJ_Fnx58NcBhUE4zqSZWmMhKUJzWkdZFoylFxbVQ10J4udtMR7R6_7Ef9CRa_r3YvryRzToPr0pQNTwapORkR31w204bBIXN5BpdBmYZZbr2bm2HQEI0JZqQfymljGFffw1lBm_lZxnfXNMaboyvSRZh_ywb4-YGPjxNeqLUCSwV8JKe5vVdhSmdrsFyOZiDFTl2H-6bn9FHnpFJitG_f-UowS4l6oNd33RviOllaUVleB04seCXN5nnxxZMb_-xff3-2RwlJHMh2VUXekBvQazW7jTYtJinQhAV8SJWpS4YSkdWMVX_ANdrINA0SgVorbgKjNbrW77VIK7RbWCqjUhUaJpSMtGSbMJM9Z3oLiGaJ4Mhl5GJDd2cjGIaMoxRoTR7JChyVSowHecOMeNQa2as8tiqPvcpjVoHdUs9xsXle49BCGHsQyWpUgeNS9-PHv0k7HtnnDz_f_p_0A5i7PWvF1xedqx1YCC24yVMxuzAzfHnTexacDNW-X39fIDXYLA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BONAegPJQw0s-9FYcsutHnCOCAEKAKpVI9FCtxl5bQoQlgg1V-fXY3t1QEKpacbbXK3vG48_z-AzwJekaFH3TpbkSknLTQ9qXxlKOmlunu4mN5WJn5_J4yE8uxeUMHDS1MDHbvQlJVjUNgaWpKHfHududFr4Fb6a_Bqcs-BmCB6Xjm2dhTgqPyFswNzz_tvcj0uzxkNhT5dlzxqhXb1XXzrw90Mvz6Rl0TuOkH2F-Uozx9y8cjf44ig4XwTaTqDJQrjuTUnfM4yt-x_fOcgkWaqxK9irl-gQztliGxeYdCFKbhRX4OYgFhDSciDlxNnKF3hMscqKv6On3izMSaDP9UEWVdE48UiaDwVH9xU14azp2f7j1douYgOhDClPUmlUYHg4u9o9p_WwDNSzhJdWurxgqRNZzXtYJt-ivwXliJFqruUuctRh45nvCavT2Qmmnc506JrUSVrE1aBW3hf0MxDIjOXIlwkU0BIgkw5RxVBK9fgnVhq-NsLJxxc6RTXmY4-plfvWyuHoZa8NmI8-s3qn3Werxkrd6qivasNOI5Ln5b6PtTPXgH36-_n_dN-BD6uFT5ezZhFZ5N7FbHv6UervW7ice7_lz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-based+features+and+bi-LSTM+neural+network+for+EEG-based+music+and+voice+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Ariza%2C+Isaac&rft.au=Barbancho%2C+Ana+M.&rft.au=Tard%C3%B3n%2C+Lorenzo+J.&rft.au=Barbancho%2C+Isabel&rft.date=2024-01-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=2&rft.spage=791&rft.epage=802&rft_id=info:doi/10.1007%2Fs00521-023-09061-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_09061_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |