Dense subgraphs induced by edge labels

Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 113; no. 4; pp. 1967 - 1987
Main Authors Kumpulainen, Iiro, Tatti, Nikolaj
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-023-06377-y

Cover

Abstract Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks with labels on edges. In this paper, we study finding sets of labels that induce dense subgraphs. We consider two notions of density: average degree and the number of edges minus the number of nodes weighted by a parameter α . There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP -hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in O p log k and O p log 2 k , where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.
AbstractList Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks with labels on edges. In this paper, we study finding sets of labels that induce dense subgraphs. We consider two notions of density: average degree and the number of edges minus the number of nodes weighted by a parameter $$\alpha$$ α . There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP -hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in $$\mathcal {O} \mathopen {}\left( p \log k\right)$$ O p log k and $$\mathcal {O} \mathopen {}\left( p \log ^2 k\right)$$ O p log 2 k , where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.
Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks with labels on edges. In this paper, we study finding sets of labels that induce dense subgraphs. We consider two notions of density: average degree and the number of edges minus the number of nodes weighted by a parameter α. There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP-hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in Oplogk and Oplog2k, where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.
Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks with labels on edges. In this paper, we study finding sets of labels that induce dense subgraphs. We consider two notions of density: average degree and the number of edges minus the number of nodes weighted by a parameter α . There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP -hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in O p log k and O p log 2 k , where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.
Author Kumpulainen, Iiro
Tatti, Nikolaj
Author_xml – sequence: 1
  givenname: Iiro
  orcidid: 0000-0001-8521-6043
  surname: Kumpulainen
  fullname: Kumpulainen, Iiro
  email: iiro.kumpulainen@helsinki.fi
  organization: HIIT, University of Helsinki
– sequence: 2
  givenname: Nikolaj
  surname: Tatti
  fullname: Tatti, Nikolaj
  email: nikolaj.tatti@helsinki.fi
  organization: HIIT, University of Helsinki
BookMark eNqNj0tLxDAUhYOM4MzoH3BVENxFb5pXu5TxCQNudB2SNBlnqGlNpkj_vdEOuBNXlwvnfJxvgWahCw6hcwJXBEBeJwJ1zTCUFIOgUuLxCM0Jl_nlgs_QHKqKY0FKfoIWKe0AoBSVmKPLWxeSK9JgNlH3b6nYhmawrinMWLhm44pWG9emU3TsdZvc2eEu0ev93cvqEa-fH55WN2tsKWF7rKVvTMU8lZoZIgy1RnPZsAxkzkswVpKqAs8E91SXJdHW6loK45xmVd3QJaITdwi9Hj9126o-bt91HBUB9a2qJlWVVdWPqhpz62Jq9bH7GFzaq103xJCHKgqE1kAZ4TlVTikbu5Si8_9DHwalHA4bF3_Rf7S-AKyjdQs
Cites_doi 10.1007/978-1-4471-2256-2_4
10.1007/s00778-013-0340-z
10.1016/0022-0000(81)90012-X
10.1007/3-540-45995-2_51
10.1145/1401890.1402008
10.1007/BF00139635
10.1093/bioinformatics/btl243
10.1016/0378-8733(83)90028-X
10.1145/3344210
10.1287/opre.1100.0851
10.1007/978-3-031-18840-4_33
10.1007/s00453-008-9238-3
10.1145/2736277.2741098
10.1145/362342.362367
10.1145/3038912.3052619
10.1287/mnsc.13.7.492
10.1145/2517088
10.1007/3-540-44436-X_10
10.1145/3299869.3324962
10.1145/1557019.1557142
10.1007/0-387-23077-7_17
10.1109/SFCS.2002.1181985
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ADTOC
UNPAY
DOI 10.1007/s10994-023-06377-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1987
ExternalDocumentID 10.1007/s10994-023-06377-y
10_1007_s10994_023_06377_y
GrantInformation_xml – fundername: University of Helsinki including Helsinki University Central Hospital
– fundername: Academy of Finland
  grantid: MALSOME (343045)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-a7fdb84f37a4b16b3cba57d4ced4ef70bc71880f465f3a221acca976beea489d3
IEDL.DBID AGYKE
ISSN 0885-6125
1573-0565
IngestDate Wed Oct 01 16:07:59 EDT 2025
Sat Aug 23 14:21:49 EDT 2025
Wed Oct 01 01:04:00 EDT 2025
Fri Feb 21 02:44:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dense subgraphs
Label-induced subgraphs
Convex hull
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-a7fdb84f37a4b16b3cba57d4ced4ef70bc71880f465f3a221acca976beea489d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8521-6043
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10994-023-06377-y
PQID 3013903415
PQPubID 54194
PageCount 21
ParticipantIDs unpaywall_primary_10_1007_s10994_023_06377_y
proquest_journals_3013903415
crossref_primary_10_1007_s10994_023_06377_y
springer_journals_10_1007_s10994_023_06377_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Håstad, J. (1996). Clique is hard to approximate within n1-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1 - \epsilon }$$\end{document}. In FOCS, pp 627–636.
Charikar, M. (2000). Greedy approximation algorithms for finding dense components in a graph. APPROX.
GalbrunEstherGionisAristidesTattiNikolajOverlapping community detection in labeled graphsDMKD2014285158616103250847
Danisch, M., Chan, T-HH., & Sozio, M. 2017). Large scale density-friendly graph decomposition via convex programming. In Proceedings of the 26th International Conference on World Wide Web, pp 233–242. International World Wide Web Conferences Steering Committee.
Abello, J., Resende, GC., & Sudarsky S. (2002). Massive quasi-clique detection. In LATIN 2002: Theoretical Informatics, pp 598–612.
Pool, S., Bonchi, F., & van Leeuwen, M. (2014). Description-driven community detection. TIST,5(2), 1–28.
Goldberg, AV. (1984). Finding a maximum density subgraph. University of California Berkeley Technical report.
Li, F., & Klette, R. (2011). Euclidean Shortest Paths: Exact or Approximate Algorithms, chapter Convex Hulls in the Plane, pp 93–125. Springer .
Tsourakakis, CE. (2015). The k-clique densest subgraph problem. In WWW, pp 1122–1132.
BronCoenKerboschJoepAlgorithm 457: Finding all cliques of an undirected graphCommunications of the ACM197316957557710.1145/362342.362367
MokkenRobert JCliques clubs and clansQuality & Quantity197913216117310.1007/BF00139635
FratkinEugeneNaughtonBrianTBrutlagDouglas LBatzoglouSerafimMotifcut: regulatory motifs finding with maximum density subgraphsBioinformatics20062214e150e15710.1093/bioinformatics/btl243
Kumpulainen, I., & Tatti, N. (2022). Community detection in edge-labeled graphs. In Discovery Science: 25th International Conference, DS 2022, Montpellier, France, October 10–12, 2022, Proceedings, pp 460–475.
BalasundaramBalabhaskarButenkoSergiyHicksIllya VClique relaxations in social network analysis: The maximum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-plex problemOperations Research2011591133142281422410.1287/opre.1100.0851
OvermarsMark HVan LeeuwenJMaintenance of configurations in the planeJournal of computer and System Sciences198123216620464472510.1016/0022-0000(81)90012-X
Brodal, GS., Jacob, R. (2002). Dynamic planar convex hull. In FOCS, pp 617–626.
Bonchi, F., Khan, A., & Severini, L. (2019). Distance-generalized core decomposition. In SIGMOD, pp 1006–1023.
DinkelbachWernerOn nonlinear fractional programmingManagement Science196713749249824248810.1287/mnsc.13.7.492
Du, X., Jin, R., Ding, L., Lee, VE., & Thornton Jr, John H. (2009). Migration motif: a spatial-temporal pattern mining approach for financial markets. In KDD, pp 1135–1144.
UnoTakeakiAn efficient algorithm for solving pseudo clique enumeration problemAlgorithmica2010561316257653110.1007/s00453-008-9238-3
AngelAlbertKoudasNickSarkasNikosSrivastavaDiveshSvendsenMichaelTirthapuraSrikantaDense subgraph maintenance under streaming edge weight updates for real-time story identificationThe VLDB Journal201423217519910.1007/s00778-013-0340-z
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer: Extraction and mining of academic social networks. In KDD, pp 990–998.
Langston, MA., Lin, L., Peng, X., Baldwin, NE., Symons, CT., Zhang, B., & Snoddy, JR. (2005). A combinatorial approach to the analysis of differential gene expression data. In Methods of Microarray Data Analysis, pp 223–238. Springer.
Tatti, N. (2019). Density-friendly graph decomposition. TKDD,13(5), 1–29.
SeidmanStephen BNetwork structure and minimum degreeSocial Networks19835326928772129510.1016/0378-8733(83)90028-X
6377_CR17
6377_CR16
6377_CR15
6377_CR14
6377_CR13
Robert J Mokken (6377_CR18) 1979; 13
6377_CR10
Werner Dinkelbach (6377_CR9) 1967; 13
Esther Galbrun (6377_CR12) 2014; 28
Stephen B Seidman (6377_CR21) 1983; 5
Takeaki Uno (6377_CR25) 2010; 56
6377_CR24
6377_CR23
6377_CR22
6377_CR4
Balabhaskar Balasundaram (6377_CR3) 2011; 59
Coen Bron (6377_CR6) 1973; 16
6377_CR1
6377_CR8
6377_CR7
6377_CR5
Eugene Fratkin (6377_CR11) 2006; 22
6377_CR20
Albert Angel (6377_CR2) 2014; 23
Mark H Overmars (6377_CR19) 1981; 23
References_xml – reference: Kumpulainen, I., & Tatti, N. (2022). Community detection in edge-labeled graphs. In Discovery Science: 25th International Conference, DS 2022, Montpellier, France, October 10–12, 2022, Proceedings, pp 460–475.
– reference: FratkinEugeneNaughtonBrianTBrutlagDouglas LBatzoglouSerafimMotifcut: regulatory motifs finding with maximum density subgraphsBioinformatics20062214e150e15710.1093/bioinformatics/btl243
– reference: Danisch, M., Chan, T-HH., & Sozio, M. 2017). Large scale density-friendly graph decomposition via convex programming. In Proceedings of the 26th International Conference on World Wide Web, pp 233–242. International World Wide Web Conferences Steering Committee.
– reference: Brodal, GS., Jacob, R. (2002). Dynamic planar convex hull. In FOCS, pp 617–626.
– reference: MokkenRobert JCliques clubs and clansQuality & Quantity197913216117310.1007/BF00139635
– reference: BalasundaramBalabhaskarButenkoSergiyHicksIllya VClique relaxations in social network analysis: The maximum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-plex problemOperations Research2011591133142281422410.1287/opre.1100.0851
– reference: Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer: Extraction and mining of academic social networks. In KDD, pp 990–998.
– reference: Håstad, J. (1996). Clique is hard to approximate within n1-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1 - \epsilon }$$\end{document}. In FOCS, pp 627–636.
– reference: GalbrunEstherGionisAristidesTattiNikolajOverlapping community detection in labeled graphsDMKD2014285158616103250847
– reference: UnoTakeakiAn efficient algorithm for solving pseudo clique enumeration problemAlgorithmica2010561316257653110.1007/s00453-008-9238-3
– reference: Bonchi, F., Khan, A., & Severini, L. (2019). Distance-generalized core decomposition. In SIGMOD, pp 1006–1023.
– reference: Tatti, N. (2019). Density-friendly graph decomposition. TKDD,13(5), 1–29.
– reference: Du, X., Jin, R., Ding, L., Lee, VE., & Thornton Jr, John H. (2009). Migration motif: a spatial-temporal pattern mining approach for financial markets. In KDD, pp 1135–1144.
– reference: DinkelbachWernerOn nonlinear fractional programmingManagement Science196713749249824248810.1287/mnsc.13.7.492
– reference: BronCoenKerboschJoepAlgorithm 457: Finding all cliques of an undirected graphCommunications of the ACM197316957557710.1145/362342.362367
– reference: Abello, J., Resende, GC., & Sudarsky S. (2002). Massive quasi-clique detection. In LATIN 2002: Theoretical Informatics, pp 598–612.
– reference: Charikar, M. (2000). Greedy approximation algorithms for finding dense components in a graph. APPROX.
– reference: Tsourakakis, CE. (2015). The k-clique densest subgraph problem. In WWW, pp 1122–1132.
– reference: SeidmanStephen BNetwork structure and minimum degreeSocial Networks19835326928772129510.1016/0378-8733(83)90028-X
– reference: Li, F., & Klette, R. (2011). Euclidean Shortest Paths: Exact or Approximate Algorithms, chapter Convex Hulls in the Plane, pp 93–125. Springer .
– reference: OvermarsMark HVan LeeuwenJMaintenance of configurations in the planeJournal of computer and System Sciences198123216620464472510.1016/0022-0000(81)90012-X
– reference: Goldberg, AV. (1984). Finding a maximum density subgraph. University of California Berkeley Technical report.
– reference: Langston, MA., Lin, L., Peng, X., Baldwin, NE., Symons, CT., Zhang, B., & Snoddy, JR. (2005). A combinatorial approach to the analysis of differential gene expression data. In Methods of Microarray Data Analysis, pp 223–238. Springer.
– reference: Pool, S., Bonchi, F., & van Leeuwen, M. (2014). Description-driven community detection. TIST,5(2), 1–28.
– reference: AngelAlbertKoudasNickSarkasNikosSrivastavaDiveshSvendsenMichaelTirthapuraSrikantaDense subgraph maintenance under streaming edge weight updates for real-time story identificationThe VLDB Journal201423217519910.1007/s00778-013-0340-z
– ident: 6377_CR17
  doi: 10.1007/978-1-4471-2256-2_4
– volume: 23
  start-page: 175
  issue: 2
  year: 2014
  ident: 6377_CR2
  publication-title: The VLDB Journal
  doi: 10.1007/s00778-013-0340-z
– volume: 23
  start-page: 166
  issue: 2
  year: 1981
  ident: 6377_CR19
  publication-title: Journal of computer and System Sciences
  doi: 10.1016/0022-0000(81)90012-X
– ident: 6377_CR14
– ident: 6377_CR1
  doi: 10.1007/3-540-45995-2_51
– ident: 6377_CR22
  doi: 10.1145/1401890.1402008
– volume: 13
  start-page: 161
  issue: 2
  year: 1979
  ident: 6377_CR18
  publication-title: Quality & Quantity
  doi: 10.1007/BF00139635
– volume: 22
  start-page: e150
  issue: 14
  year: 2006
  ident: 6377_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl243
– volume: 5
  start-page: 269
  issue: 3
  year: 1983
  ident: 6377_CR21
  publication-title: Social Networks
  doi: 10.1016/0378-8733(83)90028-X
– ident: 6377_CR23
  doi: 10.1145/3344210
– volume: 59
  start-page: 133
  issue: 1
  year: 2011
  ident: 6377_CR3
  publication-title: Operations Research
  doi: 10.1287/opre.1100.0851
– ident: 6377_CR15
  doi: 10.1007/978-3-031-18840-4_33
– volume: 56
  start-page: 3
  issue: 1
  year: 2010
  ident: 6377_CR25
  publication-title: Algorithmica
  doi: 10.1007/s00453-008-9238-3
– ident: 6377_CR24
  doi: 10.1145/2736277.2741098
– volume: 16
  start-page: 575
  issue: 9
  year: 1973
  ident: 6377_CR6
  publication-title: Communications of the ACM
  doi: 10.1145/362342.362367
– ident: 6377_CR8
  doi: 10.1145/3038912.3052619
– volume: 13
  start-page: 492
  issue: 7
  year: 1967
  ident: 6377_CR9
  publication-title: Management Science
  doi: 10.1287/mnsc.13.7.492
– ident: 6377_CR20
  doi: 10.1145/2517088
– ident: 6377_CR7
  doi: 10.1007/3-540-44436-X_10
– ident: 6377_CR13
– ident: 6377_CR4
  doi: 10.1145/3299869.3324962
– ident: 6377_CR10
  doi: 10.1145/1557019.1557142
– ident: 6377_CR16
  doi: 10.1007/0-387-23077-7_17
– volume: 28
  start-page: 1586
  issue: 5
  year: 2014
  ident: 6377_CR12
  publication-title: DMKD
– ident: 6377_CR5
  doi: 10.1109/SFCS.2002.1181985
SSID ssj0002686
Score 2.4352937
Snippet Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1967
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Control
Graph theory
Graphs
Labels
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Networks
Nodes
Robotics
Simulation and Modeling
Social networks
Special Issue on Discovery Science 2022
Subject specialists
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7M7aAe_C1Op-TgzQXbJG3mQURlYwgOEQe7laRpT6ObdkP63_vSpatehueWBL4k73358b4P4BozqmcME1RyFVMhjKYaWQNlcYx0WeiQlcLzr6NwOBYvk2DSgFFVC2OfVVYxsQzUZhbbM_JbbrmKhzE3eJh_UusaZW9XKwsN5awVzH0pMbYFLWaVsZrQeuqP3t7XsZmFpfcjLq2A2tzuymhcMV0pk8us2wGXkhZ_U1XNP9dXpruwvczmqvhW0-mvrDQ4gD1HJ8njavwPoZFkR7BfWTUQt3KPAfeXWZ6QfKlLheqc4FYcB9UQXRB7okZwMmCWPIHxoP_xPKTOIoHG3BcLqmRqdE-kXCqh_VDzWKtAGoENiCSVno6lFVxLRRikXDHmI1AKGYhOEiV6d4afQjObZckZEJ0aKT1f9zjHLUaQKGUv2ayaDv6uA96GmwqNaL5SwohqzWOLXYTYRSV2UdGGTgVY5FZFHtVj2IZuBWL9eVNr3TXQ_-j8fHPnF7DDkJqs3t90oLn4WiaXSC0W-srNlx8Y7MfP
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGdkAcGE8xNFAP3Fi2tkmacZyAaUJi4sCkcaqSJr0wlYl2QuPX4_SxDYQQiHMiV3Hc-nNtfwa4QI_qau0zIqiMCGNaEYWogfhRhHCZqcDPiefvx8Fowu6mfFqDm6oXJq92r1KSRU-DZWlKst5cx72Nxrec0ta3kwmoEGTZxeUtaAQcEXkdGpPxw-CpAJCcWCee06YKW6oW8LJ35ntBn_3TGnSu8qQ7sL1I5nL5JmezDVc0bIKpDlFUoDx3F5nqRu9f-B3_e8o92C2xqjMojGsfaiY5gGY1B8IpPwuHgMFrkhonXaic_jp1MM5Hi9GOWjr2d52DloYu-Agmw9vH6xEp5y-QiHosI1LEWvVZTIVkygsUjZTkQjMUwEwsXBUJy-YWs4DHVPq-J9EcEN4oYyTrX2l6DPXkJTEn4KhYC-F6qk8pxi_cSGkzeJaqB7crTltwWWk9nBc0G-GaUNmqIUQ1hLkawmUL2tXFhOUrl4bUglkXnTJvQafS7Xr5J2md1YX-4uGnf9vehnr2ujBnCF0ydV5a5ge_WeWa
  priority: 102
  providerName: Unpaywall
Title Dense subgraphs induced by edge labels
URI https://link.springer.com/article/10.1007/s10994-023-06377-y
https://www.proquest.com/docview/3013903415
https://link.springer.com/content/pdf/10.1007/s10994-023-06377-y.pdf
UnpaywallVersion publishedVersion
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AMVHM
  dateStart: 20080107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IHNSD-Iwokh68yZJ2d9vFIxAK0UiIsQmcmt0-LpJKLMTUX--0tIDGGLm0SbeZtjOzO992d74BuMWIqvs-5UQw6RHOfUUUogZCPQ_hMlcWzYjnn0bW0OEPE3OSJ4XFxW73YkkyG6m3kt0yGluaViNgQpCkBJWMb6sMlc5g-thfj8DUyio8YgcySRrB82SZ36V8D0gblLleGD2E_WU0l8mHnM22Yo9dBad469WWk9fWcqFa3ucPQsddP-sYjnIwqnVW3nMCe0F0CtWi0IOW9_szwNlpFAdavFQZv3Ws4UQeXcLXVKKl_-M0dCWMsefg2P2X3pDkBRaIxwy-IFKEvmrzkAnJlWEp5ilpCp-jAB6EQleeSOnaQm6ZIZOUGhLtjfhFBYHk7XufXUA5eouCS9BU6AuhG6rNGE5QzEDKdIku5eLB25XJanBXaNmdr3g03A1jcqoCF1XgZipwkxrUC0O4eZ-KXZaiVR2jrlmDZqHLTfNf0pprA_7j4Ve7Sb-GA4pAZ7Wbpw7lxfsyuEGgslANKLXtQQO90-52R43cS_Hc7Y_Gz9jas3p4dGgHrzmjcWf6BSOX464
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGICBN6I8PcAEFq3txGVAiEdReVUIgcQW7NiZqrSQVlX-HL-Nc-q0sCAW5li29OV8953t-w5gHyNqzRgmqOQqpkIYTTWyBsriGOmy0CErhOcf2mHrRdy-Bq8V-CxrYdyzytInFo7adGN3Rn7MHVepoc8Nznrv1HWNcrerZQsN5VsrmNNCYswXdtzZfIgpXHZ6c4X_-4Cx6-bzZYv6LgM05nXRp0omRjdEwqUSuh5qHmsVSCNia4RNZE3H0mmWJSIMEq4Yq-NaCoO4tlaJxonhOO8UzAguTjD5m7loth-fxrGAhUWvSdzKAXVcwpft-OK9QpaXue4KXEqa_wyNE747vqKdh9lB2lP5UHU636Lg9RIsePpKzkf2tgwVm67AYtkagnhPsQqYz6aZJdlAF4rYGcHUH43IEJ0Td4JH0PgwKq_By7-AtQ7TaTe1G0B0YqSs1XWDc0xpAquUu9Rz6j04XAe8CoclGlFvpLwRTTSWHXYRYhcV2EV5FbZLwCK_C7NoYjNVOCpBnHz-bbajMdB_WHzz98X3YLb1_HAf3d-077ZgjiEtGr392Ybp_sfA7iCt6etdbzsE3v7bXL8Au5YHMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VkHgMvBHl6QEmajW1nbgMCCGgvBEDlboFO3amKhTSqspf49dxTpMWFsTSOZGtfPl8953tuwM4Qo_qGcMElVxFVAijqUbVQFkUoVwWOmB54fmn5-C2Le47fqcCX2UujLtWWdrE3FCb98jtkde50yoe2ly_HhfXIl6uWue9D-o6SLmT1rKdxogiDzYbYviWnt1d4b8-Zqx1_Xp5S4sOAzTiDdGnSsZGN0XMpRK6EWgeaeVLIyJrhI2lpyPp6pXFIvBjrhhrKPxgdODaWiWap4bjuDMwJ10Vd5el3roZewEW5F0mcRH71KmIImGnSNvLC_Iy11eBS0mz305xonTHh7NLsDBIeiobqm73h_9rrcJyIVzJxYhpa1CxyTqslE0hSGEjNgAj2SS1JB3ovBZ2SjDoR_oYojPi9u4I0g798Sa0pwLVFswm74ndBqJjI6XX0E3OMZjxrVLuOM_V7cHXtc-rcFKiEfZGNTfCSXVlh12I2IU5dmFWhb0SsLBYf2k4YUsVaiWIk8d_jVYbA_2PyXf-nvwQ5pGk4ePd88MuLDLUQ6NLP3sw2_8c2H3UM319kBOHwNu0mfoNgYcEzA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGdkAcGE8xNFAP3Fi2tkmacZyAaUJi4sCkcaqSJr0wlYl2QuPX4_SxDYQQiHMiV3Hc-nNtfwa4QI_qau0zIqiMCGNaEYWogfhRhHCZqcDPiefvx8Fowu6mfFqDm6oXJq92r1KSRU-DZWlKst5cx72Nxrec0ta3kwmoEGTZxeUtaAQcEXkdGpPxw-CpAJCcWCee06YKW6oW8LJ35ntBn_3TGnSu8qQ7sL1I5nL5JmezDVc0bIKpDlFUoDx3F5nqRu9f-B3_e8o92C2xqjMojGsfaiY5gGY1B8IpPwuHgMFrkhonXaic_jp1MM5Hi9GOWjr2d52DloYu-Agmw9vH6xEp5y-QiHosI1LEWvVZTIVkygsUjZTkQjMUwEwsXBUJy-YWs4DHVPq-J9EcEN4oYyTrX2l6DPXkJTEn4KhYC-F6qk8pxi_cSGkzeJaqB7crTltwWWk9nBc0G-GaUNmqIUQ1hLkawmUL2tXFhOUrl4bUglkXnTJvQafS7Xr5J2md1YX-4uGnf9vehnr2ujBnCF0ydV5a5ge_WeWa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dense+subgraphs+induced+by+edge+labels&rft.jtitle=Machine+learning&rft.au=Kumpulainen%2C+Iiro&rft.au=Tatti%2C+Nikolaj&rft.date=2024-04-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=113&rft.issue=4&rft.spage=1967&rft.epage=1987&rft_id=info:doi/10.1007%2Fs10994-023-06377-y&rft.externalDocID=10_1007_s10994_023_06377_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon