A Collaborative V2X Data Correction Method for Road Safety
Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicl...
Saved in:
Published in | IEEE Transactions on Reliability Vol. 71; no. 2; pp. 951 - 962 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
New York
IEEE
01.06.2022
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9529 1558-1721 |
DOI | 10.1109/TR.2022.3159664 |
Cover
Abstract | Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicles do not always provide accurate data due to a variety of reasons, such as defective vehicle sensors, or selfish. It is critical to check and analyze the data supplied by vehicles in real time and correct the possible errors to eliminate the unsafe issues. In this article, we introduce a cOllaborative vehiClE dAta correctioN method (OCEAN) based on rationality and <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning techniques to correct the error V2X data for ensuring the driving safety of vehicles on the road, which can be deployed on both vehicles and road side unit. Extensive experimental results show that OCEAN can detect error V2X data up to 80<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and cut down 60<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> average error distance for most attributes in vehicle data. |
---|---|
AbstractList | Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicles do not always provide accurate data due to a variety of reasons, such as defective vehicle sensors, or selfish. It is critical to check and analyze the data supplied by vehicles in real time and correct the possible errors to eliminate the unsafe issues. In this article, we introduce a cOllaborative vehiClE dAta correctioN method (OCEAN) based on rationality and <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning techniques to correct the error V2X data for ensuring the driving safety of vehicles on the road, which can be deployed on both vehicles and road side unit. Extensive experimental results show that OCEAN can detect error V2X data up to 80<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and cut down 60<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> average error distance for most attributes in vehicle data. Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicles do not always provide accurate data due to a variety of reasons, such as defective vehicle sensors, or selfish. It is critical to check and analyze the data supplied by vehicles in real time and correct the possible errors to eliminate the unsafe issues. In this article, we introduce a cOllaborative vehiClE dAta correctioN method (OCEAN) based on rationality and [Formula Omitted]-learning techniques to correct the error V2X data for ensuring the driving safety of vehicles on the road, which can be deployed on both vehicles and road side unit. Extensive experimental results show that OCEAN can detect error V2X data up to 80[Formula Omitted] and cut down 60[Formula Omitted] average error distance for most attributes in vehicle data. |
Author | Mumtaz, Shahid Han, Yuan Yu, Keping Chai, Hongmei Zhao, Liang |
Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0001-5829-6850 surname: Zhao fullname: Zhao, Liang email: lzhao@sau.edu.cn organization: School of Computer Science, Shenyang Aerospace University, Shenyang, China – sequence: 2 givenname: Hongmei surname: Chai fullname: Chai, Hongmei email: chaihm98@163.com organization: School of Computer Science, Shenyang Aerospace University, Shenyang, China – sequence: 3 givenname: Yuan surname: Han fullname: Han, Yuan email: kxzswwbs@163.com organization: School of Computer Science, Shenyang Aerospace University, Shenyang, China – sequence: 4 givenname: Keping orcidid: 0000-0001-5735-2507 surname: Yu fullname: Yu, Keping email: keping.yu@aoni.waseda.jp organization: Global Information and Telecommunication Institute, Waseda University, Tokyo, Japan – sequence: 5 givenname: Shahid orcidid: 0000-0001-6364-6149 surname: Mumtaz fullname: Mumtaz, Shahid email: smumtaz@av.it.pt organization: Instituto de Telecomunicações and Universidade de Aveiro, Aveiro, Portugal |
BackLink | https://cir.nii.ac.jp/crid/1872835442484320128$$DView record in CiNii |
BookMark | eNp9UMtLwzAcDjLBbXr24KWg1255Nom3MZ8wEeYUbyFNE-yYzUwzYf-9KR0ePHj5vfgeP74RGDS-sQCcIzhBCMrpajnBEOMJQUwWBT0CQ8SYyBHHaACGECKRS4blCRi17TqtlEoxBNezbO43G136oGP9bbM3_J7d6KjTOQRrYu2b7MnGD19lzods6XWVvWhn4_4UHDu9ae3ZoY_B693tav6QL57vH-ezRW4IojEvDdGcp5EzKiqrMdMGO0cKyQQhwlUFMg4zaqFxBJZGlpAgx0kpoZDMlWQMLnvdbfBfO9tGtfa70CRLhQuOBSywLBKK9SgTfNsG65Spo-7ej0HXG4Wg6mJSq6XqYlKHmBJv-oe3DfWnDvt_GFc9o6nrZNJVJNIfhFGKqaAEQ5S2MbjoYbW19ldUcio5h-QH1IZ72Q |
CODEN | IERQAD |
CitedBy_id | crossref_primary_10_1016_j_jestch_2024_101628 crossref_primary_10_1016_j_engappai_2023_106002 crossref_primary_10_1155_2022_1832343 crossref_primary_10_1109_TITS_2023_3324016 crossref_primary_10_1142_S021812662350055X crossref_primary_10_1142_S0218126622503108 crossref_primary_10_1142_S0218126623500287 crossref_primary_10_1142_S0218126623500640 crossref_primary_10_1109_JIOT_2023_3297834 crossref_primary_10_1109_JIOT_2024_3386691 crossref_primary_10_1142_S0218126623500202 crossref_primary_10_1155_2022_6079641 crossref_primary_10_1109_OJVT_2024_3368240 crossref_primary_10_1109_TMC_2024_3449374 crossref_primary_10_1109_TIV_2023_3237960 crossref_primary_10_3934_mbe_2023425 crossref_primary_10_1155_2022_3464984 crossref_primary_10_1016_j_future_2022_10_032 crossref_primary_10_1155_2022_7445434 crossref_primary_10_1109_ACCESS_2023_3251733 crossref_primary_10_1142_S0218126623501505 crossref_primary_10_1142_S0218126623500056 crossref_primary_10_1142_S0218126623501785 crossref_primary_10_1016_j_adhoc_2023_103239 crossref_primary_10_1142_S0218126623500494 crossref_primary_10_1016_j_sysarc_2025_103331 crossref_primary_10_1080_21680566_2025_2475216 crossref_primary_10_1109_TGCN_2022_3193849 crossref_primary_10_1142_S0218126623500809 crossref_primary_10_1016_j_aej_2023_11_016 crossref_primary_10_1109_TMC_2024_3494713 crossref_primary_10_1109_TGCN_2024_3352173 crossref_primary_10_1142_S0218126623500901 crossref_primary_10_1142_S0218126623300015 crossref_primary_10_1142_S021812662350041X crossref_primary_10_1142_S0218126623501876 crossref_primary_10_1142_S0218126623502602 crossref_primary_10_1109_TIV_2024_3368510 crossref_primary_10_1109_TVT_2024_3357492 crossref_primary_10_1109_TITS_2023_3342178 crossref_primary_10_1142_S0218126623502687 crossref_primary_10_1109_ACCESS_2023_3346943 crossref_primary_10_3390_s23031421 crossref_primary_10_1109_TITS_2022_3215572 crossref_primary_10_1109_TVT_2024_3404097 crossref_primary_10_1109_JSYST_2023_3281861 crossref_primary_10_1109_TITS_2022_3200747 crossref_primary_10_3390_su14159680 crossref_primary_10_1109_TCSS_2022_3212864 crossref_primary_10_1109_TCE_2023_3327216 crossref_primary_10_1049_tje2_12358 crossref_primary_10_1080_03081079_2024_2345876 crossref_primary_10_1109_TVT_2023_3340723 crossref_primary_10_1109_TII_2022_3194840 crossref_primary_10_1142_S0218126623501724 crossref_primary_10_1155_2022_3192552 crossref_primary_10_1109_TIV_2022_3197815 crossref_primary_10_1109_TITS_2024_3360260 crossref_primary_10_1142_S0218126623501165 crossref_primary_10_1142_S0218126623501682 crossref_primary_10_3934_mbe_2023331 crossref_primary_10_1142_S0218126622503157 crossref_primary_10_3934_mbe_2023330 crossref_primary_10_1109_TVT_2023_3315119 crossref_primary_10_1016_j_pmcj_2024_101962 crossref_primary_10_1109_TITS_2024_3398602 crossref_primary_10_3390_electronics11142130 crossref_primary_10_1109_TNSM_2024_3400605 crossref_primary_10_1155_2022_5932554 |
Cites_doi | 10.1109/ACCESS.2021.3136706 10.1109/TIV.2020.2987430 10.1109/TITS.2021.3123276 10.1109/MCOMSTD.2017.1700015 10.1109/TR.2021.3062045 10.1109/TVT.2021.3076304 10.23940/ijpe.20.10.p10.15881597 10.1109/TNN.1998.712192 10.1109/TVT.2019.2906799 10.1109/ACCESS.2019.2933137 10.1016/j.adhoc.2017.03.006 10.1145/3317549.3323406 10.11113/jt.v73.4190 10.1145/2070425.2070450 10.1109/TCCN.2020.3002253 10.1109/GLOCOM.2011.6134242 10.1109/MWC.001.2000296 10.1109/JIOT.2020.3041860 10.1016/j.cja.2021.08.016 10.1109/TCCN.2020.3024610 10.1609/aaai.v32i1.12130 10.23940/ijpe.21.07.p2.579588 10.1109/MeditCom49071.2021.9647514 10.1109/JIOT.2021.3126749 10.1109/JIOT.2021.3109276 10.26599/TST.2020.9010025 10.23940/ijpe.20.09.p5.13621373 10.1109/UEMCON47517.2019.8993045 10.1109/TITS.2021.3122438 10.1109/VNC48660.2019.9062815 10.1109/TVT.2016.2591558 10.1109/JIOT.2020.2974823 10.1109/BigData50022.2020.9378397 10.1109/JPROC.2019.2961937 10.1109/MPRV.2008.80 10.1109/TITS.2017.2749459 10.1109/TITS.2021.3114199 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE RYH AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TR.2022.3159664 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CiNii Complete CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1721 |
EndPage | 962 |
ExternalDocumentID | 10_1109_TR_2022_3159664 9749770 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fujian Normal University grantid: 202001 funderid: 10.13039/501100010651 – fundername: Science Foundation of Liaoning Province grantid: 2020-MS-237 – fundername: Science Foundation of Liaoning Province – fundername: Department of Science and Technology of Liaoning Province funderid: 10.13039/501100012131 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK RYH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c314t-bc3a773147548dea25ac2ff36958338fd61cf254e0cf30bc9b031f73b90895fb3 |
IEDL.DBID | RIE |
ISSN | 0018-9529 |
IngestDate | Mon Jun 30 10:10:17 EDT 2025 Tue Jul 01 00:49:10 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Thu Jun 26 21:09:53 EDT 2025 Wed Aug 27 02:24:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English Japanese |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-bc3a773147548dea25ac2ff36958338fd61cf254e0cf30bc9b031f73b90895fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5735-2507 0000-0001-5829-6850 0000-0001-6364-6149 |
PQID | 2672806296 |
PQPubID | 85456 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TR_2022_3159664 ieee_primary_9749770 nii_cinii_1872835442484320128 proquest_journals_2672806296 crossref_primary_10_1109_TR_2022_3159664 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-June 2022-06-01 2022-6-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE Transactions on Reliability |
PublicationTitleAbbrev | TR |
PublicationYear | 2022 |
Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref36 ref31 ref30 ref11 ref33 ref10 Ahmed-Zaid (ref14) 2011 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Krajzewicz (ref41) 2012; 3 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Stocco (ref29) 2020 Watkins (ref32) 1992 ref40 |
References_xml | – ident: ref22 doi: 10.1109/ACCESS.2021.3136706 – volume: 3 start-page: 128 issue: 4 year: 2012 ident: ref41 article-title: Recent development and applications of sumoSimulation of urban mobility publication-title: Int. J. Adv. Syst. Meas. – ident: ref13 doi: 10.1109/TIV.2020.2987430 – ident: ref5 doi: 10.1109/TITS.2021.3123276 – ident: ref3 doi: 10.1109/MCOMSTD.2017.1700015 – ident: ref15 doi: 10.1109/TR.2021.3062045 – ident: ref7 doi: 10.1109/TVT.2021.3076304 – ident: ref8 doi: 10.23940/ijpe.20.10.p10.15881597 – start-page: 279 volume-title: Proc. Mach. Learn. year: 1992 ident: ref32 article-title: Q-learning – ident: ref38 doi: 10.1109/TNN.1998.712192 – ident: ref17 doi: 10.1109/TVT.2019.2906799 – ident: ref18 doi: 10.1109/ACCESS.2019.2933137 – ident: ref19 doi: 10.1016/j.adhoc.2017.03.006 – ident: ref26 doi: 10.1145/3317549.3323406 – ident: ref24 doi: 10.11113/jt.v73.4190 – start-page: 359 volume-title: Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng. year: 2020 ident: ref29 article-title: Misbehaviour prediction for autonomous driving systems – ident: ref27 doi: 10.1145/2070425.2070450 – ident: ref34 doi: 10.1109/TCCN.2020.3002253 – ident: ref20 doi: 10.1109/GLOCOM.2011.6134242 – ident: ref35 doi: 10.1109/MWC.001.2000296 – ident: ref16 doi: 10.1109/JIOT.2020.3041860 – ident: ref31 doi: 10.1016/j.cja.2021.08.016 – ident: ref30 doi: 10.1109/TCCN.2020.3024610 – ident: ref36 doi: 10.1609/aaai.v32i1.12130 – ident: ref33 doi: 10.23940/ijpe.21.07.p2.579588 – ident: ref37 doi: 10.1109/MeditCom49071.2021.9647514 – ident: ref23 doi: 10.1109/JIOT.2021.3126749 – ident: ref21 doi: 10.1109/JIOT.2021.3109276 – ident: ref10 doi: 10.26599/TST.2020.9010025 – ident: ref39 doi: 10.23940/ijpe.20.09.p5.13621373 – ident: ref28 doi: 10.1109/UEMCON47517.2019.8993045 – ident: ref2 doi: 10.1109/TITS.2021.3122438 – ident: ref25 doi: 10.1109/VNC48660.2019.9062815 – ident: ref1 doi: 10.1109/TVT.2016.2591558 – ident: ref4 doi: 10.1109/JIOT.2020.2974823 – ident: ref9 doi: 10.1109/BigData50022.2020.9378397 – year: 2011 ident: ref14 article-title: Vehicle safety communicationsApplications (VSC-A) final report: Appendix volume 3 security publication-title: Glob. Positioning Syst., Nat. Highway Traffic Saf. Admin. – ident: ref12 doi: 10.1109/JPROC.2019.2961937 – ident: ref40 doi: 10.1109/MPRV.2008.80 – ident: ref11 doi: 10.1109/TITS.2017.2749459 – ident: ref6 doi: 10.1109/TITS.2021.3114199 |
SSID | ssj0014498 ssib004836837 ssib013268814 ssib018287527 ssib006542125 ssib007716247 ssib017384921 ssib001191654 ssib002419630 ssib002991715 ssib000974898 ssib021384623 ssib053394430 |
Score | 2.595745 |
Snippet | Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted... |
SourceID | proquest crossref nii ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 951 |
SubjectTerms | Basic safety message (BSM) Collaboration data correction Error correction Error detection Messages Real-time systems Road safety Roadsides Safety Sensors software-defined vehicular network Traffic accidents & safety Traffic safety Training Urban areas Urban environments VANET Vehicle safety Vehicle-to-everything vehicle-to-everything (V2X) Vehicles |
Title | A Collaborative V2X Data Correction Method for Road Safety |
URI | https://ieeexplore.ieee.org/document/9749770 https://cir.nii.ac.jp/crid/1872835442484320128 https://www.proquest.com/docview/2672806296 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTnrwC41TMD148OCAfmxj3ghKiAkeEAy3pe26hGiGwWGif72v28DvxEvTLF3b9L32_X79eA_gzPBOEisRujSm3BUq8F3JlcCEBQoBihdLu6E_vPUHE3Ez9aYVuFi_hTHG5JfPTNNm87P8eK6XdqushdgX4QoS9A1Us-Kt1vrEQIiwXHVxAnssLN340HbYGo-QBzKG9NRDcC--WKA8pAralXQ2-7Ea5yamvwPDVeeKmyUPzWWmmvrtm9_G__Z-F7ZLrEm6hXLsQcWk-7D1yQNhDS67pPehCS-G3LMpuZKZxM-LfDGcp2SYR5kmCG_JaC5jcicTk70ewKR_Pe4N3DKcgqs5FZmrNJdBgNkAWUpsJPOkZknC_dC-vEKR-VQnyBdNWye8rXSocMInAVf2aNBLFD-EajpPzREQpRgCDxobSjXiMY5VGwReMkayhwQrcKC5GuJIl77GbciLxyjnHO0wGo8iK5OolIkD5-sfngo3G38XrdmxXRcrh9WBBsoQW7Mp7QTWj5wQTHQEZ9YIO1BfSTcqp-lzxHwbnctnoX_8e60nsGnbLu6G1aGaLZamgSgkU6e5-r0Db6zSxA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBN6JAwQMDAyn1I0nDVhVQgYahBNQtsh1HqkApghQJfj3nJC1vicWyIts5-Wzf9_lxB3BgeCtNlAgcmlDuCOV7juRKYMJ8hQDFTaTd0A-vve6tuBy4gxk4mr6FMcYUl89Mw2aLs_xkpMd2q-wYsS_CFSToc2j3hVu-1pqeGQgRVOsuTmGXBZUjH9oMjqM-MkHGkKC6CO_FFxtUBFVBy5INhz_W48LInC9DOBGvvFty3xjnqqHfvnlu_K_8K7BUoU3SLofHKsyYbA0WP_kgXIeTNul8jIUXQ-7YgJzKXOLnp2I5HGUkLOJMEwS4pD-SCbmRqclfN-D2_CzqdJ0qoIKjORW5ozSXvo9ZH3lKYiRzpWZpyr3Avr1CpXlUp8gYTVOnvKl0oHDKpz5X9nDQTRXfhNlslJktIEoxhB40MZRqRGQcmzYIvWSCdA8pll-DxqSLY115G7dBLx7ignU0gzjqx1YncaWTGhxOKzyWjjb-Lrpu-3ZarOrWGtRRh_g3m9KWbz3JCcFES3BmzXANdifajauJ-hwzz8bn8ljgbf_e6j7Md6OwF_curq92YMHKUd4U24XZ_Gls6ohJcrVXDMV3qkfWEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Collaborative+V2X+Data+Correction+Method+for+Road+Safety&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Zhao%2C+Liang&rft.au=Chai%2C+Hongmei&rft.au=Han%2C+Yuan&rft.au=Yu%2C+Keping&rft.date=2022-06-01&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=71&rft.issue=2&rft.spage=951&rft.epage=962&rft_id=info:doi/10.1109%2FTR.2022.3159664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TR_2022_3159664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |