Quantized ternary pattern and singular value decomposition for the efficient mining of sequences in SRSI images

The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive the insights, Serial Remote Sensing Images (SRSI) has the large potential to discover the patterns. The evolution of spatial patterns in vario...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 2; no. 10; p. 1697
Main Authors Preethi, R. Angelin, Anandharaj, G.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2523-3963
2523-3971
2523-3971
DOI10.1007/s42452-020-03474-8

Cover

Abstract The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive the insights, Serial Remote Sensing Images (SRSI) has the large potential to discover the patterns. The evolution of spatial patterns in various areas including urban development, expansion of vegetation cover and agriculture is the evidence for the utilization of SRSI accumulation. The application of conventional sequential pattern-mining algorithms on the SRSI images results in high computational complexity. This issue can be resolved by grouping the pixels and mining sequence patterns. A one-pass framework is introduced to compress and hide the data in the marked stream without any loss. In this paper, we proposed a Quantized ternary pattern based pixel grouping and Singular Value Decomposition—Run Length Coding based pattern mining. The algorithms are experimented using a dataset, namely, the Cropland data layer dataset. The proposed algorithm is efficient in terms of mining time and sequence pattern generation.
AbstractList The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive the insights, Serial Remote Sensing Images (SRSI) has the large potential to discover the patterns. The evolution of spatial patterns in various areas including urban development, expansion of vegetation cover and agriculture is the evidence for the utilization of SRSI accumulation. The application of conventional sequential pattern-mining algorithms on the SRSI images results in high computational complexity. This issue can be resolved by grouping the pixels and mining sequence patterns. A one-pass framework is introduced to compress and hide the data in the marked stream without any loss. In this paper, we proposed a Quantized ternary pattern based pixel grouping and Singular Value Decomposition—Run Length Coding based pattern mining. The algorithms are experimented using a dataset, namely, the Cropland data layer dataset. The proposed algorithm is efficient in terms of mining time and sequence pattern generation.
ArticleNumber 1697
Author Anandharaj, G.
Preethi, R. Angelin
Author_xml – sequence: 1
  givenname: R. Angelin
  orcidid: 0000-0002-9233-9858
  surname: Preethi
  fullname: Preethi, R. Angelin
  email: papupree@gmail.com
  organization: Department of Computer Science, Kamban College of Arts &Science College
– sequence: 2
  givenname: G.
  surname: Anandharaj
  fullname: Anandharaj, G.
  organization: Department of Computer Science, Adhiparasakthi College of Arts and Scince
BookMark eNqNkEtLxDAUhYMoqKN_wFXAdTWvTtKliC8QxNc6pOnNGOkkNWmV8dcbHdGduLp3cb7D4dtFmyEGQOiAkiNKiDzOgomaVYSRinAhRaU20A6rGa94I-nmzz_n22g_52dCCJMNF4rvoHg7mTD6d-jwCCmYtMKDGT9fbEKHsw-LqTcJv5p-AtyBjcshZj_6GLCLCY9PgME5bz2EES99KACODmd4mSBYyNgHfH93f4X90iwg76EtZ_oM-993hh7Pzx5OL6vrm4ur05PrynIqxkoK1dDWNqqxLXUd53ReM2CNsJI7XgtoiKydspTJVijgnWmloSXtuGlaMHyG-Lp3CoNZvZm-10MqE9JKU6I_tem1Nl206S9tWhXqcE0NKZb9edTPcSpW-qyZVEqIORe0pNg6ZVPMOYH7X_X3oFzCYQHpt_oP6gM3Z48l
Cites_doi 10.1016/j.cageo.2019.01.005
10.1080/15481603.2018.1517445
10.4018/IJOCI.2019010103
10.1111/rec.12956
10.1080/15481603.2018.1550245
10.1145/3161602
10.1016/j.rse.2018.04.047
10.1016/j.eswa.2016.01.002
10.1109/TGRS.2019.2891679
10.1016/j.jclepro.2019.117954
10.1007/s41060-017-0075-9
10.1007/s11554-015-0547-x
10.1016/j.eswa.2017.10.049
10.3390/s19010029
10.1109/ACCESS.2020.2972300
10.1016/j.eswa.2018.12.046
10.1016/j.patcog.2017.01.002
10.1016/j.eswa.2018.08.053
10.1016/j.knosys.2019.05.012
10.1007/s13042-015-0384-z
10.3390/rs11091091
10.1016/j.trc.2016.08.006
10.1117/1.JRS.13.024523
10.1007/978-3-030-03000-1_16
10.1007/s00500-019-04524-z
10.5753/sbbd.2016.24335
10.1007/s11227-019-03041-y
10.1016/j.sigpro.2020.107454
10.1007/s11042-019-08225-5
10.1109/TPAMI.2019.2936841
10.1080/22797254.2019.1586451
10.1145/2063576.2063695
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
ADTOC
UNPAY
DOI 10.1007/s42452-020-03474-8
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
ExternalDocumentID 10.1007/s42452-020-03474-8
10_1007_s42452_020_03474_8
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
D1I
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-74891bc989cb1fd331652e294c73f354e9075f8c127b48e3dab7a189cf3a9bea3
IEDL.DBID BENPR
ISSN 2523-3963
2523-3971
IngestDate Wed Oct 01 16:07:18 EDT 2025
Wed Oct 08 14:20:43 EDT 2025
Wed Oct 01 05:03:03 EDT 2025
Fri Feb 21 02:29:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Quantized ternary pattern
Serial remote sensing images
Geo-spatial image processing
Run length coding
Singular value decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-74891bc989cb1fd331652e294c73f354e9075f8c127b48e3dab7a189cf3a9bea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9233-9858
OpenAccessLink https://www.proquest.com/docview/2788446341?pq-origsite=%requestingapplication%&accountid=15518
PQID 2788446341
PQPubID 5758472
ParticipantIDs unpaywall_primary_10_1007_s42452_020_03474_8
proquest_journals_2788446341
crossref_primary_10_1007_s42452_020_03474_8
springer_journals_10_1007_s42452_020_03474_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Kowe, Mutanga, Odindi, Dube (CR9) 2019; 13
Atluri, Karpatne, Kumar (CR6) 2018; 51
Su, Gong, Zhang, Zhang, Liu, Yang (CR15) 2017; 66
CR17
Sowmya (CR26) 2019
Wu, Zhang (CR27) 2019; 124
Chen, Yuan, Qiu, Pi (CR11) 2019; 118
CR13
CR35
CR12
CR34
CR33
Zhang (CR28) 2020; 8
Moomen, Bertolotto, Lacroix, Jensen (CR22) 2019; 238
Curran, Cox, Robinson, Robertson, Rogers, Sherman, Adams, Strom, Stahl (CR23) 2019; 27
CR31
He, Zhang, Wu (CR3) 2019; 122
Demattê, Fongaro, Rizzo, Safanelli (CR19) 2018; 212
Xue, Li, Liu, Pang, Li, Liao, Hu (CR4) 2018; 9
Fukui, Okada, Satoh, Numao (CR7) 2019; 179
CR2
Silveira, Espírito-Santo, Acerbi-Júnior, Galvão, Withey, Blackburn, de Mello, Shimabukuro, Domingues, Scolforo (CR24) 2019; 56
Wang, Eick (CR18) 2018; 5
CR29
Chen, Ye, Zhang (CR32) 2019; 57
Cai, Lee, Lee (CR5) 2018; 94
Zhang, He, Tong, Gou, Li (CR8) 2016; 71
Koranteng, Adu-Asare (CR20) 2018; 26
Fan, Ye, Chen (CR14) 2016; 52
CR25
Li, Wang, Zhang, Zhang, Wu (CR16) 2019; 11
Tiwari, Shukla (CR21) 2019; 9
Wylie, Pastick, Picotte, Deering (CR1) 2019; 56
Artusi (CR30) 2019; 16
Lyu, Ma (CR10) 2019; 19
P Tiwari (3474_CR21) 2019; 9
L Su (3474_CR15) 2017; 66
Y Chen (3474_CR11) 2019; 118
3474_CR31
L Li (3474_CR16) 2019; 11
G Atluri (3474_CR6) 2018; 51
P Kowe (3474_CR9) 2019; 13
S Wang (3474_CR18) 2018; 5
V Sowmya (3474_CR26) 2019
Z Zhang (3474_CR8) 2016; 71
3474_CR17
KI Fukui (3474_CR7) 2019; 179
A Moomen (3474_CR22) 2019; 238
3474_CR33
3474_CR12
3474_CR34
3474_CR13
3474_CR35
3474_CR2
Y Xue (3474_CR4) 2018; 9
A Artusi (3474_CR30) 2019; 16
MK Koranteng (3474_CR20) 2018; 26
MF Curran (3474_CR23) 2019; 27
N Zhang (3474_CR28) 2020; 8
EMDO Silveira (3474_CR24) 2019; 56
X Wu (3474_CR27) 2019; 124
G Cai (3474_CR5) 2018; 94
Z Chen (3474_CR32) 2019; 57
X Lyu (3474_CR10) 2019; 19
Y Fan (3474_CR14) 2016; 52
Z He (3474_CR3) 2019; 122
BK Wylie (3474_CR1) 2019; 56
3474_CR29
JAM Demattê (3474_CR19) 2018; 212
3474_CR25
References_xml – volume: 124
  start-page: 128
  year: 2019
  end-page: 139
  ident: CR27
  article-title: An efficient pixel clustering-based method for mining spatial sequential patterns from serial remote sensing images
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.01.005
– volume: 56
  start-page: 406
  issue: 3
  year: 2019
  end-page: 429
  ident: CR1
  article-title: Geospatial data mining for digital raster mapping
  publication-title: GISci Remote Sens
  doi: 10.1080/15481603.2018.1517445
– volume: 9
  start-page: 37
  issue: 1
  year: 2019
  end-page: 50
  ident: CR21
  article-title: A review on various features and techniques of crop yield prediction using geo-spatial data
  publication-title: Int J Organ Collect Intell (IJOCI)
  doi: 10.4018/IJOCI.2019010103
– volume: 27
  start-page: 974
  issue: 5
  year: 2019
  end-page: 980
  ident: CR23
  article-title: Spatially balanced sampling and ground-level imagery for vegetation monitoring on reclaimed well pads
  publication-title: Restor Ecol
  doi: 10.1111/rec.12956
– volume: 56
  start-page: 699
  issue: 5
  year: 2019
  end-page: 717
  ident: CR24
  article-title: Reducing the effects of vegetation phenology on change detection in tropical seasonal biomes
  publication-title: GIScie Remote Sens
  doi: 10.1080/15481603.2018.1550245
– volume: 51
  start-page: 83
  issue: 4
  year: 2018
  ident: CR6
  article-title: Spatio-temporal data mining: a survey of problems and methods
  publication-title: ACM Comput Surveys (CSUR)
  doi: 10.1145/3161602
– volume: 212
  start-page: 161
  year: 2018
  end-page: 175
  ident: CR19
  article-title: Geospatial Soil Sensing System (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.04.047
– ident: CR2
– volume: 52
  start-page: 16
  year: 2016
  end-page: 25
  ident: CR14
  article-title: Malicious sequential pattern mining for automatic malware detection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.01.002
– ident: CR12
– volume: 57
  start-page: 4577
  issue: 7
  year: 2019
  end-page: 4590
  ident: CR32
  article-title: Effects of compression on remote sensing image classification based on fractal analysis
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2891679
– volume: 238
  start-page: 117954
  year: 2019
  ident: CR22
  article-title: Inadequate adaptation of geospatial information for sustainable mining towards agenda 2030 sustainable development goals
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.117954
– ident: CR33
– volume: 5
  start-page: 83
  issue: 2–3
  year: 2018
  end-page: 98
  ident: CR18
  article-title: A data mining framework for environmental and geo-spatial data analysis
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-017-0075-9
– volume: 16
  start-page: 413
  issue: 2
  year: 2019
  end-page: 428
  ident: CR30
  article-title: Overview and evaluation of the JPEG XT HDR image compression standard
  publication-title: J Real-Time Image Process
  doi: 10.1007/s11554-015-0547-x
– ident: CR35
– ident: CR29
– volume: 94
  start-page: 32
  year: 2018
  end-page: 40
  ident: CR5
  article-title: Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.049
– ident: CR25
– volume: 19
  start-page: 29
  issue: 1
  year: 2019
  ident: CR10
  article-title: An efficient incremental mining algorithm for discovering sequential pattern in wireless sensor network environments
  publication-title: Sensors
  doi: 10.3390/s19010029
– volume: 8
  start-page: 29027
  year: 2020
  end-page: 29039
  ident: CR28
  article-title: An unsupervised remote sensing single-image super-resolution method based on generative adversarial network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972300
– volume: 122
  start-page: 54
  year: 2019
  end-page: 64
  ident: CR3
  article-title: Significance-based discriminative sequential pattern mining
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.12.046
– volume: 66
  start-page: 213
  year: 2017
  end-page: 228
  ident: CR15
  article-title: Deep learning and mapping based ternary change detection for information unbalanced images
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.01.002
– volume: 118
  start-page: 614
  year: 2019
  end-page: 624
  ident: CR11
  article-title: An indoor trajectory frequent pattern mining algorithm based on vague grid sequence
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.053
– volume: 179
  start-page: 136
  year: 2019
  end-page: 144
  ident: CR7
  article-title: Cluster sequence mining from event sequence data and its application to damage correlation analysis
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.05.012
– volume: 9
  start-page: 263
  issue: 2
  year: 2018
  end-page: 279
  ident: CR4
  article-title: A new approach for the deep order preserving submatrix problem based on sequential pattern mining
  publication-title: Int J Mach Learn Cybernet
  doi: 10.1007/s13042-015-0384-z
– volume: 11
  start-page: 1091
  issue: 9
  year: 2019
  ident: CR16
  article-title: Urban building change detection in SAR images using combined differential image and residual U-net network
  publication-title: Remote Sens
  doi: 10.3390/rs11091091
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 71
  start-page: 284
  year: 2016
  end-page: 302
  ident: CR8
  article-title: Spatial-temporal traffic flow pattern identification and anomaly detection with dictionary-based compression theory in a large-scale urban network
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2016.08.006
– ident: CR34
– volume: 13
  start-page: 024523
  issue: 2
  year: 2019
  ident: CR9
  article-title: Exploring the spatial patterns of vegetation fragmentation using local spatial autocorrelation indices
  publication-title: J Appl Remote Sens
  doi: 10.1117/1.JRS.13.024523
– volume: 26
  start-page: 73
  year: 2018
  end-page: 86
  ident: CR20
  article-title: Geospatial assessment of vegetation changes around the odublasi quarry in ghana
  publication-title: West African J Appl Ecol
– start-page: 401
  year: 2019
  end-page: 424
  ident: CR26
  publication-title: Hyperspectral image: fundamentals and advances. recent advances in computer vision
  doi: 10.1007/978-3-030-03000-1_16
– volume: 51
  start-page: 83
  issue: 4
  year: 2018
  ident: 3474_CR6
  publication-title: ACM Comput Surveys (CSUR)
  doi: 10.1145/3161602
– volume: 52
  start-page: 16
  year: 2016
  ident: 3474_CR14
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.01.002
– volume: 238
  start-page: 117954
  year: 2019
  ident: 3474_CR22
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.117954
– ident: 3474_CR34
  doi: 10.1007/s00500-019-04524-z
– volume: 56
  start-page: 699
  issue: 5
  year: 2019
  ident: 3474_CR24
  publication-title: GIScie Remote Sens
  doi: 10.1080/15481603.2018.1550245
– volume: 122
  start-page: 54
  year: 2019
  ident: 3474_CR3
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.12.046
– volume: 124
  start-page: 128
  year: 2019
  ident: 3474_CR27
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.01.005
– volume: 11
  start-page: 1091
  issue: 9
  year: 2019
  ident: 3474_CR16
  publication-title: Remote Sens
  doi: 10.3390/rs11091091
– ident: 3474_CR12
  doi: 10.5753/sbbd.2016.24335
– volume: 57
  start-page: 4577
  issue: 7
  year: 2019
  ident: 3474_CR32
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2891679
– volume: 9
  start-page: 37
  issue: 1
  year: 2019
  ident: 3474_CR21
  publication-title: Int J Organ Collect Intell (IJOCI)
  doi: 10.4018/IJOCI.2019010103
– ident: 3474_CR29
– volume: 5
  start-page: 83
  issue: 2–3
  year: 2018
  ident: 3474_CR18
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-017-0075-9
– ident: 3474_CR25
  doi: 10.1007/s11227-019-03041-y
– ident: 3474_CR2
– start-page: 401
  volume-title: Hyperspectral image: fundamentals and advances. recent advances in computer vision
  year: 2019
  ident: 3474_CR26
  doi: 10.1007/978-3-030-03000-1_16
– ident: 3474_CR33
  doi: 10.1016/j.sigpro.2020.107454
– volume: 27
  start-page: 974
  issue: 5
  year: 2019
  ident: 3474_CR23
  publication-title: Restor Ecol
  doi: 10.1111/rec.12956
– volume: 71
  start-page: 284
  year: 2016
  ident: 3474_CR8
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2016.08.006
– volume: 179
  start-page: 136
  year: 2019
  ident: 3474_CR7
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.05.012
– volume: 13
  start-page: 024523
  issue: 2
  year: 2019
  ident: 3474_CR9
  publication-title: J Appl Remote Sens
  doi: 10.1117/1.JRS.13.024523
– volume: 19
  start-page: 29
  issue: 1
  year: 2019
  ident: 3474_CR10
  publication-title: Sensors
  doi: 10.3390/s19010029
– volume: 16
  start-page: 413
  issue: 2
  year: 2019
  ident: 3474_CR30
  publication-title: J Real-Time Image Process
  doi: 10.1007/s11554-015-0547-x
– volume: 94
  start-page: 32
  year: 2018
  ident: 3474_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.049
– volume: 118
  start-page: 614
  year: 2019
  ident: 3474_CR11
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.053
– volume: 56
  start-page: 406
  issue: 3
  year: 2019
  ident: 3474_CR1
  publication-title: GISci Remote Sens
  doi: 10.1080/15481603.2018.1517445
– volume: 66
  start-page: 213
  year: 2017
  ident: 3474_CR15
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.01.002
– ident: 3474_CR35
  doi: 10.1007/s11042-019-08225-5
– volume: 26
  start-page: 73
  year: 2018
  ident: 3474_CR20
  publication-title: West African J Appl Ecol
– ident: 3474_CR31
  doi: 10.1109/TPAMI.2019.2936841
– volume: 9
  start-page: 263
  issue: 2
  year: 2018
  ident: 3474_CR4
  publication-title: Int J Mach Learn Cybernet
  doi: 10.1007/s13042-015-0384-z
– ident: 3474_CR17
  doi: 10.1080/22797254.2019.1586451
– volume: 8
  start-page: 29027
  year: 2020
  ident: 3474_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972300
– ident: 3474_CR13
  doi: 10.1145/2063576.2063695
– volume: 212
  start-page: 161
  year: 2018
  ident: 3474_CR19
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.04.047
SSID ssj0002793483
ssib051670015
Score 2.130022
Snippet The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1697
SubjectTerms Agricultural land
Algorithms
Applied and Technical Physics
Chemistry/Food Science
Computer applications
Data mining
Datasets
Decomposition
Earth Sciences
Engineering
Engineering: Digital Image Processing
Environment
Materials Science
Pattern analysis
Pattern generation
Pixels
Remote sensing
Research Article
Set theory
Singular value decomposition
Spatial data
Urban development
Vegetation
Vegetation cover
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dByKKUPsS2t5tBbydLYzsNH1IIACVSgK9FTZMcTaVXIriArBL--Y28SoKqqot4i2XJizzjzjT3zDcBHV1bKiVRHJdv3SJGgKOeODORkRcoD2sznDh8epXtjdXCWnC3B1y4XJkS7d1eSi5wGz9JUN1szV231iW_-vk5E3vX5LFWmonzEzU9gOU0YkQ9geXz0bfuHryvHflYkdSio1j5ncZs78-eBHtqnO9DZ35OuwNN5PTM31-b8_J4p2l0F6iaxiED5OZo3dlTe_sbv-L-zfAHPW6yK2wvlWoMlql_Cyj0Gw1cwPZ6zaCa35DCcLF7e4CwwdtZoaof-IMLHuaLnFCd05CPY2zAxZLiMDD-RAosFfxZehGoVOK2wj_DGSY2nJ6f7OLngP9_Vaxjv7nz_she1NRyiUsaq8VSlOralznVp48pJGaeJIKFVycogE0XsnCdVXsYisyon6YzNTMy9K2m0JSPfwKCe1rQOqJw0nv3eploqSqQVNpbECKUSqUmVHsKnTnLFbEHVUfSkzGEpC17KIixlkQ9hoxNu0W7bq0Lw8Owfs2UfwmYnn7vmv4222SvFP7z87eO6v4NnwmtBiCHcgEFzOaf3jIUa-6FV9V9Wzv8b
  priority: 102
  providerName: Unpaywall
Title Quantized ternary pattern and singular value decomposition for the efficient mining of sequences in SRSI images
URI https://link.springer.com/article/10.1007/s42452-020-03474-8
https://www.proquest.com/docview/2788446341
https://link.springer.com/content/pdf/10.1007/s42452-020-03474-8.pdf
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2523-3971
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssib051670015
  issn: 2523-3963
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1BOLQcqpa2IhTQHLjBinp37diHqqIoKUUiotBIcLJ2vWspVXDSfAjRQ397ZxY7oRfU48qWV5odz7zZmXkDcOCKUjuZZKIg_y60l16k9CIBOVV6zYC2w73DF_3kbKDPb-KbNeg3vTBcVtnYxGCo3bjgO_JjSbEahS5kdD9PfgmeGsXZ1WaEhqlHK7hPgWJsHTYkM2O1YONLt3951WhYHHFXSu0Af4a0W6Z04OqUFJEJRepYd9aE_jpOC0rBEdZHpTtapP96rxUkXWZRN-HFopqYh3szGj1xVL3X8KpGmHjyqBJvYM1XW7D5hHfwLYy_L0igw9_eYbgPnD7gJPBsVmgqh3x9wNWpyEzgHp3nuvO6uAsJ5CKBRvSBe4JcFt6FGRM4LnFZl43DCq-vrr_h8I7s1ewdDHrdH6dnop68IAoV6TkTjGaRLbI0K2xUOqWiJJZeZrqgI1Sx9hRSx2VaRLJjdeqVM7ZjInq7VCaz3qj30KrGld8G1E4Z5qy3CUnax8pKGylPuKKUiUl01obDRqL55JFgI19SKQf55yT_PMg_T9uw2wg9r3-2Wb5SjTYcNQexevzc146Wh_Ufm-88v_kHeClZVUKl3y605tOF3yPEMrf7sJ72vu7Xykiriz9dWg36lye3fwGYZOhJ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROFAOVelDTUvLHNpTsdq1vZv1AVVAQUmBqOUhcdvaa6-UCjYpSYTSH9ffxth4E7ggLpzXslcz43l4Zr4B-GjLSlqeKVaSfWfSccdyWkiOnKic9A5t2_cOH_ayzqn8cZaeLcD_phfGl1U2OjEoajso_Rv5F06xGoUupHS_Df8yPzXKZ1ebERo6jlawmwFiLDZ27LvpFYVwo83ud-L3J873dk92OixOGWClSOTYg2mqxJQqV6VJKitEkqXccSVL-l2RSkfhY1rlZcLbRuZOWG3aOqHVldDKOC1o3yewJIVUFPwtbe_2fh41Ep0mvgsmGtw_Ic2nhAzYoJwiQCZI_GMnT-jn82lIznxE91XItmT5XWs5d4FnWdsVWJ7UQz290ufntwzj3nN4Fj1a3LoRwVVYcPULWLmFc_gSBr8mxMD-P2cxvD9eTnEYcD1r1LVF_1zhq2HRI487tM7XucdiMiSnGslJRRewLshE4kWYaYGDCmd14Niv8fjouIv9C9KPo1dw-ig8eA2L9aB2bwClFdpj5JuMKO1SYbhJhCM_puKZzqRqweeGosXwBtCjmEE3B_oXRP8i0L_IW7DWEL2Il3tUzEWxBRsNI-af79ttY8asBxz-9v7D12G5c3J4UBx0e_vv4Cn3YhOqDNdgcXw5ce_JWxqbD1EkEX4_9i24BhxtIXc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJCoHgq-4ClgHPUkHp7vndTDGCAsrSlQk4TZ0T_cka2B2ZXdD1p_mr6Oqd2YXL8QL5-l0T6qq69FV9RXAa1dW2skkFyXZd6G99CKjheTIqcprdmhT7h3-epQcnOjPp_HpEvxte2G4rLLViUFRu0HJb-Q7kmI1Cl1I6e5UTVnEt93uh-FvwROkONPajtOYicihn15R-DZ639slXr-Rsrv389OBaCYMiFJFesxAmnlkyzzLSxtVTqkoiaWXuS7pV1WsPYWOcZWVkUytzrxyxqYmotWVMrn1RtG-92AlZRR37lLv7reyHEfc_9KY2l8hwZcrHVBBJcV-QpHgNz08oZOPE5BScCz3TulUi-xfO7lwfuf52lV4MKmHZnplzs9vmMTuOqw1vix-nAnfI1jy9WNYvYFw-AQG3yfEuv4f7zC8PF5OcRgQPWs0tUN-qOA6WGTMcY_Oc4V7U0aG5E4juafoA8oFGUe8CNMscFDhvAIc-zUe_zjuYf-CNOPoKZzcCQeewXI9qP1zQO2UYXR8mxClfaystJHy5MFUMjGJzjvwtqVoMZxBeRRz0OZA_4LoXwT6F1kHNlqiF821HhULIezAdsuIxefbdtueM-s_Dn9x--Gv4D7JfvGld3T4Eh5KlppQXrgBy-PLid8kN2lst4I8Ipzd9QW4BhmgHxE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dByKKUPsS2t5tBbydLYzsNH1IIACVSgK9FTZMcTaVXIriArBL--Y28SoKqqot4i2XJizzjzjT3zDcBHV1bKiVRHJdv3SJGgKOeODORkRcoD2sznDh8epXtjdXCWnC3B1y4XJkS7d1eSi5wGz9JUN1szV231iW_-vk5E3vX5LFWmonzEzU9gOU0YkQ9geXz0bfuHryvHflYkdSio1j5ncZs78-eBHtqnO9DZ35OuwNN5PTM31-b8_J4p2l0F6iaxiED5OZo3dlTe_sbv-L-zfAHPW6yK2wvlWoMlql_Cyj0Gw1cwPZ6zaCa35DCcLF7e4CwwdtZoaof-IMLHuaLnFCd05CPY2zAxZLiMDD-RAosFfxZehGoVOK2wj_DGSY2nJ6f7OLngP9_Vaxjv7nz_she1NRyiUsaq8VSlOralznVp48pJGaeJIKFVycogE0XsnCdVXsYisyon6YzNTMy9K2m0JSPfwKCe1rQOqJw0nv3eploqSqQVNpbECKUSqUmVHsKnTnLFbEHVUfSkzGEpC17KIixlkQ9hoxNu0W7bq0Lw8Owfs2UfwmYnn7vmv4222SvFP7z87eO6v4NnwmtBiCHcgEFzOaf3jIUa-6FV9V9Wzv8b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+ternary+pattern+and+singular+value+decomposition+for+the+efficient+mining+of+sequences+in+SRSI+images&rft.jtitle=SN+applied+sciences&rft.au=Preethi%2C+R.+Angelin&rft.au=Anandharaj%2C+G.&rft.date=2020-10-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-020-03474-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_020_03474_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon