Energy-based features and bi-LSTM neural network for EEG-based music and voice classification

The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication, amusement, warning, etc. In this context, the aim of this manuscript is to advance in the classification of brain responses to music of dive...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 36; no. 2; pp. 791 - 802
Main Authors Ariza, Isaac, Barbancho, Ana M., Tardón, Lorenzo J., Barbancho, Isabel
Format Journal Article
LanguageEnglish
Published London Springer London 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
1433-3058
DOI10.1007/s00521-023-09061-3

Cover

Abstract The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication, amusement, warning, etc. In this context, the aim of this manuscript is to advance in the classification of brain responses to music of diverse genres and to sounds of different nature: speech and music. For this purpose, two different experiments have been designed to acquire EEG signals from subjects listening to songs of different musical genres and sentences in various languages. With this, a novel scheme is proposed to characterize brain signals for their classification; this scheme is based on the construction of a feature matrix built on relations between energy measured at the different EEG channels and the usage of a bi-LSTM neural network. With the data obtained, evaluations regarding EEG-based classification between speech and music, different musical genres, and whether the subject likes the song listened to or not are carried out. The experiments unveil satisfactory performance to the proposed scheme. The results obtained for binary audio type classification attain 98.66% of success. In multi-class classification between 4 musical genres, the accuracy attained is 61.59%, and results for binary classification of musical taste rise to 96.96%.
AbstractList The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication, amusement, warning, etc. In this context, the aim of this manuscript is to advance in the classification of brain responses to music of diverse genres and to sounds of different nature: speech and music. For this purpose, two different experiments have been designed to acquire EEG signals from subjects listening to songs of different musical genres and sentences in various languages. With this, a novel scheme is proposed to characterize brain signals for their classification; this scheme is based on the construction of a feature matrix built on relations between energy measured at the different EEG channels and the usage of a bi-LSTM neural network. With the data obtained, evaluations regarding EEG-based classification between speech and music, different musical genres, and whether the subject likes the song listened to or not are carried out. The experiments unveil satisfactory performance to the proposed scheme. The results obtained for binary audio type classification attain 98.66% of success. In multi-class classification between 4 musical genres, the accuracy attained is 61.59%, and results for binary classification of musical taste rise to 96.96%.
Author Barbancho, Ana M.
Barbancho, Isabel
Ariza, Isaac
Tardón, Lorenzo J.
Author_xml – sequence: 1
  givenname: Isaac
  surname: Ariza
  fullname: Ariza, Isaac
  organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga
– sequence: 2
  givenname: Ana M.
  surname: Barbancho
  fullname: Barbancho, Ana M.
  organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga
– sequence: 3
  givenname: Lorenzo J.
  orcidid: 0000-0002-5441-225X
  surname: Tardón
  fullname: Tardón, Lorenzo J.
  email: ltg@uma.es
  organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga
– sequence: 4
  givenname: Isabel
  surname: Barbancho
  fullname: Barbancho, Isabel
  email: ibp@uma.es
  organization: ATIC Research Group, ETSI Telecomunicación, Universidad de Málaga
BookMark eNqNkE1LAzEURYNUsK3-AVcDrqMvk_nILKXUKlRcWJcSXqYvZeo0U5MZS_-9Y1twJ67u4p1zedwRG7jGEWPXAm4FQH4XANJYcIglhwIyweUZG4pESi4hVQM2hCLpz1kiL9gohDUAJJlKh-x96siv9txgoGVkCdvOU4jQLSNT8fnr4jly1Hms-2h3jf-IbOOj6XR2MjZdqMoD_tVUJUVljSFUtiqxrRp3yc4t1oGuTjlmbw_TxeSRz19mT5P7OS-lSFpubKEkKkSZWxAkEkKp5FKUGRKZxApLhCqOizwlgyoHZaxZmtjKzKiUlBwzeezt3Bb3O6xrvfXVBv1eC9A_C-njQrpfSB8W0rK3bo7W1jefHYVWr5vOu_5RHRcCcpAK0p6Kj1TpmxA82f9Vnx4KPexW5H-r_7C-AWlkh4A
Cites_doi 10.1109/RBME.2020.2969915
10.1016/j.bspc.2022.103885
10.1109/CAIS.2019.8769492
10.1109/NER.2009.5109327
10.1162/neco.1997.9.8.1735
10.1109/ACPR.2017.133
10.1109/NCC48643.2020.9056052
10.3390/electronics8020164
10.1109/ICCE-Asia49877.2020.9277291
10.1109/TNSRE.2018.2884641
10.1016/j.neucom.2015.11.046
10.1109/ICOEI.2019.8862560
10.1109/TNSRE.2012.2236576
10.1109/ACCESS.2020.3021051
10.1016/j.neuroscience.2015.10.061
10.1109/ICSENS.2017.8234433
10.1007/s00521-022-07292-4
10.1109/BHI.2018.8333380
10.1109/ICERA53111.2021.9538698
10.1109/ICASSP.2009.4959627
10.1109/IWW-BCI.2013.6506625
10.1109/ISM.2018.00-11
10.1137/060658242
10.1007/978-1-4471-6584-2
10.1109/NCC52529.2021.9530053
10.1023/A:1017181826899
10.1016/j.jfranklin.2015.11.013
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.1007/s00521-023-09061-3
DatabaseName SpringerLink - Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Music
EISSN 1433-3058
EndPage 802
ExternalDocumentID 10.1007/s00521-023-09061-3
10_1007_s00521_023_09061_3
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación/AEI/FEDER UE
  grantid: PID2021-123207NB-I00; 10.13039 / 501100011033
– fundername: Funding for open access charge: Universidad de Málaga/CBUA
– fundername: Universidad de Málaga
– fundername: Junta de Andalucía. Proyectos de I+D+i
  grantid: PY20_00237
– fundername: Universidad de Málaga. Campus de Excelencia Internacional Andalucia Tech
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-bf983a8aa37f01e14ea383d1c6aeeb4f1feea822975eba8708bfbdb2f36b85e83
IEDL.DBID BENPR
ISSN 0941-0643
1433-3058
IngestDate Sun Oct 26 04:00:15 EDT 2025
Fri Jul 25 22:56:55 EDT 2025
Wed Oct 01 03:43:40 EDT 2025
Fri Feb 21 02:40:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Electroencephalogram (EEG)
Music and voice classification
Neural networks
Long short-term memory (LSTM)
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-bf983a8aa37f01e14ea383d1c6aeeb4f1feea822975eba8708bfbdb2f36b85e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5441-225X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-023-09061-3.pdf
PQID 2910703805
PQPubID 2043988
PageCount 12
ParticipantIDs unpaywall_primary_10_1007_s00521_023_09061_3
proquest_journals_2910703805
crossref_primary_10_1007_s00521_023_09061_3
springer_journals_10_1007_s00521_023_09061_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References GarcíaAGarcíaFLópezARodríguezGde la VillaACálculo I. Teoría y problemas de análisis matemático en una variable20073MadridEditorial Clagsa
Kim K, Carlson T, Lee S (2013) Design of a robotic wheelchair with a motor imagery based brain–computer interface. In: 2013 International winter workshop on brain–computer interface (BCI), pp 46–48. https://doi.org/10.1109/IWW-BCI.2013.6506625
Kumar SD, Subha D (2019) Prediction of depression from EEG signal using long short term memory (LSTM). In: 2019 3rd international conference on trends in electronics and informatics (ICOEI), pp 1248–1253. https://doi.org/10.1109/ICOEI.2019.8862560
Yu Y, Beuret S, Zeng D, Oyama K (2018) Deep learning of human perception in audio event classification. In: 2018 IEEE international symposium on multimedia (ISM), pp 188–189. https://doi.org/10.1109/ISM.2018.00-11
LiuYLiuWObaidMAbbasIExponential stability of Markovian jumping Cohen–Grossberg neural networks with mixed mode-dependent time-delaysNeurocomputing201510.1016/j.neucom.2015.11.046
SeoY-SHuhJ-HAutomatic emotion-based music classification for supporting intelligent IoT applicationsElectronics201910.3390/electronics8020164
Moschona DS (2020) An affective service based on multi-modal emotion recognition, using EEG enabled emotion tracking and speech emotion recognition. In: 2020 IEEE international conference on consumer electronics—Asia (ICCE-Asia), pp 1–3. https://doi.org/10.1109/ICCE-Asia49877.2020.9277291
Aggarwal S, Sharon R, Murthy HA (2020) P300 based stereo localization of single frequency audio stimulus. In: 2020 National conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC48643.2020.9056052
Hasib MM, Nayak T, Huang Y (2018) A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), pp 104–107. https://doi.org/10.1109/BHI.2018.8333380
Lin Y-P, Wang C-H, Wu T-L, Jeng S-K, Chen J-H (2009) EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine. In: 2009 IEEE international conference on acoustics, speech and signal processing, pp 489–492. IEEE
PoikonenHAlluriVBratticoELartillotOTervaniemiMHuotilainenMEvent-related brain responses while listening to entire pieces of musicNeuroscience201510.1016/j.neuroscience.2015.10.061
Powers D (2008) Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Mach Learn Technol 2
HousseinEHHammadAAliAAHuman emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive reviewNeural Comput Appl20223415125271255710.1007/s00521-022-07292-4
Patel P, Satija U (2021) Performance analysis of convolutional neural network based EEG epileptic seizure classification in presence of ocular artifacts. In: 2021 national conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC52529.2021.9530053
ProvostFKohaviRGlossary of termsMach Learn199810.1023/A:1017181826899
ZhangPWangXZhangWChenJLearning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessmentIEEE Trans Neural Syst Rehabil Eng2019271314210.1109/TNSRE.2018.2884641
DuBLiuYAtiatallah AbbasIExistence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networksJ Frankl Inst20163532448461344815210.1016/j.jfranklin.2015.11.013
HosseiniM-PHosseiniAAhiKA review on machine learning for EEG signal processing in bioengineeringIEEE Rev Biomed Eng20211420421810.1109/RBME.2020.2969915
ArizaITardónLJBarbanchoAMDe-TorresIBarbanchoIBi-LSTM neural network for EEG-based error detection in musicians’ performanceBiomed Signal Process Control20227810388510.1016/j.bspc.2022.103885
Alturki FA, AlSharabi K, Aljalal M, Abdurraqeeb AM (2019) A DWT-band power-SVM based architecture for neurological brain disorders diagnosis using EEG signals. In: 2019 2nd international conference on computer applications information security (ICCAIS), pp 1–4. https://doi.org/10.1109/CAIS.2019.8769492
Kee Y, Lee M, Williamson J, Lee S (2017) A hierarchical classification strategy for robust detection of passive/active mental state using user-voluntary pitch imagery task. In: 2017 4th IAPR Asian conference on pattern recognition (ACPR), pp 906–910. https://doi.org/10.1109/ACPR.2017.133
HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
OberstUThe fast Fourier transformSIAM J Control Optim200746496540230903810.1137/060658242
Tzanetakis G, Essl G, Cook P (2001) Automatic musical genre classification of audio signals. In: Proceedings of the 2nd international symposium on music information retrieval, Indiana, vol 144. http://ismir2001.ismir.net/pdf/tzanetakis.pdf
LuWWeiYYuanJDengYSongATractor assistant driving control method based on EEG combined with RNN-TL deep learning algorithmIEEE Access2020816326916327910.1109/ACCESS.2020.3021051
BrainVision (2021) actiCHamp Plus. BrainVision, accessed 27 July. https://brainvision.com
SaneiSChambersJAEEG signal processing2008West SussexWiley
WangQSourinaOReal-time mental arithmetic task recognition from EEG signalsIEEE Trans Neural Syst Rehabil Eng201321222523210.1109/TNSRE.2012.2236576
Pratiwi M, Wibawa AD, Purnomo MH (2021) EEG-based happy and sad emotions classification using LSTM and bidirectional LSTM. In: 2021 3rd international conference on electronics representation and algorithm (ICERA), pp 89–94. https://doi.org/10.1109/ICERA53111.2021.9538698
Shi S-J, Lu B-L (2009) EEG signal classification during listening to native and foreign languages songs. In: 2009 4th international IEEE/EMBS conference on neural engineering, pp 440–443. https://doi.org/10.1109/NER.2009.5109327
Psychology Software Tools (2022) E-Prime, accessed 8 March. https://pstnet.com/products/e-prime
MirandaERCastetJGuide to brain–computer music interfacing2014LondonSpringer10.1007/978-1-4471-6584-2
Darmawan FF, Arifianto D, Huda MA, Taruno WP (2017) Human brain auditory activity observation using electrical capacitance volume tomography. In: 2017 IEEE SENSORS, pp 1–3. https://doi.org/10.1109/ICSENS.2017.8234433
9061_CR23
U Oberst (9061_CR25) 2007; 46
9061_CR22
A García (9061_CR26) 2007
9061_CR21
W Lu (9061_CR15) 2020; 8
Y Liu (9061_CR16) 2015
Q Wang (9061_CR10) 2013; 21
Y-S Seo (9061_CR18) 2019
9061_CR19
S Hochreiter (9061_CR27) 1997; 9
9061_CR33
9061_CR14
9061_CR13
9061_CR2
9061_CR3
9061_CR32
EH Houssein (9061_CR29) 2022; 34
9061_CR6
9061_CR7
I Ariza (9061_CR30) 2022; 78
9061_CR4
9061_CR5
B Du (9061_CR17) 2016; 353
9061_CR8
M-P Hosseini (9061_CR11) 2021; 14
9061_CR9
P Zhang (9061_CR12) 2019; 27
F Provost (9061_CR31) 1998
S Sanei (9061_CR1) 2008
H Poikonen (9061_CR20) 2015
ER Miranda (9061_CR24) 2014
9061_CR28
References_xml – reference: Aggarwal S, Sharon R, Murthy HA (2020) P300 based stereo localization of single frequency audio stimulus. In: 2020 National conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC48643.2020.9056052
– reference: HousseinEHHammadAAliAAHuman emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive reviewNeural Comput Appl20223415125271255710.1007/s00521-022-07292-4
– reference: Kee Y, Lee M, Williamson J, Lee S (2017) A hierarchical classification strategy for robust detection of passive/active mental state using user-voluntary pitch imagery task. In: 2017 4th IAPR Asian conference on pattern recognition (ACPR), pp 906–910. https://doi.org/10.1109/ACPR.2017.133
– reference: OberstUThe fast Fourier transformSIAM J Control Optim200746496540230903810.1137/060658242
– reference: Powers D (2008) Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Mach Learn Technol 2
– reference: Kumar SD, Subha D (2019) Prediction of depression from EEG signal using long short term memory (LSTM). In: 2019 3rd international conference on trends in electronics and informatics (ICOEI), pp 1248–1253. https://doi.org/10.1109/ICOEI.2019.8862560
– reference: Alturki FA, AlSharabi K, Aljalal M, Abdurraqeeb AM (2019) A DWT-band power-SVM based architecture for neurological brain disorders diagnosis using EEG signals. In: 2019 2nd international conference on computer applications information security (ICCAIS), pp 1–4. https://doi.org/10.1109/CAIS.2019.8769492
– reference: SeoY-SHuhJ-HAutomatic emotion-based music classification for supporting intelligent IoT applicationsElectronics201910.3390/electronics8020164
– reference: Yu Y, Beuret S, Zeng D, Oyama K (2018) Deep learning of human perception in audio event classification. In: 2018 IEEE international symposium on multimedia (ISM), pp 188–189. https://doi.org/10.1109/ISM.2018.00-11
– reference: Pratiwi M, Wibawa AD, Purnomo MH (2021) EEG-based happy and sad emotions classification using LSTM and bidirectional LSTM. In: 2021 3rd international conference on electronics representation and algorithm (ICERA), pp 89–94. https://doi.org/10.1109/ICERA53111.2021.9538698
– reference: WangQSourinaOReal-time mental arithmetic task recognition from EEG signalsIEEE Trans Neural Syst Rehabil Eng201321222523210.1109/TNSRE.2012.2236576
– reference: Lin Y-P, Wang C-H, Wu T-L, Jeng S-K, Chen J-H (2009) EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine. In: 2009 IEEE international conference on acoustics, speech and signal processing, pp 489–492. IEEE
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: Darmawan FF, Arifianto D, Huda MA, Taruno WP (2017) Human brain auditory activity observation using electrical capacitance volume tomography. In: 2017 IEEE SENSORS, pp 1–3. https://doi.org/10.1109/ICSENS.2017.8234433
– reference: MirandaERCastetJGuide to brain–computer music interfacing2014LondonSpringer10.1007/978-1-4471-6584-2
– reference: SaneiSChambersJAEEG signal processing2008West SussexWiley
– reference: ArizaITardónLJBarbanchoAMDe-TorresIBarbanchoIBi-LSTM neural network for EEG-based error detection in musicians’ performanceBiomed Signal Process Control20227810388510.1016/j.bspc.2022.103885
– reference: ZhangPWangXZhangWChenJLearning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessmentIEEE Trans Neural Syst Rehabil Eng2019271314210.1109/TNSRE.2018.2884641
– reference: DuBLiuYAtiatallah AbbasIExistence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networksJ Frankl Inst20163532448461344815210.1016/j.jfranklin.2015.11.013
– reference: Shi S-J, Lu B-L (2009) EEG signal classification during listening to native and foreign languages songs. In: 2009 4th international IEEE/EMBS conference on neural engineering, pp 440–443. https://doi.org/10.1109/NER.2009.5109327
– reference: PoikonenHAlluriVBratticoELartillotOTervaniemiMHuotilainenMEvent-related brain responses while listening to entire pieces of musicNeuroscience201510.1016/j.neuroscience.2015.10.061
– reference: Psychology Software Tools (2022) E-Prime, accessed 8 March. https://pstnet.com/products/e-prime/
– reference: HosseiniM-PHosseiniAAhiKA review on machine learning for EEG signal processing in bioengineeringIEEE Rev Biomed Eng20211420421810.1109/RBME.2020.2969915
– reference: GarcíaAGarcíaFLópezARodríguezGde la VillaACálculo I. Teoría y problemas de análisis matemático en una variable20073MadridEditorial Clagsa
– reference: ProvostFKohaviRGlossary of termsMach Learn199810.1023/A:1017181826899
– reference: Tzanetakis G, Essl G, Cook P (2001) Automatic musical genre classification of audio signals. In: Proceedings of the 2nd international symposium on music information retrieval, Indiana, vol 144. http://ismir2001.ismir.net/pdf/tzanetakis.pdf
– reference: Kim K, Carlson T, Lee S (2013) Design of a robotic wheelchair with a motor imagery based brain–computer interface. In: 2013 International winter workshop on brain–computer interface (BCI), pp 46–48. https://doi.org/10.1109/IWW-BCI.2013.6506625
– reference: Patel P, Satija U (2021) Performance analysis of convolutional neural network based EEG epileptic seizure classification in presence of ocular artifacts. In: 2021 national conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC52529.2021.9530053
– reference: BrainVision (2021) actiCHamp Plus. BrainVision, accessed 27 July. https://brainvision.com/
– reference: LiuYLiuWObaidMAbbasIExponential stability of Markovian jumping Cohen–Grossberg neural networks with mixed mode-dependent time-delaysNeurocomputing201510.1016/j.neucom.2015.11.046
– reference: Hasib MM, Nayak T, Huang Y (2018) A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), pp 104–107. https://doi.org/10.1109/BHI.2018.8333380
– reference: LuWWeiYYuanJDengYSongATractor assistant driving control method based on EEG combined with RNN-TL deep learning algorithmIEEE Access2020816326916327910.1109/ACCESS.2020.3021051
– reference: Moschona DS (2020) An affective service based on multi-modal emotion recognition, using EEG enabled emotion tracking and speech emotion recognition. In: 2020 IEEE international conference on consumer electronics—Asia (ICCE-Asia), pp 1–3. https://doi.org/10.1109/ICCE-Asia49877.2020.9277291
– volume: 14
  start-page: 204
  year: 2021
  ident: 9061_CR11
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2020.2969915
– volume: 78
  start-page: 103885
  year: 2022
  ident: 9061_CR30
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103885
– ident: 9061_CR6
  doi: 10.1109/CAIS.2019.8769492
– ident: 9061_CR21
  doi: 10.1109/NER.2009.5109327
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 9061_CR27
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 9061_CR9
  doi: 10.1109/ACPR.2017.133
– ident: 9061_CR4
  doi: 10.1109/NCC48643.2020.9056052
– ident: 9061_CR32
– year: 2019
  ident: 9061_CR18
  publication-title: Electronics
  doi: 10.3390/electronics8020164
– ident: 9061_CR8
  doi: 10.1109/ICCE-Asia49877.2020.9277291
– volume: 27
  start-page: 31
  issue: 1
  year: 2019
  ident: 9061_CR12
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2884641
– year: 2015
  ident: 9061_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.046
– volume-title: EEG signal processing
  year: 2008
  ident: 9061_CR1
– ident: 9061_CR5
  doi: 10.1109/ICOEI.2019.8862560
– volume: 21
  start-page: 225
  issue: 2
  year: 2013
  ident: 9061_CR10
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2236576
– ident: 9061_CR22
– volume: 8
  start-page: 163269
  year: 2020
  ident: 9061_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021051
– year: 2015
  ident: 9061_CR20
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.10.061
– ident: 9061_CR3
  doi: 10.1109/ICSENS.2017.8234433
– volume: 34
  start-page: 12527
  issue: 15
  year: 2022
  ident: 9061_CR29
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07292-4
– ident: 9061_CR28
  doi: 10.1109/BHI.2018.8333380
– ident: 9061_CR14
  doi: 10.1109/ICERA53111.2021.9538698
– ident: 9061_CR19
  doi: 10.1109/ICASSP.2009.4959627
– ident: 9061_CR7
  doi: 10.1109/IWW-BCI.2013.6506625
– ident: 9061_CR33
– ident: 9061_CR2
  doi: 10.1109/ISM.2018.00-11
– volume-title: Cálculo I. Teoría y problemas de análisis matemático en una variable
  year: 2007
  ident: 9061_CR26
– volume: 46
  start-page: 496
  year: 2007
  ident: 9061_CR25
  publication-title: SIAM J Control Optim
  doi: 10.1137/060658242
– volume-title: Guide to brain–computer music interfacing
  year: 2014
  ident: 9061_CR24
  doi: 10.1007/978-1-4471-6584-2
– ident: 9061_CR13
  doi: 10.1109/NCC52529.2021.9530053
– ident: 9061_CR23
– year: 1998
  ident: 9061_CR31
  publication-title: Mach Learn
  doi: 10.1023/A:1017181826899
– volume: 353
  start-page: 448
  issue: 2
  year: 2016
  ident: 9061_CR17
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2015.11.013
SSID ssj0004685
Score 2.3509324
Snippet The human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication,...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 791
SubjectTerms Artificial Intelligence
Brain
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Electroencephalography
Genre
Image Processing and Computer Vision
Music
Neural networks
Original Article
Probability and Statistics in Computer Science
Signal classification
Speech
Stimuli
Voice communication
SummonAdditionalLinks – databaseName: SpringerLink - Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D-rBb3F-kYM3F2ibj2VHGZ1DnBc32EXKS5qCMLvhNsX_3iRttykiem77Cr-X5P2Sl_d7CF2FgQbe0gFJJReE6SaQltCGMFDMZCoIjS8X6z2I7oDdDfmwlMlxtTDf8vdO7NMGGGIjiztRcGcl62jDBinhE7OivVID6dtv2t2Ku8nDaFkg87ONr0FoySwXydBttDnPJ_DxDqPRSrzp7KGdkijim8Kz-2jN5Adot2rCgMs5eYieYl-9R1w4SnFmvFDnFEOeYvVM7h_7Pew0K62pvLjxjS1NxXF8W37x4ho9-9ffxnbRwNrRaXd_yLvsCA06cb_dJWXPBKJpyGZEZS1JQQLQZmaBDpkBuwdNQy3AGMWyMDMGnMh7kxsFdrJKlalURRkVSnIj6TGq5ePcnCBsqBYMmORuF-iyM4JCRBlIAda5XNbRdQViMimkMZKFCLKHPLGQJx7yhNbReYVzUk6TaRJZsmKXHBnwOmpU2C8f_2atsfDPH35--j_rZ2grstylOGk5R7XZ69xcWO4xU5d-0H0CMMPM9g
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BONAegPJQw0s-9FYcsutHnCOCAEKAKpVI9FCtxl5bQoQlgg1V-fXY3t1QEKpacbbXK3vG48_z-AzwJekaFH3TpbkSknLTQ9qXxlKOmlunu4mN5WJn5_J4yE8uxeUMHDS1MDHbvQlJVjUNgaWpKHfHududFr4Fb6a_Bqcs-BmCB6Xjm2dhTgqPyFswNzz_tvcj0uzxkNhT5dlzxqhXb1XXzrw90Mvz6Rl0TuOkH2F-Uozx9y8cjf44ig4XwTaTqDJQrjuTUnfM4yt-x_fOcgkWaqxK9irl-gQztliGxeYdCFKbhRX4OYgFhDSciDlxNnKF3hMscqKv6On3izMSaDP9UEWVdE48UiaDwVH9xU14azp2f7j1douYgOhDClPUmlUYHg4u9o9p_WwDNSzhJdWurxgqRNZzXtYJt-ivwXliJFqruUuctRh45nvCavT2Qmmnc506JrUSVrE1aBW3hf0MxDIjOXIlwkU0BIgkw5RxVBK9fgnVhq-NsLJxxc6RTXmY4-plfvWyuHoZa8NmI8-s3qn3Werxkrd6qivasNOI5Ln5b6PtTPXgH36-_n_dN-BD6uFT5ezZhFZ5N7FbHv6UervW7ice7_lz
  priority: 102
  providerName: Unpaywall
Title Energy-based features and bi-LSTM neural network for EEG-based music and voice classification
URI https://link.springer.com/article/10.1007/s00521-023-09061-3
https://www.proquest.com/docview/2910703805
https://link.springer.com/content/pdf/10.1007/s00521-023-09061-3.pdf
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPwwMcAURiVH3hjFk3suO4DQqVKOwGrJlil7QFFZ8eRkEZaWAfiv-fOTdrxMvGSByexpbuz73xfP4BXycBjNvIDWdrMSO2HKEfGB6nR6VC5QRJiudjJ3Bwv9Ifz7HwP5m0tDKdVtmdiPKjLpWcf-ZuU9BpJpx1k71Y_JKNGcXS1hdDABlqhfBtbjO1DN-XOWB3ovs_np59vVEpGkE6603C-j1ZNGU0spmMPKY2min0X7JX5V1Xt7M9tyPQe3LmuV_jnN15e3tBK04dwvzEnxXjD_0ewF-oDeNBCNYhm5x5AN-I5P4aveaz1k6y8SlGF2NbzSmBdCvdNfvpydiK4wyVNWW_ywwUZtSLPZ80f33ma-PmvJR0xwrPxzdlGkcFPYDHNzybHskFYkF4lei1dNbIKLaIaVsSWRAekG2uZeIMhOF0lVQjILeGHWXBIW9u6ypUurZRxNgtWPYVOvazDMxBBeaNR24zvjBzLMQpTpdEaJFHIbA9et8QsVptGGsW2ZXIkfUGkLyLpC9WDw5beRbOproqdCPTgqOXB7vVtsx1t-fQfiz-_ffEXcDcly2bjhzmEzvrndXhJlsna9WHfTmd96I5nFx_zfiN8NDoxE3ou0jGNLean44u_vULiyw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxNBFH9BekAPiqixAjoHOcHE7s7sdnogBnCxSNsQLAkXsr6ZnU1McFttgfDP-bf5ZjrbwoV44bofbzZvfvu-5n0AfIxaBpOOafFCJSmXpo28kxrLJWppS92KrC8X6w_S7pn8dp6cL8HfuhbGpVXWMtEL6mJkXIz8U0x6jdCpWsnn8W_upka509V6hAaG0QrFrm8xFgo7ju3tDblwk92jL7TfW3F8mA0PujxMGeBGRHLKddlRAhWiaJf0aZG0SF5bEZkUrdWyjEpr0bVFbydWI8Fb6VIXOi5FqlVilSC6T6AhheyQ89fYzwYnp3cqM_1QUPKhXH6RFKFsxxfvuYgsXY2Fi5W4KNB91biwd-dHtM9g5aoa4-0NXl7e0YKHq_A8mK9sb4a3l7BkqzV4UY-GYEFSrEHDz49-BReZry3kTlkWrLS-jeiEYVUw_ZP3vg_7zHXUJJLVLB-dkRHNsuxreOOXI-Mfvx6RSGPGGfsuu8kD6jWcPQqv38ByNarsW2BWmFSiVInzUd3ZUSowFhJVigS9RDVhu2ZmPp417sjnLZo963Nife5Zn4smbNT8zsNPPMkXkGvCTr0Hi9sPUduZ79N_LP7u4cU_wEp32O_lvaPB8To8jcmqmsWANmB5-ufKbpJVNNXvA_QY_HhstP8DYxkcSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SDwOvBHjmQM3iFibNMuOaGyM14TEJu2CKqdNJCQoEwwQ_54kbbchIQTntq5kJ_Fnx58NcBhUE4zqSZWmMhKUJzWkdZFoylFxbVQ10J4udtMR7R6_7Ef9CRa_r3YvryRzToPr0pQNTwapORkR31w204bBIXN5BpdBmYZZbr2bm2HQEI0JZqQfymljGFffw1lBm_lZxnfXNMaboyvSRZh_ywb4-YGPjxNeqLUCSwV8JKe5vVdhSmdrsFyOZiDFTl2H-6bn9FHnpFJitG_f-UowS4l6oNd33RviOllaUVleB04seCXN5nnxxZMb_-xff3-2RwlJHMh2VUXekBvQazW7jTYtJinQhAV8SJWpS4YSkdWMVX_ANdrINA0SgVorbgKjNbrW77VIK7RbWCqjUhUaJpSMtGSbMJM9Z3oLiGaJ4Mhl5GJDd2cjGIaMoxRoTR7JChyVSowHecOMeNQa2as8tiqPvcpjVoHdUs9xsXle49BCGHsQyWpUgeNS9-PHv0k7HtnnDz_f_p_0A5i7PWvF1xedqx1YCC24yVMxuzAzfHnTexacDNW-X39fIDXYLA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BONAegPJQw0s-9FYcsutHnCOCAEKAKpVI9FCtxl5bQoQlgg1V-fXY3t1QEKpacbbXK3vG48_z-AzwJekaFH3TpbkSknLTQ9qXxlKOmlunu4mN5WJn5_J4yE8uxeUMHDS1MDHbvQlJVjUNgaWpKHfHududFr4Fb6a_Bqcs-BmCB6Xjm2dhTgqPyFswNzz_tvcj0uzxkNhT5dlzxqhXb1XXzrw90Mvz6Rl0TuOkH2F-Uozx9y8cjf44ig4XwTaTqDJQrjuTUnfM4yt-x_fOcgkWaqxK9irl-gQztliGxeYdCFKbhRX4OYgFhDSciDlxNnKF3hMscqKv6On3izMSaDP9UEWVdE48UiaDwVH9xU14azp2f7j1douYgOhDClPUmlUYHg4u9o9p_WwDNSzhJdWurxgqRNZzXtYJt-ivwXliJFqruUuctRh45nvCavT2Qmmnc506JrUSVrE1aBW3hf0MxDIjOXIlwkU0BIgkw5RxVBK9fgnVhq-NsLJxxc6RTXmY4-plfvWyuHoZa8NmI8-s3qn3Werxkrd6qivasNOI5Ln5b6PtTPXgH36-_n_dN-BD6uFT5ezZhFZ5N7FbHv6UervW7ice7_lz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-based+features+and+bi-LSTM+neural+network+for+EEG-based+music+and+voice+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Ariza%2C+Isaac&rft.au=Barbancho%2C+Ana+M.&rft.au=Tard%C3%B3n%2C+Lorenzo+J.&rft.au=Barbancho%2C+Isabel&rft.date=2024-01-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=2&rft.spage=791&rft.epage=802&rft_id=info:doi/10.1007%2Fs00521-023-09061-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_09061_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon