Molecular dynamic simulation reveals spider antimicrobial peptide Latarcin-1 and human eosinophil cationic protein as peptide inhibitors of SARS-CoV-2 variants

COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind recept...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. 42; no. 11; pp. 5858 - 5868
Main Authors Cao, Cheng, Mehmood, Aamir, Li, Daixi
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 23.07.2024
Subjects
Online AccessGet full text
ISSN0739-1102
1538-0254
1538-0254
DOI10.1080/07391102.2023.2274514

Cover

Abstract COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind receptor-binding domain (RBD) on the SARS-CoV-2 spike protein (S). To investigate the inhibitory effects of human Eosinophil Cationic Protein (hECP) and Latarcin-1 (L1)on SARS-CoV-2 infection, we have selected them as research subjects. Further, we ran extensive molecular dynamics simulations to bring the docked peptide-ACE2 complex into its equilibrium state. The outcomes were then evaluated with g_MMPBSA and interaction analysis. We have also considered the Delta and Omicron variants to examine these peptides' inhibitory effects. The experimental findings revealed an enhanced capability of L1 and hECP as SARS-CoV-2 inhibitors, occupying hot spots and numerous key residues in ACE2. These include ASP30, ASP38, GLU35 and GLU75, which significantly inhibit the binding of RBD and ACE2 and are effective against two common variants in a similar manner. In addition, this study can serve as a springboard for future research on SARS-CoV-2 inhibitors. Communicated by Ramaswamy H. Sarma
AbstractList COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind receptor-binding domain (RBD) on the SARS-CoV-2 spike protein (S). To investigate the inhibitory effects of human Eosinophil Cationic Protein (hECP) and Latarcin-1 (L1)on SARS-CoV-2 infection, we have selected them as research subjects. Further, we ran extensive molecular dynamics simulations to bring the docked peptide-ACE2 complex into its equilibrium state. The outcomes were then evaluated with g_MMPBSA and interaction analysis. We have also considered the Delta and Omicron variants to examine these peptides' inhibitory effects. The experimental findings revealed an enhanced capability of L1 and hECP as SARS-CoV-2 inhibitors, occupying hot spots and numerous key residues in ACE2. These include ASP30, ASP38, GLU35 and GLU75, which significantly inhibit the binding of RBD and ACE2 and are effective against two common variants in a similar manner. In addition, this study can serve as a springboard for future research on SARS-CoV-2 inhibitors.Communicated by Ramaswamy H. Sarma.
COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind receptor-binding domain (RBD) on the SARS-CoV-2 spike protein (S). To investigate the inhibitory effects of human Eosinophil Cationic Protein (hECP) and Latarcin-1 (L1)on SARS-CoV-2 infection, we have selected them as research subjects. Further, we ran extensive molecular dynamics simulations to bring the docked peptide-ACE2 complex into its equilibrium state. The outcomes were then evaluated with g_MMPBSA and interaction analysis. We have also considered the Delta and Omicron variants to examine these peptides' inhibitory effects. The experimental findings revealed an enhanced capability of L1 and hECP as SARS-CoV-2 inhibitors, occupying hot spots and numerous key residues in ACE2. These include ASP30, ASP38, GLU35 and GLU75, which significantly inhibit the binding of RBD and ACE2 and are effective against two common variants in a similar manner. In addition, this study can serve as a springboard for future research on SARS-CoV-2 inhibitors.Communicated by Ramaswamy H. Sarma.COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind receptor-binding domain (RBD) on the SARS-CoV-2 spike protein (S). To investigate the inhibitory effects of human Eosinophil Cationic Protein (hECP) and Latarcin-1 (L1)on SARS-CoV-2 infection, we have selected them as research subjects. Further, we ran extensive molecular dynamics simulations to bring the docked peptide-ACE2 complex into its equilibrium state. The outcomes were then evaluated with g_MMPBSA and interaction analysis. We have also considered the Delta and Omicron variants to examine these peptides' inhibitory effects. The experimental findings revealed an enhanced capability of L1 and hECP as SARS-CoV-2 inhibitors, occupying hot spots and numerous key residues in ACE2. These include ASP30, ASP38, GLU35 and GLU75, which significantly inhibit the binding of RBD and ACE2 and are effective against two common variants in a similar manner. In addition, this study can serve as a springboard for future research on SARS-CoV-2 inhibitors.Communicated by Ramaswamy H. Sarma.
COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block SARS-CoV-2 infection. The investigation focuses on the crucial host receptors angiotensin-converting enzyme 2 (ACE2) , which can bind receptor-binding domain (RBD) on the SARS-CoV-2 spike protein (S). To investigate the inhibitory effects of human Eosinophil Cationic Protein (hECP) and Latarcin-1 (L1)on SARS-CoV-2 infection, we have selected them as research subjects. Further, we ran extensive molecular dynamics simulations to bring the docked peptide-ACE2 complex into its equilibrium state. The outcomes were then evaluated with g_MMPBSA and interaction analysis. We have also considered the Delta and Omicron variants to examine these peptides' inhibitory effects. The experimental findings revealed an enhanced capability of L1 and hECP as SARS-CoV-2 inhibitors, occupying hot spots and numerous key residues in ACE2. These include ASP30, ASP38, GLU35 and GLU75, which significantly inhibit the binding of RBD and ACE2 and are effective against two common variants in a similar manner. In addition, this study can serve as a springboard for future research on SARS-CoV-2 inhibitors. Communicated by Ramaswamy H. Sarma
Author Mehmood, Aamir
Li, Daixi
Cao, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Cao
  fullname: Cao, Cheng
  organization: AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong
– sequence: 2
  givenname: Aamir
  surname: Mehmood
  fullname: Mehmood, Aamir
  organization: State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai
– sequence: 3
  givenname: Daixi
  surname: Li
  fullname: Li, Daixi
  organization: AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37938133$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFRwB5ySaDf5JJvKMaQYs0CIkCW-vaudEYOXawk6J5Gl4VDzPtkpV1re-ce3XOFbkIMSAhrzlbc9axd6yVinMm1oIJuRairRtePyMr3siuYqKpL8jqyFRH6JJc5fyTMcF5y1-QS9kq2XEpV-TP5-jRLh4S7Q8BRmdpdmOZZxcDTfiA4DPNk-sxUQizK0SKxoGnE05z-aY7mCFZFypegJ7ulxECxZhdiNPeeWr_eRXjKcUZXaCQn7Qu7J1xc0yZxoHe33y9r7bxRyXoAyRX1uWX5PlQLsBX5_eafP_44dv2rtp9uf20vdlVVvJ6rpSyoIyyTWOFsVCrXrVGWpTNRjHsaotGqn4jW8kHqAfBGAIYhcZahSVHeU3ennzLkb8WzLMeXbboPQSMS9ai69q63ZRcC_rmjC5mxF5PyY2QDvox1AI0J6AklXPC4QnhTB_L04_l6WN5-lxe0b0_6VwYYhrhd0y-1zMcfExDgmBd1vL_Fn8B-G-jZA
Cites_doi 10.1038/s41421-020-00231-4
10.1007/s12539-021-00477-w
10.1186/s40001-022-00647-6
10.1016/j.ajpath.2021.10.019
10.1016/j.bbrc.2020.11.021
10.1101/2020.03.17.20037432
10.1136/bmj.n771
10.1021/ci500020m
10.1039/c6sc01011c
10.1038/s41401-020-0485-4
10.1021/bi702203w
10.1038/s41594-020-0479-4
10.5582/bst.2020.01047
10.1517/17460441.2015.1032936
10.12932/AP-030520-0826
10.1038/s41586-020-2179-y
10.1021/acs.jpcb.0c04511
10.1038/s41422-021-00495-9
10.3390/v12101164
10.1261/rna.7640104
10.1016/j.softx.2015.06.001
10.1021/acs.jcim.7b00347
10.1136/bmj.m606
10.1021/ct300418h
10.1038/s41586-020-2180-5
10.1007/s12539-021-00462-3
10.3389/fmolb.2017.00087
10.26633/RPSP.2020.40
10.1002/cbic.202000047
10.1126/science.abb2762
10.1007/s11356-021-16250-x
10.1080/17441692.2020.1783340
10.1038/s41586-020-2665-2
10.1016/j.cmi.2020.09.023
10.1093/cid/ciaa601
10.1128/JVI.01281-09
10.1007/s10822-010-9352-6
10.1016/j.meegid.2021.104773
10.1056/NEJMoa2103055
10.1021/ci6002202
10.1002/jmv.26165
10.12659/MSM.928996
10.1038/s41423-020-0458-z
10.1056/NEJMc2104974
10.1056/NEJMoa2108891
10.3390/membranes10090215
10.1007/978-1-4939-7000-1_26
10.3390/pathogens9030231
10.1021/acs.jctc.1c00645
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/07391102.2023.2274514
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1538-0254
EndPage 5868
ExternalDocumentID 37938133
10_1080_07391102_2023_2274514
2274514
Genre Research Article
Journal Article
GroupedDBID ---
-~X
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NX0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
UT5
ZGOLN
~KM
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
EMOBN
07X
53G
AAGME
AAOAP
ABFMO
ABTAA
ACBBU
ACDHJ
ACQMU
ACZPZ
ADGTR
ADOPC
AFDYB
AFFVI
AI.
AMATQ
APNXG
AURDB
BFWEY
C0.
CGR
CUY
CVF
CWRZV
DLOXE
ECM
EIF
EJD
HGUVV
JEPSP
NPM
NUSFT
OWHGL
PCLFJ
S70
TASJS
VH1
7X8
ID FETCH-LOGICAL-c314t-99ca9b9c55c2bca49d97b3ce35690e84ceb39d63731fa4f200eaab9ebcc9e9113
ISSN 0739-1102
1538-0254
IngestDate Thu Sep 04 21:22:52 EDT 2025
Mon Jul 21 06:03:35 EDT 2025
Tue Jul 01 00:57:01 EDT 2025
Wed Dec 25 09:05:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords peptide inhibitors
ACE2
SARS-CoV-2
variants
molecular dynamics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-99ca9b9c55c2bca49d97b3ce35690e84ceb39d63731fa4f200eaab9ebcc9e9113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37938133
PQID 2887476254
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1080_07391102_2023_2274514
pubmed_primary_37938133
proquest_miscellaneous_2887476254
informaworld_taylorfrancis_310_1080_07391102_2023_2274514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-23
PublicationDateYYYYMMDD 2024-07-23
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of biomolecular structure & dynamics
PublicationTitleAlternate J Biomol Struct Dyn
PublicationYear 2024
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_27_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_25_1
e_1_3_2_48_1
Sivapalasingam S. (e_1_3_2_40_1) 2022
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_51_1
References_xml – ident: e_1_3_2_44_1
  doi: 10.1038/s41421-020-00231-4
– ident: e_1_3_2_27_1
  doi: 10.1007/s12539-021-00477-w
– ident: e_1_3_2_28_1
  doi: 10.1186/s40001-022-00647-6
– ident: e_1_3_2_11_1
  doi: 10.1016/j.ajpath.2021.10.019
– ident: e_1_3_2_22_1
  doi: 10.1016/j.bbrc.2020.11.021
– ident: e_1_3_2_9_1
  doi: 10.1101/2020.03.17.20037432
– ident: e_1_3_2_12_1
  doi: 10.1136/bmj.n771
– ident: e_1_3_2_24_1
  doi: 10.1021/ci500020m
– ident: e_1_3_2_33_1
  doi: 10.1039/c6sc01011c
– ident: e_1_3_2_19_1
  doi: 10.1038/s41401-020-0485-4
– ident: e_1_3_2_13_1
  doi: 10.1021/bi702203w
– ident: e_1_3_2_18_1
  doi: 10.1038/s41594-020-0479-4
– ident: e_1_3_2_15_1
  doi: 10.5582/bst.2020.01047
– ident: e_1_3_2_16_1
  doi: 10.1517/17460441.2015.1032936
– ident: e_1_3_2_20_1
  doi: 10.12932/AP-030520-0826
– ident: e_1_3_2_37_1
  doi: 10.1038/s41586-020-2179-y
– ident: e_1_3_2_32_1
  doi: 10.1021/acs.jpcb.0c04511
– ident: e_1_3_2_51_1
  doi: 10.1038/s41422-021-00495-9
– ident: e_1_3_2_30_1
  doi: 10.3390/v12101164
– ident: e_1_3_2_39_1
  doi: 10.1261/rna.7640104
– ident: e_1_3_2_2_1
  doi: 10.1016/j.softx.2015.06.001
– ident: e_1_3_2_4_1
  doi: 10.1021/acs.jcim.7b00347
– ident: e_1_3_2_47_1
  doi: 10.1136/bmj.m606
– ident: e_1_3_2_29_1
  doi: 10.1021/ct300418h
– ident: e_1_3_2_25_1
  doi: 10.1038/s41586-020-2180-5
– ident: e_1_3_2_26_1
  doi: 10.1007/s12539-021-00462-3
– ident: e_1_3_2_43_1
  doi: 10.3389/fmolb.2017.00087
– ident: e_1_3_2_35_1
  doi: 10.26633/RPSP.2020.40
– ident: e_1_3_2_31_1
  doi: 10.1002/cbic.202000047
– year: 2022
  ident: e_1_3_2_40_1
  article-title: Efficacy and safety of sarilumab in hospitalized patients with COVID-19: A randomized clinical trial
  publication-title: Clinical Infectious Diseases.
– ident: e_1_3_2_48_1
  doi: 10.1126/science.abb2762
– ident: e_1_3_2_49_1
  doi: 10.1007/s11356-021-16250-x
– ident: e_1_3_2_17_1
  doi: 10.1080/17441692.2020.1783340
– ident: e_1_3_2_21_1
  doi: 10.1038/s41586-020-2665-2
– ident: e_1_3_2_46_1
  doi: 10.1016/j.cmi.2020.09.023
– ident: e_1_3_2_14_1
  doi: 10.1093/cid/ciaa601
– ident: e_1_3_2_10_1
  doi: 10.1128/JVI.01281-09
– ident: e_1_3_2_36_1
  doi: 10.1007/s10822-010-9352-6
– ident: e_1_3_2_6_1
  doi: 10.1016/j.meegid.2021.104773
– ident: e_1_3_2_38_1
  doi: 10.1056/NEJMoa2103055
– ident: e_1_3_2_41_1
  doi: 10.1021/ci6002202
– ident: e_1_3_2_23_1
  doi: 10.1002/jmv.26165
– ident: e_1_3_2_45_1
  doi: 10.12659/MSM.928996
– ident: e_1_3_2_50_1
  doi: 10.1038/s41423-020-0458-z
– ident: e_1_3_2_3_1
  doi: 10.1056/NEJMc2104974
– ident: e_1_3_2_7_1
  doi: 10.1056/NEJMoa2108891
– ident: e_1_3_2_5_1
  doi: 10.3390/membranes10090215
– ident: e_1_3_2_8_1
  doi: 10.1007/978-1-4939-7000-1_26
– ident: e_1_3_2_34_1
  doi: 10.3390/pathogens9030231
– ident: e_1_3_2_42_1
  doi: 10.1021/acs.jctc.1c00645
SSID ssj0021171
Score 2.373723
Snippet COVID-19 has rapidly proliferated around 180 countries, and new cases are reported frequently. No peptide medication has been developed that can reliably block...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 5858
SubjectTerms ACE2
Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - metabolism
Animals
Antimicrobial Peptides - chemistry
Antimicrobial Peptides - pharmacology
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Arthropod Proteins - chemistry
Binding Sites
COVID-19 - virology
COVID-19 Drug Treatment
Eosinophil Cationic Protein - chemistry
Eosinophil Cationic Protein - metabolism
Humans
Molecular Docking Simulation
molecular dynamics
Molecular Dynamics Simulation
peptide inhibitors
Protein Binding
SARS-CoV-2
SARS-CoV-2 - drug effects
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - metabolism
variants
Title Molecular dynamic simulation reveals spider antimicrobial peptide Latarcin-1 and human eosinophil cationic protein as peptide inhibitors of SARS-CoV-2 variants
URI https://www.tandfonline.com/doi/abs/10.1080/07391102.2023.2274514
https://www.ncbi.nlm.nih.gov/pubmed/37938133
https://www.proquest.com/docview/2887476254
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx0Zfxu7rbmiwt-AQW77pMYSNMto-bO3om5FkmQgWOxB3tPszg_3SnSPJl0DKLi8m8UVx_H0-OpLOdw4h76FTz7NSzIMqz1CSU8pAcnivVK4xGKDKMpvU5_QsPb6IP10ml5PJr1HU0lUrZ-rHXl3J_6AK-wBXVMn-A7J9o7ADPgO-sAWEYftXGJ92tW2npSssP92ata_HhaIUjbmRt1gDFiMlW7M2Nu0Siq8wmKXU0xPRYjGhOgjtKoKr2Kebrambzcp8m7oJPWjY5nMwNZal6a419cpIY6v1oPJl8flLsGy-BtH0O4y_hU8RtcfxRcV_f-Mufy2uYiAH_d_o_fylcDO5K-07WJsqeLX2cUILOLkPLj7xknlzbcZTGVGMc6RObTzTg_lFff7YPsfRmIfhyNrCUCff2w34uMmMgSm3cruIzSIYfydOsDqixmZtucHATOUhY0Ov2McqdofukLtRBv4ZyoTmZ_2gPgyzsFOGYc72fb95SO53rey4PzvJcW8f4lhX5_wheeChogtHuEdkouvH5J6rWnrzhPzsaUc9XnSgHfW0o452dId21FOHDrSDE0pqaUcH2tGOdtTTjoptf-1AO9pUdKAd7Wj3lFx8_HC-PA58nY9AsTBuA86V4JKrJFGRVCLmJc8kU5olKZ_rPFZaMl6mLGNhJeIKLIAWQnItleIanjZ7Rg7qptYvCC1FGbO5ytNY6phj54NfhA4rnabgmh-RWff4i41L51KEXZZcD12B0BUeuiPCxyAVrZ1Hq1zRm4L94dp3HaIFGG1ciRO1bq62RQRdewxuSALnPHdQ97fTMeXlrUdekcPh7XlNDuBF1W_ANW7lW8vN3zZUuZw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwQXypsCBSNx9bKJnYePVUW1wO4eaIt6s_yKapUmqyaLBH-Gv8qMk6zaShWHHqPYTmzPeGbs8fcR8hGMelk4PWVVWeCVHGeYkaBXtvSYDFAVRQT1WSzz2Yn4epqdXrkLg2mVGENXPVBEXKtRuXEzekyJ-4SnS2C28B5VyicpBFYZcllvZ-COY1ofny43QVeSxKALqzCsM97iua2Za_bpGnrp7T5otEWHO8SOvehTUM4n685M7J8bAI936-Zj8mhwVel-L1tPyD1fPyX3e_LK38_I38XIrEtdT2tP23AxsIFRRIYCyaYtMtBeUpi_cBEi6BM0ucJUGufpXHdIZVSzBAo4GvkCqW_aUDers_CT9tuJ0HBEkwg11e2mbqjPggnIFUSbih7tfz9iB80PltJfEP1jcs9zcnL4-fhgxga6B2Z5IjompdXSSJtlNjVWC-lkYbj1PIMI3pfCQtwvXc4LnlRaVKDeXmsjvbFWehgo_oJs1U3tXxHqtBN8astcGC8krkH4oH1S-TwHD22XTMZJVqse1UMlI1jqMOoKR10No75L5FVRUF3cTql67hPF_1P3wyg3CnQXD2R07Zt1q1JY4QVYowzKvOwFavM7HH66TDh_fYcvvycPZseLuZp_WX57Qx7CK4Hb0il_S7a6y7XfA3-qM--iwvwDtTgUGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEYhLeUN5Gomrl03sPHysCqsC7QpRirhZfkW1oMmqyVaCP8NfZcZOVhSp4tBjFI8T2zMejz3-PkJeg1OvK6fnrKkrvJLjDDMS7MrWHpMBmqqKoD6Hy3L_WHz4VkzZhP2YVokxdJOAIuJcjca9cs2UEfcGD5fAa-E1qpzPcoirCqSyvl7OuUT4fD5fbmKuLIsxF4owlJku8VxWzQX3dAG89PIlaHRFi9vETI1IGSjfZ-vBzOyvf_Adr9TKO2R7XKjS3aRZd8k1394jNxJ15c_75PfhxKtLXSK1p304HbnAKOJCgV7THvlnzyiMXjgNEfIJqlxhIo3z9EAPSGTUsgwKOBrZAqnv-tB2q5Pwg6bNRKg4YkmElup-Ixvak2ACMgXRrqFHu5-P2F73leX0HGJ_TO15QI4X777s7bOR7IFZnomBSWm1NNIWhc2N1UI6WRluPS8gfve1sBD1S1fyimeNFg0Yt9faSG-slR46ij8kW23X-seEOu0En9u6FMYLiTMQPmifNb4sYX22Q2bTGKtVwvRQ2QSVOva6wl5XY6_vEPm3JqghbqY0iflE8f_IvprURoHl4nGMbn237lUO87sAX1RAmUdJnza_w-Gn64zzJ1f48kty89PbhTp4v_z4lNyCNwL3pHP-jGwNZ2v_HBZTg3kRzeUPXDASxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamic+simulation+reveals+spider+antimicrobial+peptide+Latarcin-1+and+human+eosinophil+cationic+protein+as+peptide+inhibitors+of+SARS-CoV-2+variants&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=Cao%2C+Cheng&rft.au=Mehmood%2C+Aamir&rft.au=Li%2C+Daixi&rft.date=2024-07-23&rft.eissn=1538-0254&rft.volume=42&rft.issue=11&rft.spage=5858&rft_id=info:doi/10.1080%2F07391102.2023.2274514&rft_id=info%3Apmid%2F37938133&rft.externalDocID=37938133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon