An EM algorithm for fitting matrix-variate normal distributions on interval-censored and missing data

Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies. However, observations in these datasets can be missing or subject to some detection limits because of the restriction of the experimental app...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 35; no. 2
Main Authors Lachos, Victor H., Tomarchio, Salvatore D., Punzo, Antonio, Ingrassia, Salvatore
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
1573-1375
DOI10.1007/s11222-025-10575-0

Cover

Abstract Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies. However, observations in these datasets can be missing or subject to some detection limits because of the restriction of the experimental apparatus. Here, we develop an efficient EM-type algorithm for maximum likelihood estimation of parameters, in the context of interval-censored and/or missing data, utilizing the matrix-variate normal distribution. This algorithm provides closed-form expressions that rely on truncated moments, offering a reliable approach to parameter estimation under these conditions. Results obtained from the analysis of both simulated data and real case studies concerning water quality monitoring are reported to demonstrate the effectiveness of the proposed method.
AbstractList Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies. However, observations in these datasets can be missing or subject to some detection limits because of the restriction of the experimental apparatus. Here, we develop an efficient EM-type algorithm for maximum likelihood estimation of parameters, in the context of interval-censored and/or missing data, utilizing the matrix-variate normal distribution. This algorithm provides closed-form expressions that rely on truncated moments, offering a reliable approach to parameter estimation under these conditions. Results obtained from the analysis of both simulated data and real case studies concerning water quality monitoring are reported to demonstrate the effectiveness of the proposed method.
ArticleNumber 39
Author Lachos, Victor H.
Ingrassia, Salvatore
Punzo, Antonio
Tomarchio, Salvatore D.
Author_xml – sequence: 1
  givenname: Victor H.
  orcidid: 0000-0002-7239-2459
  surname: Lachos
  fullname: Lachos, Victor H.
  organization: Department of Statistics, University of Connecticut
– sequence: 2
  givenname: Salvatore D.
  orcidid: 0000-0003-2690-8546
  surname: Tomarchio
  fullname: Tomarchio, Salvatore D.
  email: daniele.tomarchio@unict.it
  organization: Department of Economics and Business, University of Catania
– sequence: 3
  givenname: Antonio
  orcidid: 0000-0001-7742-1821
  surname: Punzo
  fullname: Punzo, Antonio
  organization: Department of Economics and Business, University of Catania
– sequence: 4
  givenname: Salvatore
  orcidid: 0000-0003-2052-4226
  surname: Ingrassia
  fullname: Ingrassia, Salvatore
  organization: Department of Economics and Business, University of Catania
BookMark eNqNkE9LAzEQxYNUsK1-AU8Bz9HMZnfTHkupf6DiRc9hNputKbtJTdJqv71bW_AmnmYY3vvx5o3IwHlnCLkGfgucy7sIkGUZ41nBgBeyYPyMDKGQgoGQxYAM-bTkTIDML8goxjXnAKXIh8TMHF08U2xXPtj03tHGB9rYlKxb0Q5TsF9sh8FiMtT50GFLaxv7c7VN1rtIvaPWJRN22DJtXPTB1BRdTTsb4wFSY8JLct5gG83VaY7J2_3idf7Ili8PT_PZkmkBeWIo9IQXWEqh88ZUppYaITM1z6e56L8pS8i1qHVRSZBN0w-RVQ32u55CqVGMiThyt26D-09sW7UJtsOwV8DVoSl1bEr1TamfphTvXTdH1yb4j62JSa39Nrg-qBJQ8imHYnJQZUeVDj7GYJr_oU-BYi92KxN-0X-4vgGbuIsH
Cites_doi 10.1080/00949659908811970
10.1016/j.csda.2019.106822
10.1214/09-AOAS314
10.1016/j.jmva.2018.03.010
10.1007/s00357-021-09389-2
10.1007/s40300-021-00227-4
10.1016/j.jmva.2017.05.005
10.1093/biostatistics/kxy056
10.1002/sim.7692
10.1007/s11634-019-00377-4
10.1111/j.1541-0420.2011.01586.x
10.2307/2532030
10.1016/j.jmva.2023.105174
10.1007/s00180-022-01290-9
10.1016/j.jmva.2012.04.005
10.1007/s11222-010-9188-x
10.1016/j.envsoft.2019.03.027
10.1016/j.jece.2022.107400
10.1093/biomet/80.2.267
10.1007/s00357-023-09438-y
10.1002/sta4.379
10.1198/jcgs.2009.07130
10.1002/9781118162729
10.1002/bimj.201900366
10.1016/j.jmva.2018.04.007
10.1007/s11222-022-10107-0
10.1002/9780470191613
10.1016/j.patcog.2018.02.025
10.1080/10618600.2019.1696208
10.1080/02664763.2020.1723504
10.1007/978-3-031-16609-9_24
10.1111/j.1741-3737.2005.00191.x
10.1016/j.spl.2008.03.033
10.1002/env.2663
10.1007/s11634-021-00448-5
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. 2025
DBID C6C
AAYXX
CITATION
JQ2
ADTOC
UNPAY
DOI 10.1007/s11222-025-10575-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerLink Journals Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10.1007/s11222-025-10575-0
10_1007_s11222_025_10575_0
GrantInformation_xml – fundername: Università degli Studi di Catania
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-a3c805a673c4febed7ca12ed049431576614c3dc5b717ff5b732bfa17fc916ca3
IEDL.DBID UNPAY
ISSN 0960-3174
1573-1375
IngestDate Sun Sep 07 11:22:33 EDT 2025
Thu Oct 02 15:03:09 EDT 2025
Wed Oct 01 06:48:30 EDT 2025
Thu Feb 27 03:09:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Censored data
Missing data
ECM algorithm
Truncated moments
Matrix-variate distribution
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-a3c805a673c4febed7ca12ed049431576614c3dc5b717ff5b732bfa17fc916ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2690-8546
0000-0003-2052-4226
0000-0002-7239-2459
0000-0001-7742-1821
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11222-025-10575-0
PQID 3160901580
PQPubID 2043829
ParticipantIDs unpaywall_primary_10_1007_s11222_025_10575_0
proquest_journals_3160901580
crossref_primary_10_1007_s11222_025_10575_0
springer_journals_10_1007_s11222_025_10575_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CE Galarza Morales (10575_CR9) 2021; 10
V Melnykov (10575_CR22) 2018; 167
LA Matos (10575_CR20) 2013; 23
GI Allen (10575_CR3) 2010; 4
MP Gallaugher (10575_CR13) 2020; 14
KA Valeriano (10575_CR35) 2021; 32
C Viroli (10575_CR37) 2011; 21
GJ McLachlan (10575_CR21) 2008
X-L Meng (10575_CR23) 1993; 80
10575_CR30
F Vaida (10575_CR34) 2009; 18
L Faucheux (10575_CR8) 2021; 63
10575_CR10
10575_CR32
10575_CR31
F Bahari (10575_CR5) 2021; 48
10575_CR16
VH Lachos (10575_CR18) 2017; 159
K Triantafyllopoulos (10575_CR33) 2008; 78
L Zhang (10575_CR40) 2020; 21
FH Alencar (10575_CR2) 2022; 16
L Anderlucci (10575_CR4) 2014; 74
AK Gupta (10575_CR15) 1999
VH Lachos (10575_CR17) 2011; 67
T-I Lin (10575_CR19) 2018; 37
AC Acock (10575_CR1) 2005; 67
RR Murphy (10575_CR25) 2019; 118
Z Wang (10575_CR39) 2022; 10
CE Galarza (10575_CR11) 2022; 80
C Viroli (10575_CR38) 2012; 111
SD Tomarchio (10575_CR28) 2024; 39
V De Gruttola (10575_CR6) 1989; 45
S Sarkar (10575_CR26) 2020; 142
KA Valeriano (10575_CR36) 2023; 196
P Dutilleul (10575_CR7) 1999; 64
MP Gallaugher (10575_CR12) 2018; 80
H Glanz (10575_CR14) 2018; 167
10575_CR27
SD Tomarchio (10575_CR29) 2021; 38
10575_CR24
References_xml – volume: 64
  start-page: 105
  issue: 2
  year: 1999
  ident: 10575_CR7
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949659908811970
– volume: 142
  start-page: 106822
  year: 2020
  ident: 10575_CR26
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2019.106822
– volume: 4
  start-page: 764
  issue: 2
  year: 2010
  ident: 10575_CR3
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/09-AOAS314
– volume: 167
  start-page: 31
  year: 2018
  ident: 10575_CR14
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2018.03.010
– volume-title: Matrix variate distributions
  year: 1999
  ident: 10575_CR15
– volume: 38
  start-page: 556
  issue: 3
  year: 2021
  ident: 10575_CR29
  publication-title: J. Classif.
  doi: 10.1007/s00357-021-09389-2
– volume: 80
  start-page: 231
  issue: 2
  year: 2022
  ident: 10575_CR11
  publication-title: METRON
  doi: 10.1007/s40300-021-00227-4
– volume: 159
  start-page: 151
  year: 2017
  ident: 10575_CR18
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2017.05.005
– volume: 21
  start-page: 80
  issue: 2
  year: 2020
  ident: 10575_CR40
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxy056
– volume: 37
  start-page: 2822
  issue: 19
  year: 2018
  ident: 10575_CR19
  publication-title: Stat. Med.
  doi: 10.1002/sim.7692
– volume: 14
  start-page: 415
  issue: 2
  year: 2020
  ident: 10575_CR13
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-019-00377-4
– ident: 10575_CR24
– volume: 67
  start-page: 1594
  issue: 4
  year: 2011
  ident: 10575_CR17
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01586.x
– volume: 45
  start-page: 1
  year: 1989
  ident: 10575_CR6
  publication-title: Biometrics
  doi: 10.2307/2532030
– volume: 196
  start-page: 105174
  year: 2023
  ident: 10575_CR36
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2023.105174
– volume: 23
  start-page: 1323
  year: 2013
  ident: 10575_CR20
  publication-title: Stat. Sin.
– volume: 74
  start-page: 367
  issue: 4
  year: 2014
  ident: 10575_CR4
  publication-title: Statistica (Bologna)
– volume: 39
  start-page: 405
  issue: 2
  year: 2024
  ident: 10575_CR28
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-022-01290-9
– volume: 111
  start-page: 296
  year: 2012
  ident: 10575_CR38
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2012.04.005
– volume: 21
  start-page: 511
  year: 2011
  ident: 10575_CR37
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-010-9188-x
– volume: 118
  start-page: 1
  year: 2019
  ident: 10575_CR25
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2019.03.027
– ident: 10575_CR10
– volume: 10
  issue: 3
  year: 2022
  ident: 10575_CR39
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.107400
– volume: 80
  start-page: 267
  issue: 2
  year: 1993
  ident: 10575_CR23
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– ident: 10575_CR32
  doi: 10.1007/s00357-023-09438-y
– volume: 10
  start-page: 379
  issue: 1
  year: 2021
  ident: 10575_CR9
  publication-title: Stat
  doi: 10.1002/sta4.379
– volume: 18
  start-page: 797
  year: 2009
  ident: 10575_CR34
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2009.07130
– ident: 10575_CR16
  doi: 10.1002/9781118162729
– volume: 63
  start-page: 372
  issue: 2
  year: 2021
  ident: 10575_CR8
  publication-title: Biom. J.
  doi: 10.1002/bimj.201900366
– volume: 167
  start-page: 181
  year: 2018
  ident: 10575_CR22
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2018.04.007
– ident: 10575_CR31
  doi: 10.1007/s11222-022-10107-0
– volume-title: The EM algorithm and extensions
  year: 2008
  ident: 10575_CR21
  doi: 10.1002/9780470191613
– volume: 80
  start-page: 83
  year: 2018
  ident: 10575_CR12
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.02.025
– ident: 10575_CR27
  doi: 10.1080/10618600.2019.1696208
– volume: 48
  start-page: 285
  issue: 2
  year: 2021
  ident: 10575_CR5
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2020.1723504
– ident: 10575_CR30
  doi: 10.1007/978-3-031-16609-9_24
– volume: 67
  start-page: 1012
  issue: 4
  year: 2005
  ident: 10575_CR1
  publication-title: J. Marriage Fam.
  doi: 10.1111/j.1741-3737.2005.00191.x
– volume: 78
  start-page: 2647
  issue: 16
  year: 2008
  ident: 10575_CR33
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2008.03.033
– volume: 32
  start-page: 2663
  issue: 3
  year: 2021
  ident: 10575_CR35
  publication-title: Environmetrics
  doi: 10.1002/env.2663
– volume: 16
  start-page: 521
  issue: 3
  year: 2022
  ident: 10575_CR2
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-021-00448-5
SSID ssj0011634
Score 2.395077
Snippet Matrix-variate distributions are powerful tools for modeling three-way datasets that often arise in longitudinal and multidimensional spatio-temporal studies....
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Datasets
Maximum likelihood estimation
Missing data
Normal distribution
Original Paper
Parameter estimation
Probability and Statistics in Computer Science
Spatiotemporal data
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Water quality
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB2kHmwPflTFapU9eLOLSTYf9VhKSxHqyUJvYbObaCHdlib14987u01SFRE9JbCwgbzdzJvM7HsA114UYPbfdalE_kDdBLGIBHOodjeOpGCWMB5L4wd_NHHvp960kMnRZ2G-1e9vM-QDmC5p01XtSOtRTM93MUj5pjDr96uKAfIKIxWFjBy_K4FbHJD5eY6vQWjLLKtiaAP21mrJ3195mn6KN8ND2C-IIultkD2CnVg14aA0YSDFnmxCY1wJr2ZNqGvyuNFePoa4p8hgTHj6tFjN8uc5QYJKkpnpdCZzrc3_Rl8wV0a6SZTmrimRWke3sMDKyEKRmemJ5CkVmO8uVrEkXEmCi0P_YyC6v_QEJsPBY39EC1sFKpjt5pQz0bU87gdMuAliKAPBbSeWWimG2Zh_YMQWTAqE0Q6SBC_MiRKO9wK5pODsFGpqoeIzIF7MfeYwF0ciLeUXOdzTkmniLuEu970W3JTvOVxu1DPCrU6yRiVEVEKDSmi1oF1CERY7KQuZ7Vuas3RxuFPCsx3-bbZOBeEfHn7-v9kvoO7oBWV6eNpQy1fr-BLpSR5dmXX5AciT2Rc
  priority: 102
  providerName: Springer Nature
Title An EM algorithm for fitting matrix-variate normal distributions on interval-censored and missing data
URI https://link.springer.com/article/10.1007/s11222-025-10575-0
https://www.proquest.com/docview/3160901580
https://doi.org/10.1007/s11222-025-10575-0
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AFBBN
  dateStart: 19910901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oe1APPqrGZ7MHb7paWBbqkTStRtPGg030RJYFtBGpKdTXr3eG0lYbY-oFSIYsYWeW_Yad_T6AI-k7mP3XLR4gfuBWhL7wtTA5qRv7gRY1nWsstTv2Zde6upN3BU0O7YWZWb8_SxEPYLpEoqukSCs5pudlWyLuLkG527lx73MyPZs-JjnlsiEdwQ3hyGKHzO-N_JyFptByshq6AkvD5EV9vKk4_jbhtNZGykVpzlNIdSZPp8PMP9WfMyyO873LOqwWuJO5o0DZgIUwqcDaWNOBFUO8AivtCY9rWoFlwqIjKudNCN2ENdtMxQ_9QS97fGaId1nUywun2TNR_b_zV0y9Eb2yhKBwzAKi5S0UtVLWT1gvL7FUMdeYPvcHYcBUEjCMNfplwahcdQu6reZt45IXKg1cC8PKuBK6XpPKdoS2IgyJwNHKMMOAiGcEeoMAgBaBxqgwnCjCkzD9SOG1RmiqldiGUtJPwh1gMlS2MIWFFp-YAX1TSWJg0-eRspQtd-F47DXvZUTG4U1pl6lzPexcL-9cr7YLB2PHesXATD1h2DWCQHU0n4ydPTX_1drJJCDmePje_27fh2WT4iIvCTqAUjYYhoeIdjK_CmX34v66WYXFht3AY9d0q0XofwHKbvTQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xegAO_kCNKGoP3qQJW7sNj8RAUIETJNyWrtuUZGwEhj_-e98bG2hijJ62pEmb7Gv7vre-fh_AjeU5mP23JPeRP3AZIhaeFiYnd2PP16KpM4-lwdDujeXjxJrkl8KWRbV7cSSZ7dTby24GxjJO9qvkTWtxTNT3SMCKFPPHZntzdoAMIxONQm6OO4wj86syP_fxPRxtOebmWLQCpVU8Vx9vKoq-RJ7uIeznlJG11xgfwU4QV-GgsGNg-eqsQmWwkWBdVqFMNHKtwnwMQTtmnQFT0XOymKYvM4ZUlYXTrOaZzUil_52_YtaMxJPFxGIj5pOibm6GtWRJzKZZdaSKuMbMN1kEPlOxz3Ca0N8GRpWmJzDudkb3PZ4bLHAtDJlyJXSraSnbEVqGiKbvaGWYgU-aMcLATARjtxa-RkANJwzxIUwvVPiukVVqJU5hN07i4AyYFShbmEJii0eifp6pLBJP03ehksq2anBbfGd3vtbRcLeKyYSKi6i4GSpuswb1Ago3X1NLVxh2k9hLC5sbBTzb5t96a2wg_MPg5__r_RpKvdGg7_Yfhk8XUDZpcmWVPXXYTRer4BJJS-pdZXP0E1uE4Cc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EwcfBR1V8uwdvdrHJbpJ6lGqpj4oHC72FzW6ihXRb2vj6986kSasgoqcEFjaQbzfzTXbm-wBOvCjA7L8uuUH-wGWCWERauJzcjSOjRU3nHkvte7_VkTddr_uliz-vdi-PJCc9DaTSZLOzoUnOZo1vDsY1Tlas5FPrcUzaFyRGN_IwaPiN6TkCso1cQAp5On5tAlm0zfw8x_fQNOOb0yPSFVh6sUP18abS9EsUaq7DakEf2cUE7w2Yi20F1kprBlbs1AqstKdyrOMKLBOlnCgyb0J8YdlVm6n0aTDqZc99hrSVJb28_pn1SbH_nb9iBo0klFlitCkzpK5bGGON2cCyXl4pqVKuMQsejGLDlDUMlwz9eWBUdboFnebVY6PFC7MFroUjM66Ertc85QdCywSRNYFWjhsb0o8RDmYlGMe1MBrBdYIkwYtwo0ThvUaGqZXYhnk7sPEOMC9WvnCFxJGIBP4iV3kkpKbPEyWV7-3Cafmew-FEUyOcqScTKiGiEuaohLVdOCihCIv9NQ6F49eIydRxuFrCMxv-bbbqFMI_PHzvf7Mfw-LDZTO8u76_3Ydll9ZWXuRzAPPZ6CU-RP6SRUf5Ev0EV47kTQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0YOIgHUdSIotmDN12k3W6LR2IwxgTiQRI8Ndttq8RSCC1-_XpnSgElxuCpTbbZpjtv2zfd2fcAzqTnYPbftLiP_IFbIcbC08Lk5G7s-Vo0dOax1Onatz3rri_7uUwO7YVZWb-_TJAPYLpEpqvkSCs5pudFWyLvLkCx171vPWZieja9TDLJZUM6ghvCkfkOmd87-fkVWlLLxWroFmxO47H6eFNR9O2Dc1OeORclmU4h1Zm81KepV9efKyqO6z3LDmznvJO1ZkDZhY0grkB57unA8ilega3OQsc1qUCJuOhMynkPglbM2h2moqfRZJA-DxnyXRYOssJpNiSp_3f-iqk3slcWExWOmE-yvLmjVsJGMRtkJZYq4hrT59Ek8JmKfYZYo18WjMpV96F30364vuW5SwPXwrBSroRuNqSyHaGtECHhO1oZZuCT8IzAaBAB0MLXiArDCUM8CNMLFZ5rpKZaiQMoxKM4OAQmA2ULU1jY4pEyoGcqSQps-ipUlrJlFc7nUXPHMzEOdym7TIPr4uC62eC6jSrU5oF184mZuMKwG0SBmth8MQ_2svmv3i4WgFjj5kf_u_wYSibhIisJqkEhnUyDE2Q7qXeaw_wL0Prxdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EM+algorithm+for+fitting+matrix-variate+normal+distributions+on+interval-censored+and+missing+data&rft.jtitle=Statistics+and+computing&rft.au=Lachos%2C+Victor+H.&rft.au=Tomarchio%2C+Salvatore+D.&rft.au=Punzo%2C+Antonio&rft.au=Ingrassia%2C+Salvatore&rft.date=2025-04-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=35&rft.issue=2&rft_id=info:doi/10.1007%2Fs11222-025-10575-0&rft.externalDocID=10_1007_s11222_025_10575_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon