An EM algorithm for fitting matrix-variate normal distributions on interval-censored and missing data
Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies. However, observations in these datasets can be missing or subject to some detection limits because of the restriction of the experimental app...
        Saved in:
      
    
          | Published in | Statistics and computing Vol. 35; no. 2 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.04.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0960-3174 1573-1375 1573-1375  | 
| DOI | 10.1007/s11222-025-10575-0 | 
Cover
| Abstract | Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies. However, observations in these datasets can be missing or subject to some detection limits because of the restriction of the experimental apparatus. Here, we develop an efficient EM-type algorithm for maximum likelihood estimation of parameters, in the context of interval-censored and/or missing data, utilizing the matrix-variate normal distribution. This algorithm provides closed-form expressions that rely on truncated moments, offering a reliable approach to parameter estimation under these conditions. Results obtained from the analysis of both simulated data and real case studies concerning water quality monitoring are reported to demonstrate the effectiveness of the proposed method. | 
    
|---|---|
| AbstractList | Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies. However, observations in these datasets can be missing or subject to some detection limits because of the restriction of the experimental apparatus. Here, we develop an efficient EM-type algorithm for maximum likelihood estimation of parameters, in the context of interval-censored and/or missing data, utilizing the matrix-variate normal distribution. This algorithm provides closed-form expressions that rely on truncated moments, offering a reliable approach to parameter estimation under these conditions. Results obtained from the analysis of both simulated data and real case studies concerning water quality monitoring are reported to demonstrate the effectiveness of the proposed method. | 
    
| ArticleNumber | 39 | 
    
| Author | Lachos, Victor H. Ingrassia, Salvatore Punzo, Antonio Tomarchio, Salvatore D.  | 
    
| Author_xml | – sequence: 1 givenname: Victor H. orcidid: 0000-0002-7239-2459 surname: Lachos fullname: Lachos, Victor H. organization: Department of Statistics, University of Connecticut – sequence: 2 givenname: Salvatore D. orcidid: 0000-0003-2690-8546 surname: Tomarchio fullname: Tomarchio, Salvatore D. email: daniele.tomarchio@unict.it organization: Department of Economics and Business, University of Catania – sequence: 3 givenname: Antonio orcidid: 0000-0001-7742-1821 surname: Punzo fullname: Punzo, Antonio organization: Department of Economics and Business, University of Catania – sequence: 4 givenname: Salvatore orcidid: 0000-0003-2052-4226 surname: Ingrassia fullname: Ingrassia, Salvatore organization: Department of Economics and Business, University of Catania  | 
    
| BookMark | eNqNkE9LAzEQxYNUsK1-AU8Bz9HMZnfTHkupf6DiRc9hNputKbtJTdJqv71bW_AmnmYY3vvx5o3IwHlnCLkGfgucy7sIkGUZ41nBgBeyYPyMDKGQgoGQxYAM-bTkTIDML8goxjXnAKXIh8TMHF08U2xXPtj03tHGB9rYlKxb0Q5TsF9sh8FiMtT50GFLaxv7c7VN1rtIvaPWJRN22DJtXPTB1BRdTTsb4wFSY8JLct5gG83VaY7J2_3idf7Ili8PT_PZkmkBeWIo9IQXWEqh88ZUppYaITM1z6e56L8pS8i1qHVRSZBN0w-RVQ32u55CqVGMiThyt26D-09sW7UJtsOwV8DVoSl1bEr1TamfphTvXTdH1yb4j62JSa39Nrg-qBJQ8imHYnJQZUeVDj7GYJr_oU-BYi92KxN-0X-4vgGbuIsH | 
    
| Cites_doi | 10.1080/00949659908811970 10.1016/j.csda.2019.106822 10.1214/09-AOAS314 10.1016/j.jmva.2018.03.010 10.1007/s00357-021-09389-2 10.1007/s40300-021-00227-4 10.1016/j.jmva.2017.05.005 10.1093/biostatistics/kxy056 10.1002/sim.7692 10.1007/s11634-019-00377-4 10.1111/j.1541-0420.2011.01586.x 10.2307/2532030 10.1016/j.jmva.2023.105174 10.1007/s00180-022-01290-9 10.1016/j.jmva.2012.04.005 10.1007/s11222-010-9188-x 10.1016/j.envsoft.2019.03.027 10.1016/j.jece.2022.107400 10.1093/biomet/80.2.267 10.1007/s00357-023-09438-y 10.1002/sta4.379 10.1198/jcgs.2009.07130 10.1002/9781118162729 10.1002/bimj.201900366 10.1016/j.jmva.2018.04.007 10.1007/s11222-022-10107-0 10.1002/9780470191613 10.1016/j.patcog.2018.02.025 10.1080/10618600.2019.1696208 10.1080/02664763.2020.1723504 10.1007/978-3-031-16609-9_24 10.1111/j.1741-3737.2005.00191.x 10.1016/j.spl.2008.03.033 10.1002/env.2663 10.1007/s11634-021-00448-5  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. 2025  | 
    
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. 2025  | 
    
| DBID | C6C AAYXX CITATION JQ2 ADTOC UNPAY  | 
    
| DOI | 10.1007/s11222-025-10575-0 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: SpringerLink Journals Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Mathematics Computer Science  | 
    
| EISSN | 1573-1375 | 
    
| ExternalDocumentID | 10.1007/s11222-025-10575-0 10_1007_s11222_025_10575_0  | 
    
| GrantInformation_xml | – fundername: Università degli Studi di Catania | 
    
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c314t-a3c805a673c4febed7ca12ed049431576614c3dc5b717ff5b732bfa17fc916ca3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0960-3174 1573-1375  | 
    
| IngestDate | Sun Sep 07 11:22:33 EDT 2025 Thu Oct 02 15:03:09 EDT 2025 Wed Oct 01 06:48:30 EDT 2025 Thu Feb 27 03:09:36 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Censored data Missing data ECM algorithm Truncated moments Matrix-variate distribution  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c314t-a3c805a673c4febed7ca12ed049431576614c3dc5b717ff5b732bfa17fc916ca3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-2690-8546 0000-0003-2052-4226 0000-0002-7239-2459 0000-0001-7742-1821  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11222-025-10575-0 | 
    
| PQID | 3160901580 | 
    
| PQPubID | 2043829 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11222_025_10575_0 proquest_journals_3160901580 crossref_primary_10_1007_s11222_025_10575_0 springer_journals_10_1007_s11222_025_10575_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-04-01 | 
    
| PublicationDateYYYYMMDD | 2025-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationTitle | Statistics and computing | 
    
| PublicationTitleAbbrev | Stat Comput | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | CE Galarza Morales (10575_CR9) 2021; 10 V Melnykov (10575_CR22) 2018; 167 LA Matos (10575_CR20) 2013; 23 GI Allen (10575_CR3) 2010; 4 MP Gallaugher (10575_CR13) 2020; 14 KA Valeriano (10575_CR35) 2021; 32 C Viroli (10575_CR37) 2011; 21 GJ McLachlan (10575_CR21) 2008 X-L Meng (10575_CR23) 1993; 80 10575_CR30 F Vaida (10575_CR34) 2009; 18 L Faucheux (10575_CR8) 2021; 63 10575_CR10 10575_CR32 10575_CR31 F Bahari (10575_CR5) 2021; 48 10575_CR16 VH Lachos (10575_CR18) 2017; 159 K Triantafyllopoulos (10575_CR33) 2008; 78 L Zhang (10575_CR40) 2020; 21 FH Alencar (10575_CR2) 2022; 16 L Anderlucci (10575_CR4) 2014; 74 AK Gupta (10575_CR15) 1999 VH Lachos (10575_CR17) 2011; 67 T-I Lin (10575_CR19) 2018; 37 AC Acock (10575_CR1) 2005; 67 RR Murphy (10575_CR25) 2019; 118 Z Wang (10575_CR39) 2022; 10 CE Galarza (10575_CR11) 2022; 80 C Viroli (10575_CR38) 2012; 111 SD Tomarchio (10575_CR28) 2024; 39 V De Gruttola (10575_CR6) 1989; 45 S Sarkar (10575_CR26) 2020; 142 KA Valeriano (10575_CR36) 2023; 196 P Dutilleul (10575_CR7) 1999; 64 MP Gallaugher (10575_CR12) 2018; 80 H Glanz (10575_CR14) 2018; 167 10575_CR27 SD Tomarchio (10575_CR29) 2021; 38 10575_CR24  | 
    
| References_xml | – volume: 64 start-page: 105 issue: 2 year: 1999 ident: 10575_CR7 publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949659908811970 – volume: 142 start-page: 106822 year: 2020 ident: 10575_CR26 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2019.106822 – volume: 4 start-page: 764 issue: 2 year: 2010 ident: 10575_CR3 publication-title: Ann. Appl. Stat. doi: 10.1214/09-AOAS314 – volume: 167 start-page: 31 year: 2018 ident: 10575_CR14 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2018.03.010 – volume-title: Matrix variate distributions year: 1999 ident: 10575_CR15 – volume: 38 start-page: 556 issue: 3 year: 2021 ident: 10575_CR29 publication-title: J. Classif. doi: 10.1007/s00357-021-09389-2 – volume: 80 start-page: 231 issue: 2 year: 2022 ident: 10575_CR11 publication-title: METRON doi: 10.1007/s40300-021-00227-4 – volume: 159 start-page: 151 year: 2017 ident: 10575_CR18 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2017.05.005 – volume: 21 start-page: 80 issue: 2 year: 2020 ident: 10575_CR40 publication-title: Biostatistics doi: 10.1093/biostatistics/kxy056 – volume: 37 start-page: 2822 issue: 19 year: 2018 ident: 10575_CR19 publication-title: Stat. Med. doi: 10.1002/sim.7692 – volume: 14 start-page: 415 issue: 2 year: 2020 ident: 10575_CR13 publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-019-00377-4 – ident: 10575_CR24 – volume: 67 start-page: 1594 issue: 4 year: 2011 ident: 10575_CR17 publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01586.x – volume: 45 start-page: 1 year: 1989 ident: 10575_CR6 publication-title: Biometrics doi: 10.2307/2532030 – volume: 196 start-page: 105174 year: 2023 ident: 10575_CR36 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2023.105174 – volume: 23 start-page: 1323 year: 2013 ident: 10575_CR20 publication-title: Stat. Sin. – volume: 74 start-page: 367 issue: 4 year: 2014 ident: 10575_CR4 publication-title: Statistica (Bologna) – volume: 39 start-page: 405 issue: 2 year: 2024 ident: 10575_CR28 publication-title: Comput. Stat. doi: 10.1007/s00180-022-01290-9 – volume: 111 start-page: 296 year: 2012 ident: 10575_CR38 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2012.04.005 – volume: 21 start-page: 511 year: 2011 ident: 10575_CR37 publication-title: Stat. Comput. doi: 10.1007/s11222-010-9188-x – volume: 118 start-page: 1 year: 2019 ident: 10575_CR25 publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2019.03.027 – ident: 10575_CR10 – volume: 10 issue: 3 year: 2022 ident: 10575_CR39 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.107400 – volume: 80 start-page: 267 issue: 2 year: 1993 ident: 10575_CR23 publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – ident: 10575_CR32 doi: 10.1007/s00357-023-09438-y – volume: 10 start-page: 379 issue: 1 year: 2021 ident: 10575_CR9 publication-title: Stat doi: 10.1002/sta4.379 – volume: 18 start-page: 797 year: 2009 ident: 10575_CR34 publication-title: J. Comput. Graph. Stat. doi: 10.1198/jcgs.2009.07130 – ident: 10575_CR16 doi: 10.1002/9781118162729 – volume: 63 start-page: 372 issue: 2 year: 2021 ident: 10575_CR8 publication-title: Biom. J. doi: 10.1002/bimj.201900366 – volume: 167 start-page: 181 year: 2018 ident: 10575_CR22 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2018.04.007 – ident: 10575_CR31 doi: 10.1007/s11222-022-10107-0 – volume-title: The EM algorithm and extensions year: 2008 ident: 10575_CR21 doi: 10.1002/9780470191613 – volume: 80 start-page: 83 year: 2018 ident: 10575_CR12 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.02.025 – ident: 10575_CR27 doi: 10.1080/10618600.2019.1696208 – volume: 48 start-page: 285 issue: 2 year: 2021 ident: 10575_CR5 publication-title: J. Appl. Stat. doi: 10.1080/02664763.2020.1723504 – ident: 10575_CR30 doi: 10.1007/978-3-031-16609-9_24 – volume: 67 start-page: 1012 issue: 4 year: 2005 ident: 10575_CR1 publication-title: J. Marriage Fam. doi: 10.1111/j.1741-3737.2005.00191.x – volume: 78 start-page: 2647 issue: 16 year: 2008 ident: 10575_CR33 publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2008.03.033 – volume: 32 start-page: 2663 issue: 3 year: 2021 ident: 10575_CR35 publication-title: Environmetrics doi: 10.1002/env.2663 – volume: 16 start-page: 521 issue: 3 year: 2022 ident: 10575_CR2 publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-021-00448-5  | 
    
| SSID | ssj0011634 | 
    
| Score | 2.395077 | 
    
| Snippet | Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies.... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Datasets Maximum likelihood estimation Missing data Normal distribution Original Paper Parameter estimation Probability and Statistics in Computer Science Spatiotemporal data Statistical Theory and Methods Statistics and Computing/Statistics Programs Water quality  | 
    
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB2kHmwPflTFapU9eLOLSTYf9VhKSxHqyUJvYbObaCHdlib14987u01SFRE9JbCwgbzdzJvM7HsA114UYPbfdalE_kDdBLGIBHOodjeOpGCWMB5L4wd_NHHvp960kMnRZ2G-1e9vM-QDmC5p01XtSOtRTM93MUj5pjDr96uKAfIKIxWFjBy_K4FbHJD5eY6vQWjLLKtiaAP21mrJ3195mn6KN8ND2C-IIultkD2CnVg14aA0YSDFnmxCY1wJr2ZNqGvyuNFePoa4p8hgTHj6tFjN8uc5QYJKkpnpdCZzrc3_Rl8wV0a6SZTmrimRWke3sMDKyEKRmemJ5CkVmO8uVrEkXEmCi0P_YyC6v_QEJsPBY39EC1sFKpjt5pQz0bU87gdMuAliKAPBbSeWWimG2Zh_YMQWTAqE0Q6SBC_MiRKO9wK5pODsFGpqoeIzIF7MfeYwF0ciLeUXOdzTkmniLuEu970W3JTvOVxu1DPCrU6yRiVEVEKDSmi1oF1CERY7KQuZ7Vuas3RxuFPCsx3-bbZOBeEfHn7-v9kvoO7oBWV6eNpQy1fr-BLpSR5dmXX5AciT2Rc priority: 102 providerName: Springer Nature  | 
    
| Title | An EM algorithm for fitting matrix-variate normal distributions on interval-censored and missing data | 
    
| URI | https://link.springer.com/article/10.1007/s11222-025-10575-0 https://www.proquest.com/docview/3160901580 https://doi.org/10.1007/s11222-025-10575-0  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: AFBBN dateStart: 19910901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oe1APPqrGZ7MHb7paWBbqkTStRtPGg030RJYFtBGpKdTXr3eG0lYbY-oFSIYsYWeW_Yad_T6AI-k7mP3XLR4gfuBWhL7wtTA5qRv7gRY1nWsstTv2Zde6upN3BU0O7YWZWb8_SxEPYLpEoqukSCs5pudlWyLuLkG527lx73MyPZs-JjnlsiEdwQ3hyGKHzO-N_JyFptByshq6AkvD5EV9vKk4_jbhtNZGykVpzlNIdSZPp8PMP9WfMyyO873LOqwWuJO5o0DZgIUwqcDaWNOBFUO8AivtCY9rWoFlwqIjKudNCN2ENdtMxQ_9QS97fGaId1nUywun2TNR_b_zV0y9Eb2yhKBwzAKi5S0UtVLWT1gvL7FUMdeYPvcHYcBUEjCMNfplwahcdQu6reZt45IXKg1cC8PKuBK6XpPKdoS2IgyJwNHKMMOAiGcEeoMAgBaBxqgwnCjCkzD9SOG1RmiqldiGUtJPwh1gMlS2MIWFFp-YAX1TSWJg0-eRspQtd-F47DXvZUTG4U1pl6lzPexcL-9cr7YLB2PHesXATD1h2DWCQHU0n4ydPTX_1drJJCDmePje_27fh2WT4iIvCTqAUjYYhoeIdjK_CmX34v66WYXFht3AY9d0q0XofwHKbvTQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xegAO_kCNKGoP3qQJW7sNj8RAUIETJNyWrtuUZGwEhj_-e98bG2hijJ62pEmb7Gv7vre-fh_AjeU5mP23JPeRP3AZIhaeFiYnd2PP16KpM4-lwdDujeXjxJrkl8KWRbV7cSSZ7dTby24GxjJO9qvkTWtxTNT3SMCKFPPHZntzdoAMIxONQm6OO4wj86syP_fxPRxtOebmWLQCpVU8Vx9vKoq-RJ7uIeznlJG11xgfwU4QV-GgsGNg-eqsQmWwkWBdVqFMNHKtwnwMQTtmnQFT0XOymKYvM4ZUlYXTrOaZzUil_52_YtaMxJPFxGIj5pOibm6GtWRJzKZZdaSKuMbMN1kEPlOxz3Ca0N8GRpWmJzDudkb3PZ4bLHAtDJlyJXSraSnbEVqGiKbvaGWYgU-aMcLATARjtxa-RkANJwzxIUwvVPiukVVqJU5hN07i4AyYFShbmEJii0eifp6pLBJP03ehksq2anBbfGd3vtbRcLeKyYSKi6i4GSpuswb1Ago3X1NLVxh2k9hLC5sbBTzb5t96a2wg_MPg5__r_RpKvdGg7_Yfhk8XUDZpcmWVPXXYTRer4BJJS-pdZXP0E1uE4Cc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EwcfBR1V8uwdvdrHJbpJ6lGqpj4oHC72FzW6ihXRb2vj6986kSasgoqcEFjaQbzfzTXbm-wBOvCjA7L8uuUH-wGWCWERauJzcjSOjRU3nHkvte7_VkTddr_uliz-vdi-PJCc9DaTSZLOzoUnOZo1vDsY1Tlas5FPrcUzaFyRGN_IwaPiN6TkCso1cQAp5On5tAlm0zfw8x_fQNOOb0yPSFVh6sUP18abS9EsUaq7DakEf2cUE7w2Yi20F1kprBlbs1AqstKdyrOMKLBOlnCgyb0J8YdlVm6n0aTDqZc99hrSVJb28_pn1SbH_nb9iBo0klFlitCkzpK5bGGON2cCyXl4pqVKuMQsejGLDlDUMlwz9eWBUdboFnebVY6PFC7MFroUjM66Ertc85QdCywSRNYFWjhsb0o8RDmYlGMe1MBrBdYIkwYtwo0ThvUaGqZXYhnk7sPEOMC9WvnCFxJGIBP4iV3kkpKbPEyWV7-3Cafmew-FEUyOcqScTKiGiEuaohLVdOCihCIv9NQ6F49eIydRxuFrCMxv-bbbqFMI_PHzvf7Mfw-LDZTO8u76_3Ydll9ZWXuRzAPPZ6CU-RP6SRUf5Ev0EV47kTQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0YOIgHUdSIotmDN12k3W6LR2IwxgTiQRI8Ndttq8RSCC1-_XpnSgElxuCpTbbZpjtv2zfd2fcAzqTnYPbftLiP_IFbIcbC08Lk5G7s-Vo0dOax1Onatz3rri_7uUwO7YVZWb-_TJAPYLpEpqvkSCs5pudFWyLvLkCx171vPWZieja9TDLJZUM6ghvCkfkOmd87-fkVWlLLxWroFmxO47H6eFNR9O2Dc1OeORclmU4h1Zm81KepV9efKyqO6z3LDmznvJO1ZkDZhY0grkB57unA8ilega3OQsc1qUCJuOhMynkPglbM2h2moqfRZJA-DxnyXRYOssJpNiSp_3f-iqk3slcWExWOmE-yvLmjVsJGMRtkJZYq4hrT59Ek8JmKfYZYo18WjMpV96F30364vuW5SwPXwrBSroRuNqSyHaGtECHhO1oZZuCT8IzAaBAB0MLXiArDCUM8CNMLFZ5rpKZaiQMoxKM4OAQmA2ULU1jY4pEyoGcqSQps-ipUlrJlFc7nUXPHMzEOdym7TIPr4uC62eC6jSrU5oF184mZuMKwG0SBmth8MQ_2svmv3i4WgFjj5kf_u_wYSibhIisJqkEhnUyDE2Q7qXeaw_wL0Prxdg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EM+algorithm+for+fitting+matrix-variate+normal+distributions+on+interval-censored+and+missing+data&rft.jtitle=Statistics+and+computing&rft.au=Lachos%2C+Victor+H.&rft.au=Tomarchio%2C+Salvatore+D.&rft.au=Punzo%2C+Antonio&rft.au=Ingrassia%2C+Salvatore&rft.date=2025-04-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=35&rft.issue=2&rft_id=info:doi/10.1007%2Fs11222-025-10575-0&rft.externalDocID=10_1007_s11222_025_10575_0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |