A Collaborative V2X Data Correction Method for Road Safety

Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicl...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Reliability Vol. 71; no. 2; pp. 951 - 962
Main Authors Zhao, Liang, Chai, Hongmei, Han, Yuan, Yu, Keping, Mumtaz, Shahid
Format Journal Article
LanguageEnglish
Japanese
Published New York IEEE 01.06.2022
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9529
1558-1721
DOI10.1109/TR.2022.3159664

Cover

Abstract Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicles do not always provide accurate data due to a variety of reasons, such as defective vehicle sensors, or selfish. It is critical to check and analyze the data supplied by vehicles in real time and correct the possible errors to eliminate the unsafe issues. In this article, we introduce a cOllaborative vehiClE dAta correctioN method (OCEAN) based on rationality and <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning techniques to correct the error V2X data for ensuring the driving safety of vehicles on the road, which can be deployed on both vehicles and road side unit. Extensive experimental results show that OCEAN can detect error V2X data up to 80<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and cut down 60<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> average error distance for most attributes in vehicle data.
AbstractList Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicles do not always provide accurate data due to a variety of reasons, such as defective vehicle sensors, or selfish. It is critical to check and analyze the data supplied by vehicles in real time and correct the possible errors to eliminate the unsafe issues. In this article, we introduce a cOllaborative vehiClE dAta correctioN method (OCEAN) based on rationality and <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning techniques to correct the error V2X data for ensuring the driving safety of vehicles on the road, which can be deployed on both vehicles and road side unit. Extensive experimental results show that OCEAN can detect error V2X data up to 80<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and cut down 60<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> average error distance for most attributes in vehicle data.
Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted driving. Especially, in dense urban environments, the massive messages carrying precise data can help us to improve road safety. However, vehicles do not always provide accurate data due to a variety of reasons, such as defective vehicle sensors, or selfish. It is critical to check and analyze the data supplied by vehicles in real time and correct the possible errors to eliminate the unsafe issues. In this article, we introduce a cOllaborative vehiClE dAta correctioN method (OCEAN) based on rationality and [Formula Omitted]-learning techniques to correct the error V2X data for ensuring the driving safety of vehicles on the road, which can be deployed on both vehicles and road side unit. Extensive experimental results show that OCEAN can detect error V2X data up to 80[Formula Omitted] and cut down 60[Formula Omitted] average error distance for most attributes in vehicle data.
Author Mumtaz, Shahid
Han, Yuan
Yu, Keping
Chai, Hongmei
Zhao, Liang
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0001-5829-6850
  surname: Zhao
  fullname: Zhao, Liang
  email: lzhao@sau.edu.cn
  organization: School of Computer Science, Shenyang Aerospace University, Shenyang, China
– sequence: 2
  givenname: Hongmei
  surname: Chai
  fullname: Chai, Hongmei
  email: chaihm98@163.com
  organization: School of Computer Science, Shenyang Aerospace University, Shenyang, China
– sequence: 3
  givenname: Yuan
  surname: Han
  fullname: Han, Yuan
  email: kxzswwbs@163.com
  organization: School of Computer Science, Shenyang Aerospace University, Shenyang, China
– sequence: 4
  givenname: Keping
  orcidid: 0000-0001-5735-2507
  surname: Yu
  fullname: Yu, Keping
  email: keping.yu@aoni.waseda.jp
  organization: Global Information and Telecommunication Institute, Waseda University, Tokyo, Japan
– sequence: 5
  givenname: Shahid
  orcidid: 0000-0001-6364-6149
  surname: Mumtaz
  fullname: Mumtaz, Shahid
  email: smumtaz@av.it.pt
  organization: Instituto de Telecomunicações and Universidade de Aveiro, Aveiro, Portugal
BackLink https://cir.nii.ac.jp/crid/1872835442484320128$$DView record in CiNii
BookMark eNp9UMtLwzAcDjLBbXr24KWg1255Nom3MZ8wEeYUbyFNE-yYzUwzYf-9KR0ePHj5vfgeP74RGDS-sQCcIzhBCMrpajnBEOMJQUwWBT0CQ8SYyBHHaACGECKRS4blCRi17TqtlEoxBNezbO43G136oGP9bbM3_J7d6KjTOQRrYu2b7MnGD19lzods6XWVvWhn4_4UHDu9ae3ZoY_B693tav6QL57vH-ezRW4IojEvDdGcp5EzKiqrMdMGO0cKyQQhwlUFMg4zaqFxBJZGlpAgx0kpoZDMlWQMLnvdbfBfO9tGtfa70CRLhQuOBSywLBKK9SgTfNsG65Spo-7ej0HXG4Wg6mJSq6XqYlKHmBJv-oe3DfWnDvt_GFc9o6nrZNJVJNIfhFGKqaAEQ5S2MbjoYbW19ldUcio5h-QH1IZ72Q
CODEN IERQAD
CitedBy_id crossref_primary_10_1016_j_jestch_2024_101628
crossref_primary_10_1016_j_engappai_2023_106002
crossref_primary_10_1155_2022_1832343
crossref_primary_10_1109_TITS_2023_3324016
crossref_primary_10_1142_S021812662350055X
crossref_primary_10_1142_S0218126622503108
crossref_primary_10_1142_S0218126623500287
crossref_primary_10_1142_S0218126623500640
crossref_primary_10_1109_JIOT_2023_3297834
crossref_primary_10_1109_JIOT_2024_3386691
crossref_primary_10_1142_S0218126623500202
crossref_primary_10_1155_2022_6079641
crossref_primary_10_1109_OJVT_2024_3368240
crossref_primary_10_1109_TMC_2024_3449374
crossref_primary_10_1109_TIV_2023_3237960
crossref_primary_10_3934_mbe_2023425
crossref_primary_10_1155_2022_3464984
crossref_primary_10_1016_j_future_2022_10_032
crossref_primary_10_1155_2022_7445434
crossref_primary_10_1109_ACCESS_2023_3251733
crossref_primary_10_1142_S0218126623501505
crossref_primary_10_1142_S0218126623500056
crossref_primary_10_1142_S0218126623501785
crossref_primary_10_1016_j_adhoc_2023_103239
crossref_primary_10_1142_S0218126623500494
crossref_primary_10_1016_j_sysarc_2025_103331
crossref_primary_10_1080_21680566_2025_2475216
crossref_primary_10_1109_TGCN_2022_3193849
crossref_primary_10_1142_S0218126623500809
crossref_primary_10_1016_j_aej_2023_11_016
crossref_primary_10_1109_TMC_2024_3494713
crossref_primary_10_1109_TGCN_2024_3352173
crossref_primary_10_1142_S0218126623500901
crossref_primary_10_1142_S0218126623300015
crossref_primary_10_1142_S021812662350041X
crossref_primary_10_1142_S0218126623501876
crossref_primary_10_1142_S0218126623502602
crossref_primary_10_1109_TIV_2024_3368510
crossref_primary_10_1109_TVT_2024_3357492
crossref_primary_10_1109_TITS_2023_3342178
crossref_primary_10_1142_S0218126623502687
crossref_primary_10_1109_ACCESS_2023_3346943
crossref_primary_10_3390_s23031421
crossref_primary_10_1109_TITS_2022_3215572
crossref_primary_10_1109_TVT_2024_3404097
crossref_primary_10_1109_JSYST_2023_3281861
crossref_primary_10_1109_TITS_2022_3200747
crossref_primary_10_3390_su14159680
crossref_primary_10_1109_TCSS_2022_3212864
crossref_primary_10_1109_TCE_2023_3327216
crossref_primary_10_1049_tje2_12358
crossref_primary_10_1080_03081079_2024_2345876
crossref_primary_10_1109_TVT_2023_3340723
crossref_primary_10_1109_TII_2022_3194840
crossref_primary_10_1142_S0218126623501724
crossref_primary_10_1155_2022_3192552
crossref_primary_10_1109_TIV_2022_3197815
crossref_primary_10_1109_TITS_2024_3360260
crossref_primary_10_1142_S0218126623501165
crossref_primary_10_1142_S0218126623501682
crossref_primary_10_3934_mbe_2023331
crossref_primary_10_1142_S0218126622503157
crossref_primary_10_3934_mbe_2023330
crossref_primary_10_1109_TVT_2023_3315119
crossref_primary_10_1016_j_pmcj_2024_101962
crossref_primary_10_1109_TITS_2024_3398602
crossref_primary_10_3390_electronics11142130
crossref_primary_10_1109_TNSM_2024_3400605
crossref_primary_10_1155_2022_5932554
Cites_doi 10.1109/ACCESS.2021.3136706
10.1109/TIV.2020.2987430
10.1109/TITS.2021.3123276
10.1109/MCOMSTD.2017.1700015
10.1109/TR.2021.3062045
10.1109/TVT.2021.3076304
10.23940/ijpe.20.10.p10.15881597
10.1109/TNN.1998.712192
10.1109/TVT.2019.2906799
10.1109/ACCESS.2019.2933137
10.1016/j.adhoc.2017.03.006
10.1145/3317549.3323406
10.11113/jt.v73.4190
10.1145/2070425.2070450
10.1109/TCCN.2020.3002253
10.1109/GLOCOM.2011.6134242
10.1109/MWC.001.2000296
10.1109/JIOT.2020.3041860
10.1016/j.cja.2021.08.016
10.1109/TCCN.2020.3024610
10.1609/aaai.v32i1.12130
10.23940/ijpe.21.07.p2.579588
10.1109/MeditCom49071.2021.9647514
10.1109/JIOT.2021.3126749
10.1109/JIOT.2021.3109276
10.26599/TST.2020.9010025
10.23940/ijpe.20.09.p5.13621373
10.1109/UEMCON47517.2019.8993045
10.1109/TITS.2021.3122438
10.1109/VNC48660.2019.9062815
10.1109/TVT.2016.2591558
10.1109/JIOT.2020.2974823
10.1109/BigData50022.2020.9378397
10.1109/JPROC.2019.2961937
10.1109/MPRV.2008.80
10.1109/TITS.2017.2749459
10.1109/TITS.2021.3114199
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2022.3159664
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CiNii Complete
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 962
ExternalDocumentID 10_1109_TR_2022_3159664
9749770
Genre orig-research
GrantInformation_xml – fundername: Fujian Normal University
  grantid: 202001
  funderid: 10.13039/501100010651
– fundername: Science Foundation of Liaoning Province
  grantid: 2020-MS-237
– fundername: Science Foundation of Liaoning Province
– fundername: Department of Science and Technology of Liaoning Province
  funderid: 10.13039/501100012131
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
RYH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c314t-bc3a773147548dea25ac2ff36958338fd61cf254e0cf30bc9b031f73b90895fb3
IEDL.DBID RIE
ISSN 0018-9529
IngestDate Mon Jun 30 10:10:17 EDT 2025
Tue Jul 01 00:49:10 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Thu Jun 26 21:09:53 EDT 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
Japanese
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-bc3a773147548dea25ac2ff36958338fd61cf254e0cf30bc9b031f73b90895fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5735-2507
0000-0001-5829-6850
0000-0001-6364-6149
PQID 2672806296
PQPubID 85456
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TR_2022_3159664
ieee_primary_9749770
nii_cinii_1872835442484320128
proquest_journals_2672806296
crossref_primary_10_1109_TR_2022_3159664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-June
2022-06-01
2022-6-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE Transactions on Reliability
PublicationTitleAbbrev TR
PublicationYear 2022
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
Ahmed-Zaid (ref14) 2011
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Krajzewicz (ref41) 2012; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Stocco (ref29) 2020
Watkins (ref32) 1992
ref40
References_xml – ident: ref22
  doi: 10.1109/ACCESS.2021.3136706
– volume: 3
  start-page: 128
  issue: 4
  year: 2012
  ident: ref41
  article-title: Recent development and applications of sumoSimulation of urban mobility
  publication-title: Int. J. Adv. Syst. Meas.
– ident: ref13
  doi: 10.1109/TIV.2020.2987430
– ident: ref5
  doi: 10.1109/TITS.2021.3123276
– ident: ref3
  doi: 10.1109/MCOMSTD.2017.1700015
– ident: ref15
  doi: 10.1109/TR.2021.3062045
– ident: ref7
  doi: 10.1109/TVT.2021.3076304
– ident: ref8
  doi: 10.23940/ijpe.20.10.p10.15881597
– start-page: 279
  volume-title: Proc. Mach. Learn.
  year: 1992
  ident: ref32
  article-title: Q-learning
– ident: ref38
  doi: 10.1109/TNN.1998.712192
– ident: ref17
  doi: 10.1109/TVT.2019.2906799
– ident: ref18
  doi: 10.1109/ACCESS.2019.2933137
– ident: ref19
  doi: 10.1016/j.adhoc.2017.03.006
– ident: ref26
  doi: 10.1145/3317549.3323406
– ident: ref24
  doi: 10.11113/jt.v73.4190
– start-page: 359
  volume-title: Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng.
  year: 2020
  ident: ref29
  article-title: Misbehaviour prediction for autonomous driving systems
– ident: ref27
  doi: 10.1145/2070425.2070450
– ident: ref34
  doi: 10.1109/TCCN.2020.3002253
– ident: ref20
  doi: 10.1109/GLOCOM.2011.6134242
– ident: ref35
  doi: 10.1109/MWC.001.2000296
– ident: ref16
  doi: 10.1109/JIOT.2020.3041860
– ident: ref31
  doi: 10.1016/j.cja.2021.08.016
– ident: ref30
  doi: 10.1109/TCCN.2020.3024610
– ident: ref36
  doi: 10.1609/aaai.v32i1.12130
– ident: ref33
  doi: 10.23940/ijpe.21.07.p2.579588
– ident: ref37
  doi: 10.1109/MeditCom49071.2021.9647514
– ident: ref23
  doi: 10.1109/JIOT.2021.3126749
– ident: ref21
  doi: 10.1109/JIOT.2021.3109276
– ident: ref10
  doi: 10.26599/TST.2020.9010025
– ident: ref39
  doi: 10.23940/ijpe.20.09.p5.13621373
– ident: ref28
  doi: 10.1109/UEMCON47517.2019.8993045
– ident: ref2
  doi: 10.1109/TITS.2021.3122438
– ident: ref25
  doi: 10.1109/VNC48660.2019.9062815
– ident: ref1
  doi: 10.1109/TVT.2016.2591558
– ident: ref4
  doi: 10.1109/JIOT.2020.2974823
– ident: ref9
  doi: 10.1109/BigData50022.2020.9378397
– year: 2011
  ident: ref14
  article-title: Vehicle safety communicationsApplications (VSC-A) final report: Appendix volume 3 security
  publication-title: Glob. Positioning Syst., Nat. Highway Traffic Saf. Admin.
– ident: ref12
  doi: 10.1109/JPROC.2019.2961937
– ident: ref40
  doi: 10.1109/MPRV.2008.80
– ident: ref11
  doi: 10.1109/TITS.2017.2749459
– ident: ref6
  doi: 10.1109/TITS.2021.3114199
SSID ssj0014498
ssib004836837
ssib013268814
ssib018287527
ssib006542125
ssib007716247
ssib017384921
ssib001191654
ssib002419630
ssib002991715
ssib000974898
ssib021384623
ssib053394430
Score 2.595745
Snippet Driving safety is one of the most important points to concern on the road. Vehicles constantly generate messages under vehicle-to-everything (V2X) assisted...
SourceID proquest
crossref
nii
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 951
SubjectTerms Basic safety message (BSM)
Collaboration
data correction
Error correction
Error detection
Messages
Real-time systems
Road safety
Roadsides
Safety
Sensors
software-defined vehicular network
Traffic accidents & safety
Traffic safety
Training
Urban areas
Urban environments
VANET
Vehicle safety
Vehicle-to-everything
vehicle-to-everything (V2X)
Vehicles
Title A Collaborative V2X Data Correction Method for Road Safety
URI https://ieeexplore.ieee.org/document/9749770
https://cir.nii.ac.jp/crid/1872835442484320128
https://www.proquest.com/docview/2672806296
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTnrwC41TMD148OCAfmxj3ghKiAkeEAy3pe26hGiGwWGif72v28DvxEvTLF3b9L32_X79eA_gzPBOEisRujSm3BUq8F3JlcCEBQoBihdLu6E_vPUHE3Ez9aYVuFi_hTHG5JfPTNNm87P8eK6XdqushdgX4QoS9A1Us-Kt1vrEQIiwXHVxAnssLN340HbYGo-QBzKG9NRDcC--WKA8pAralXQ2-7Ea5yamvwPDVeeKmyUPzWWmmvrtm9_G__Z-F7ZLrEm6hXLsQcWk-7D1yQNhDS67pPehCS-G3LMpuZKZxM-LfDGcp2SYR5kmCG_JaC5jcicTk70ewKR_Pe4N3DKcgqs5FZmrNJdBgNkAWUpsJPOkZknC_dC-vEKR-VQnyBdNWye8rXSocMInAVf2aNBLFD-EajpPzREQpRgCDxobSjXiMY5VGwReMkayhwQrcKC5GuJIl77GbciLxyjnHO0wGo8iK5OolIkD5-sfngo3G38XrdmxXRcrh9WBBsoQW7Mp7QTWj5wQTHQEZ9YIO1BfSTcqp-lzxHwbnctnoX_8e60nsGnbLu6G1aGaLZamgSgkU6e5-r0Db6zSxA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBN6JAwQMDAyn1I0nDVhVQgYahBNQtsh1HqkApghQJfj3nJC1vicWyIts5-Wzf9_lxB3BgeCtNlAgcmlDuCOV7juRKYMJ8hQDFTaTd0A-vve6tuBy4gxk4mr6FMcYUl89Mw2aLs_xkpMd2q-wYsS_CFSToc2j3hVu-1pqeGQgRVOsuTmGXBZUjH9oMjqM-MkHGkKC6CO_FFxtUBFVBy5INhz_W48LInC9DOBGvvFty3xjnqqHfvnlu_K_8K7BUoU3SLofHKsyYbA0WP_kgXIeTNul8jIUXQ-7YgJzKXOLnp2I5HGUkLOJMEwS4pD-SCbmRqclfN-D2_CzqdJ0qoIKjORW5ozSXvo9ZH3lKYiRzpWZpyr3Avr1CpXlUp8gYTVOnvKl0oHDKpz5X9nDQTRXfhNlslJktIEoxhB40MZRqRGQcmzYIvWSCdA8pll-DxqSLY115G7dBLx7ignU0gzjqx1YncaWTGhxOKzyWjjb-Lrpu-3ZarOrWGtRRh_g3m9KWbz3JCcFES3BmzXANdifajauJ-hwzz8bn8ljgbf_e6j7Md6OwF_curq92YMHKUd4U24XZ_Gls6ohJcrVXDMV3qkfWEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Collaborative+V2X+Data+Correction+Method+for+Road+Safety&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Zhao%2C+Liang&rft.au=Chai%2C+Hongmei&rft.au=Han%2C+Yuan&rft.au=Yu%2C+Keping&rft.date=2022-06-01&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=71&rft.issue=2&rft.spage=951&rft.epage=962&rft_id=info:doi/10.1109%2FTR.2022.3159664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TR_2022_3159664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon