Quantized ternary pattern and singular value decomposition for the efficient mining of sequences in SRSI images
The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive the insights, Serial Remote Sensing Images (SRSI) has the large potential to discover the patterns. The evolution of spatial patterns in vario...
        Saved in:
      
    
          | Published in | SN applied sciences Vol. 2; no. 10; p. 1697 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.10.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2523-3963 2523-3971 2523-3971  | 
| DOI | 10.1007/s42452-020-03474-8 | 
Cover
| Abstract | The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive the insights, Serial Remote Sensing Images (SRSI) has the large potential to discover the patterns. The evolution of spatial patterns in various areas including urban development, expansion of vegetation cover and agriculture is the evidence for the utilization of SRSI accumulation. The application of conventional sequential pattern-mining algorithms on the SRSI images results in high computational complexity. This issue can be resolved by grouping the pixels and mining sequence patterns. A one-pass framework is introduced to compress and hide the data in the marked stream without any loss. In this paper, we proposed a Quantized ternary pattern based pixel grouping and Singular Value Decomposition—Run Length Coding based pattern mining. The algorithms are experimented using a dataset, namely, the Cropland data layer dataset. The proposed algorithm is efficient in terms of mining time and sequence pattern generation. | 
    
|---|---|
| AbstractList | The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive the insights, Serial Remote Sensing Images (SRSI) has the large potential to discover the patterns. The evolution of spatial patterns in various areas including urban development, expansion of vegetation cover and agriculture is the evidence for the utilization of SRSI accumulation. The application of conventional sequential pattern-mining algorithms on the SRSI images results in high computational complexity. This issue can be resolved by grouping the pixels and mining sequence patterns. A one-pass framework is introduced to compress and hide the data in the marked stream without any loss. In this paper, we proposed a Quantized ternary pattern based pixel grouping and Singular Value Decomposition—Run Length Coding based pattern mining. The algorithms are experimented using a dataset, namely, the Cropland data layer dataset. The proposed algorithm is efficient in terms of mining time and sequence pattern generation. | 
    
| ArticleNumber | 1697 | 
    
| Author | Anandharaj, G. Preethi, R. Angelin  | 
    
| Author_xml | – sequence: 1 givenname: R. Angelin orcidid: 0000-0002-9233-9858 surname: Preethi fullname: Preethi, R. Angelin email: papupree@gmail.com organization: Department of Computer Science, Kamban College of Arts &Science College – sequence: 2 givenname: G. surname: Anandharaj fullname: Anandharaj, G. organization: Department of Computer Science, Adhiparasakthi College of Arts and Scince  | 
    
| BookMark | eNqNkEtLxDAUhYMoqKN_wFXAdTWvTtKliC8QxNc6pOnNGOkkNWmV8dcbHdGduLp3cb7D4dtFmyEGQOiAkiNKiDzOgomaVYSRinAhRaU20A6rGa94I-nmzz_n22g_52dCCJMNF4rvoHg7mTD6d-jwCCmYtMKDGT9fbEKHsw-LqTcJv5p-AtyBjcshZj_6GLCLCY9PgME5bz2EES99KACODmd4mSBYyNgHfH93f4X90iwg76EtZ_oM-993hh7Pzx5OL6vrm4ur05PrynIqxkoK1dDWNqqxLXUd53ReM2CNsJI7XgtoiKydspTJVijgnWmloSXtuGlaMHyG-Lp3CoNZvZm-10MqE9JKU6I_tem1Nl206S9tWhXqcE0NKZb9edTPcSpW-qyZVEqIORe0pNg6ZVPMOYH7X_X3oFzCYQHpt_oP6gM3Z48l | 
    
| Cites_doi | 10.1016/j.cageo.2019.01.005 10.1080/15481603.2018.1517445 10.4018/IJOCI.2019010103 10.1111/rec.12956 10.1080/15481603.2018.1550245 10.1145/3161602 10.1016/j.rse.2018.04.047 10.1016/j.eswa.2016.01.002 10.1109/TGRS.2019.2891679 10.1016/j.jclepro.2019.117954 10.1007/s41060-017-0075-9 10.1007/s11554-015-0547-x 10.1016/j.eswa.2017.10.049 10.3390/s19010029 10.1109/ACCESS.2020.2972300 10.1016/j.eswa.2018.12.046 10.1016/j.patcog.2017.01.002 10.1016/j.eswa.2018.08.053 10.1016/j.knosys.2019.05.012 10.1007/s13042-015-0384-z 10.3390/rs11091091 10.1016/j.trc.2016.08.006 10.1117/1.JRS.13.024523 10.1007/978-3-030-03000-1_16 10.1007/s00500-019-04524-z 10.5753/sbbd.2016.24335 10.1007/s11227-019-03041-y 10.1016/j.sigpro.2020.107454 10.1007/s11042-019-08225-5 10.1109/TPAMI.2019.2936841 10.1080/22797254.2019.1586451 10.1145/2063576.2063695  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature Switzerland AG 2020 Springer Nature Switzerland AG 2020.  | 
    
| Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Springer Nature Switzerland AG 2020.  | 
    
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U ADTOC UNPAY  | 
    
| DOI | 10.1007/s42452-020-03474-8 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (via ProQuest) Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2523-3971 | 
    
| ExternalDocumentID | 10.1007/s42452-020-03474-8 10_1007_s42452_020_03474_8  | 
    
| GroupedDBID | -EM 0R~ 88I AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACULB ADKNI ADMLS ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ H13 HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ACSTC CITATION PHGZM PHGZT PQGLB PUEGO 3V. 7XB 8FE 8FG 8FK D1I L6V PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c314t-74891bc989cb1fd331652e294c73f354e9075f8c127b48e3dab7a189cf3a9bea3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2523-3963 2523-3971  | 
    
| IngestDate | Wed Oct 01 16:07:18 EDT 2025 Wed Oct 08 14:20:43 EDT 2025 Wed Oct 01 05:03:03 EDT 2025 Fri Feb 21 02:29:54 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Quantized ternary pattern Serial remote sensing images Geo-spatial image processing Run length coding Singular value decomposition  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c314t-74891bc989cb1fd331652e294c73f354e9075f8c127b48e3dab7a189cf3a9bea3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9233-9858 | 
    
| OpenAccessLink | https://www.proquest.com/docview/2788446341?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2788446341 | 
    
| PQPubID | 5758472 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s42452_020_03474_8 proquest_journals_2788446341 crossref_primary_10_1007_s42452_020_03474_8 springer_journals_10_1007_s42452_020_03474_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20201000 | 
    
| PublicationDateYYYYMMDD | 2020-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2020 text: 20201000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: London  | 
    
| PublicationTitle | SN applied sciences | 
    
| PublicationTitleAbbrev | SN Appl. Sci | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Kowe, Mutanga, Odindi, Dube (CR9) 2019; 13 Atluri, Karpatne, Kumar (CR6) 2018; 51 Su, Gong, Zhang, Zhang, Liu, Yang (CR15) 2017; 66 CR17 Sowmya (CR26) 2019 Wu, Zhang (CR27) 2019; 124 Chen, Yuan, Qiu, Pi (CR11) 2019; 118 CR13 CR35 CR12 CR34 CR33 Zhang (CR28) 2020; 8 Moomen, Bertolotto, Lacroix, Jensen (CR22) 2019; 238 Curran, Cox, Robinson, Robertson, Rogers, Sherman, Adams, Strom, Stahl (CR23) 2019; 27 CR31 He, Zhang, Wu (CR3) 2019; 122 Demattê, Fongaro, Rizzo, Safanelli (CR19) 2018; 212 Xue, Li, Liu, Pang, Li, Liao, Hu (CR4) 2018; 9 Fukui, Okada, Satoh, Numao (CR7) 2019; 179 CR2 Silveira, Espírito-Santo, Acerbi-Júnior, Galvão, Withey, Blackburn, de Mello, Shimabukuro, Domingues, Scolforo (CR24) 2019; 56 Wang, Eick (CR18) 2018; 5 CR29 Chen, Ye, Zhang (CR32) 2019; 57 Cai, Lee, Lee (CR5) 2018; 94 Zhang, He, Tong, Gou, Li (CR8) 2016; 71 Koranteng, Adu-Asare (CR20) 2018; 26 Fan, Ye, Chen (CR14) 2016; 52 CR25 Li, Wang, Zhang, Zhang, Wu (CR16) 2019; 11 Tiwari, Shukla (CR21) 2019; 9 Wylie, Pastick, Picotte, Deering (CR1) 2019; 56 Artusi (CR30) 2019; 16 Lyu, Ma (CR10) 2019; 19 P Tiwari (3474_CR21) 2019; 9 L Su (3474_CR15) 2017; 66 Y Chen (3474_CR11) 2019; 118 3474_CR31 L Li (3474_CR16) 2019; 11 G Atluri (3474_CR6) 2018; 51 P Kowe (3474_CR9) 2019; 13 S Wang (3474_CR18) 2018; 5 V Sowmya (3474_CR26) 2019 Z Zhang (3474_CR8) 2016; 71 3474_CR17 KI Fukui (3474_CR7) 2019; 179 A Moomen (3474_CR22) 2019; 238 3474_CR33 3474_CR12 3474_CR34 3474_CR13 3474_CR35 3474_CR2 Y Xue (3474_CR4) 2018; 9 A Artusi (3474_CR30) 2019; 16 MK Koranteng (3474_CR20) 2018; 26 MF Curran (3474_CR23) 2019; 27 N Zhang (3474_CR28) 2020; 8 EMDO Silveira (3474_CR24) 2019; 56 X Wu (3474_CR27) 2019; 124 G Cai (3474_CR5) 2018; 94 Z Chen (3474_CR32) 2019; 57 X Lyu (3474_CR10) 2019; 19 Y Fan (3474_CR14) 2016; 52 Z He (3474_CR3) 2019; 122 BK Wylie (3474_CR1) 2019; 56 3474_CR29 JAM Demattê (3474_CR19) 2018; 212 3474_CR25  | 
    
| References_xml | – volume: 124 start-page: 128 year: 2019 end-page: 139 ident: CR27 article-title: An efficient pixel clustering-based method for mining spatial sequential patterns from serial remote sensing images publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.01.005 – volume: 56 start-page: 406 issue: 3 year: 2019 end-page: 429 ident: CR1 article-title: Geospatial data mining for digital raster mapping publication-title: GISci Remote Sens doi: 10.1080/15481603.2018.1517445 – volume: 9 start-page: 37 issue: 1 year: 2019 end-page: 50 ident: CR21 article-title: A review on various features and techniques of crop yield prediction using geo-spatial data publication-title: Int J Organ Collect Intell (IJOCI) doi: 10.4018/IJOCI.2019010103 – volume: 27 start-page: 974 issue: 5 year: 2019 end-page: 980 ident: CR23 article-title: Spatially balanced sampling and ground-level imagery for vegetation monitoring on reclaimed well pads publication-title: Restor Ecol doi: 10.1111/rec.12956 – volume: 56 start-page: 699 issue: 5 year: 2019 end-page: 717 ident: CR24 article-title: Reducing the effects of vegetation phenology on change detection in tropical seasonal biomes publication-title: GIScie Remote Sens doi: 10.1080/15481603.2018.1550245 – volume: 51 start-page: 83 issue: 4 year: 2018 ident: CR6 article-title: Spatio-temporal data mining: a survey of problems and methods publication-title: ACM Comput Surveys (CSUR) doi: 10.1145/3161602 – volume: 212 start-page: 161 year: 2018 end-page: 175 ident: CR19 article-title: Geospatial Soil Sensing System (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.04.047 – ident: CR2 – volume: 52 start-page: 16 year: 2016 end-page: 25 ident: CR14 article-title: Malicious sequential pattern mining for automatic malware detection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.01.002 – ident: CR12 – volume: 57 start-page: 4577 issue: 7 year: 2019 end-page: 4590 ident: CR32 article-title: Effects of compression on remote sensing image classification based on fractal analysis publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2891679 – volume: 238 start-page: 117954 year: 2019 ident: CR22 article-title: Inadequate adaptation of geospatial information for sustainable mining towards agenda 2030 sustainable development goals publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.117954 – ident: CR33 – volume: 5 start-page: 83 issue: 2–3 year: 2018 end-page: 98 ident: CR18 article-title: A data mining framework for environmental and geo-spatial data analysis publication-title: Int J Data Sci Anal doi: 10.1007/s41060-017-0075-9 – volume: 16 start-page: 413 issue: 2 year: 2019 end-page: 428 ident: CR30 article-title: Overview and evaluation of the JPEG XT HDR image compression standard publication-title: J Real-Time Image Process doi: 10.1007/s11554-015-0547-x – ident: CR35 – ident: CR29 – volume: 94 start-page: 32 year: 2018 end-page: 40 ident: CR5 article-title: Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.049 – ident: CR25 – volume: 19 start-page: 29 issue: 1 year: 2019 ident: CR10 article-title: An efficient incremental mining algorithm for discovering sequential pattern in wireless sensor network environments publication-title: Sensors doi: 10.3390/s19010029 – volume: 8 start-page: 29027 year: 2020 end-page: 29039 ident: CR28 article-title: An unsupervised remote sensing single-image super-resolution method based on generative adversarial network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972300 – volume: 122 start-page: 54 year: 2019 end-page: 64 ident: CR3 article-title: Significance-based discriminative sequential pattern mining publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.12.046 – volume: 66 start-page: 213 year: 2017 end-page: 228 ident: CR15 article-title: Deep learning and mapping based ternary change detection for information unbalanced images publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.01.002 – volume: 118 start-page: 614 year: 2019 end-page: 624 ident: CR11 article-title: An indoor trajectory frequent pattern mining algorithm based on vague grid sequence publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.053 – volume: 179 start-page: 136 year: 2019 end-page: 144 ident: CR7 article-title: Cluster sequence mining from event sequence data and its application to damage correlation analysis publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.05.012 – volume: 9 start-page: 263 issue: 2 year: 2018 end-page: 279 ident: CR4 article-title: A new approach for the deep order preserving submatrix problem based on sequential pattern mining publication-title: Int J Mach Learn Cybernet doi: 10.1007/s13042-015-0384-z – volume: 11 start-page: 1091 issue: 9 year: 2019 ident: CR16 article-title: Urban building change detection in SAR images using combined differential image and residual U-net network publication-title: Remote Sens doi: 10.3390/rs11091091 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 71 start-page: 284 year: 2016 end-page: 302 ident: CR8 article-title: Spatial-temporal traffic flow pattern identification and anomaly detection with dictionary-based compression theory in a large-scale urban network publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2016.08.006 – ident: CR34 – volume: 13 start-page: 024523 issue: 2 year: 2019 ident: CR9 article-title: Exploring the spatial patterns of vegetation fragmentation using local spatial autocorrelation indices publication-title: J Appl Remote Sens doi: 10.1117/1.JRS.13.024523 – volume: 26 start-page: 73 year: 2018 end-page: 86 ident: CR20 article-title: Geospatial assessment of vegetation changes around the odublasi quarry in ghana publication-title: West African J Appl Ecol – start-page: 401 year: 2019 end-page: 424 ident: CR26 publication-title: Hyperspectral image: fundamentals and advances. recent advances in computer vision doi: 10.1007/978-3-030-03000-1_16 – volume: 51 start-page: 83 issue: 4 year: 2018 ident: 3474_CR6 publication-title: ACM Comput Surveys (CSUR) doi: 10.1145/3161602 – volume: 52 start-page: 16 year: 2016 ident: 3474_CR14 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.01.002 – volume: 238 start-page: 117954 year: 2019 ident: 3474_CR22 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.117954 – ident: 3474_CR34 doi: 10.1007/s00500-019-04524-z – volume: 56 start-page: 699 issue: 5 year: 2019 ident: 3474_CR24 publication-title: GIScie Remote Sens doi: 10.1080/15481603.2018.1550245 – volume: 122 start-page: 54 year: 2019 ident: 3474_CR3 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.12.046 – volume: 124 start-page: 128 year: 2019 ident: 3474_CR27 publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.01.005 – volume: 11 start-page: 1091 issue: 9 year: 2019 ident: 3474_CR16 publication-title: Remote Sens doi: 10.3390/rs11091091 – ident: 3474_CR12 doi: 10.5753/sbbd.2016.24335 – volume: 57 start-page: 4577 issue: 7 year: 2019 ident: 3474_CR32 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2891679 – volume: 9 start-page: 37 issue: 1 year: 2019 ident: 3474_CR21 publication-title: Int J Organ Collect Intell (IJOCI) doi: 10.4018/IJOCI.2019010103 – ident: 3474_CR29 – volume: 5 start-page: 83 issue: 2–3 year: 2018 ident: 3474_CR18 publication-title: Int J Data Sci Anal doi: 10.1007/s41060-017-0075-9 – ident: 3474_CR25 doi: 10.1007/s11227-019-03041-y – ident: 3474_CR2 – start-page: 401 volume-title: Hyperspectral image: fundamentals and advances. recent advances in computer vision year: 2019 ident: 3474_CR26 doi: 10.1007/978-3-030-03000-1_16 – ident: 3474_CR33 doi: 10.1016/j.sigpro.2020.107454 – volume: 27 start-page: 974 issue: 5 year: 2019 ident: 3474_CR23 publication-title: Restor Ecol doi: 10.1111/rec.12956 – volume: 71 start-page: 284 year: 2016 ident: 3474_CR8 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2016.08.006 – volume: 179 start-page: 136 year: 2019 ident: 3474_CR7 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.05.012 – volume: 13 start-page: 024523 issue: 2 year: 2019 ident: 3474_CR9 publication-title: J Appl Remote Sens doi: 10.1117/1.JRS.13.024523 – volume: 19 start-page: 29 issue: 1 year: 2019 ident: 3474_CR10 publication-title: Sensors doi: 10.3390/s19010029 – volume: 16 start-page: 413 issue: 2 year: 2019 ident: 3474_CR30 publication-title: J Real-Time Image Process doi: 10.1007/s11554-015-0547-x – volume: 94 start-page: 32 year: 2018 ident: 3474_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.049 – volume: 118 start-page: 614 year: 2019 ident: 3474_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.053 – volume: 56 start-page: 406 issue: 3 year: 2019 ident: 3474_CR1 publication-title: GISci Remote Sens doi: 10.1080/15481603.2018.1517445 – volume: 66 start-page: 213 year: 2017 ident: 3474_CR15 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.01.002 – ident: 3474_CR35 doi: 10.1007/s11042-019-08225-5 – volume: 26 start-page: 73 year: 2018 ident: 3474_CR20 publication-title: West African J Appl Ecol – ident: 3474_CR31 doi: 10.1109/TPAMI.2019.2936841 – volume: 9 start-page: 263 issue: 2 year: 2018 ident: 3474_CR4 publication-title: Int J Mach Learn Cybernet doi: 10.1007/s13042-015-0384-z – ident: 3474_CR17 doi: 10.1080/22797254.2019.1586451 – volume: 8 start-page: 29027 year: 2020 ident: 3474_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972300 – ident: 3474_CR13 doi: 10.1145/2063576.2063695 – volume: 212 start-page: 161 year: 2018 ident: 3474_CR19 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.04.047  | 
    
| SSID | ssj0002793483 ssib051670015  | 
    
| Score | 2.130022 | 
    
| Snippet | The growth and development of particular region over time can be witnessed by remote sensing images. Although such raw images have less possibility to derive... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 1697 | 
    
| SubjectTerms | Agricultural land Algorithms Applied and Technical Physics Chemistry/Food Science Computer applications Data mining Datasets Decomposition Earth Sciences Engineering Engineering: Digital Image Processing Environment Materials Science Pattern analysis Pattern generation Pixels Remote sensing Research Article Set theory Singular value decomposition Spatial data Urban development Vegetation Vegetation cover  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dByKKUPsS2t5tBbydLYzsNH1IIACVSgK9FTZMcTaVXIriArBL--Y28SoKqqot4i2XJizzjzjT3zDcBHV1bKiVRHJdv3SJGgKOeODORkRcoD2sznDh8epXtjdXCWnC3B1y4XJkS7d1eSi5wGz9JUN1szV231iW_-vk5E3vX5LFWmonzEzU9gOU0YkQ9geXz0bfuHryvHflYkdSio1j5ncZs78-eBHtqnO9DZ35OuwNN5PTM31-b8_J4p2l0F6iaxiED5OZo3dlTe_sbv-L-zfAHPW6yK2wvlWoMlql_Cyj0Gw1cwPZ6zaCa35DCcLF7e4CwwdtZoaof-IMLHuaLnFCd05CPY2zAxZLiMDD-RAosFfxZehGoVOK2wj_DGSY2nJ6f7OLngP9_Vaxjv7nz_she1NRyiUsaq8VSlOralznVp48pJGaeJIKFVycogE0XsnCdVXsYisyon6YzNTMy9K2m0JSPfwKCe1rQOqJw0nv3eploqSqQVNpbECKUSqUmVHsKnTnLFbEHVUfSkzGEpC17KIixlkQ9hoxNu0W7bq0Lw8Owfs2UfwmYnn7vmv4222SvFP7z87eO6v4NnwmtBiCHcgEFzOaf3jIUa-6FV9V9Wzv8b priority: 102 providerName: Unpaywall  | 
    
| Title | Quantized ternary pattern and singular value decomposition for the efficient mining of sequences in SRSI images | 
    
| URI | https://link.springer.com/article/10.1007/s42452-020-03474-8 https://www.proquest.com/docview/2788446341 https://link.springer.com/content/pdf/10.1007/s42452-020-03474-8.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2523-3971 dateEnd: 20231231 omitProxy: true ssIdentifier: ssib051670015 issn: 2523-3963 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1BOLQcqpa2IhTQHLjBinp37diHqqIoKUUiotBIcLJ2vWspVXDSfAjRQ397ZxY7oRfU48qWV5odz7zZmXkDcOCKUjuZZKIg_y60l16k9CIBOVV6zYC2w73DF_3kbKDPb-KbNeg3vTBcVtnYxGCo3bjgO_JjSbEahS5kdD9PfgmeGsXZ1WaEhqlHK7hPgWJsHTYkM2O1YONLt3951WhYHHFXSu0Af4a0W6Z04OqUFJEJRepYd9aE_jpOC0rBEdZHpTtapP96rxUkXWZRN-HFopqYh3szGj1xVL3X8KpGmHjyqBJvYM1XW7D5hHfwLYy_L0igw9_eYbgPnD7gJPBsVmgqh3x9wNWpyEzgHp3nuvO6uAsJ5CKBRvSBe4JcFt6FGRM4LnFZl43DCq-vrr_h8I7s1ewdDHrdH6dnop68IAoV6TkTjGaRLbI0K2xUOqWiJJZeZrqgI1Sx9hRSx2VaRLJjdeqVM7ZjInq7VCaz3qj30KrGld8G1E4Z5qy3CUnax8pKGylPuKKUiUl01obDRqL55JFgI19SKQf55yT_PMg_T9uw2wg9r3-2Wb5SjTYcNQexevzc146Wh_Ufm-88v_kHeClZVUKl3y605tOF3yPEMrf7sJ72vu7Xykiriz9dWg36lye3fwGYZOhJ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROFAOVelDTUvLHNpTsdq1vZv1AVVAQUmBqOUhcdvaa6-UCjYpSYTSH9ffxth4E7ggLpzXslcz43l4Zr4B-GjLSlqeKVaSfWfSccdyWkiOnKic9A5t2_cOH_ayzqn8cZaeLcD_phfGl1U2OjEoajso_Rv5F06xGoUupHS_Df8yPzXKZ1ebERo6jlawmwFiLDZ27LvpFYVwo83ud-L3J873dk92OixOGWClSOTYg2mqxJQqV6VJKitEkqXccSVL-l2RSkfhY1rlZcLbRuZOWG3aOqHVldDKOC1o3yewJIVUFPwtbe_2fh41Ep0mvgsmGtw_Ic2nhAzYoJwiQCZI_GMnT-jn82lIznxE91XItmT5XWs5d4FnWdsVWJ7UQz290ufntwzj3nN4Fj1a3LoRwVVYcPULWLmFc_gSBr8mxMD-P2cxvD9eTnEYcD1r1LVF_1zhq2HRI487tM7XucdiMiSnGslJRRewLshE4kWYaYGDCmd14Niv8fjouIv9C9KPo1dw-ig8eA2L9aB2bwClFdpj5JuMKO1SYbhJhCM_puKZzqRqweeGosXwBtCjmEE3B_oXRP8i0L_IW7DWEL2Il3tUzEWxBRsNI-af79ttY8asBxz-9v7D12G5c3J4UBx0e_vv4Cn3YhOqDNdgcXw5ce_JWxqbD1EkEX4_9i24BhxtIXc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJCoHgq-4ClgHPUkHp7vndTDGCAsrSlQk4TZ0T_cka2B2ZXdD1p_mr6Oqd2YXL8QL5-l0T6qq69FV9RXAa1dW2skkFyXZd6G99CKjheTIqcprdmhT7h3-epQcnOjPp_HpEvxte2G4rLLViUFRu0HJb-Q7kmI1Cl1I6e5UTVnEt93uh-FvwROkONPajtOYicihn15R-DZ639slXr-Rsrv389OBaCYMiFJFesxAmnlkyzzLSxtVTqkoiaWXuS7pV1WsPYWOcZWVkUytzrxyxqYmotWVMrn1RtG-92AlZRR37lLv7reyHEfc_9KY2l8hwZcrHVBBJcV-QpHgNz08oZOPE5BScCz3TulUi-xfO7lwfuf52lV4MKmHZnplzs9vmMTuOqw1vix-nAnfI1jy9WNYvYFw-AQG3yfEuv4f7zC8PF5OcRgQPWs0tUN-qOA6WGTMcY_Oc4V7U0aG5E4juafoA8oFGUe8CNMscFDhvAIc-zUe_zjuYf-CNOPoKZzcCQeewXI9qP1zQO2UYXR8mxClfaystJHy5MFUMjGJzjvwtqVoMZxBeRRz0OZA_4LoXwT6F1kHNlqiF821HhULIezAdsuIxefbdtueM-s_Dn9x--Gv4D7JfvGld3T4Eh5KlppQXrgBy-PLid8kN2lst4I8Ipzd9QW4BhmgHxE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dByKKUPsS2t5tBbydLYzsNH1IIACVSgK9FTZMcTaVXIriArBL--Y28SoKqqot4i2XJizzjzjT3zDcBHV1bKiVRHJdv3SJGgKOeODORkRcoD2sznDh8epXtjdXCWnC3B1y4XJkS7d1eSi5wGz9JUN1szV231iW_-vk5E3vX5LFWmonzEzU9gOU0YkQ9geXz0bfuHryvHflYkdSio1j5ncZs78-eBHtqnO9DZ35OuwNN5PTM31-b8_J4p2l0F6iaxiED5OZo3dlTe_sbv-L-zfAHPW6yK2wvlWoMlql_Cyj0Gw1cwPZ6zaCa35DCcLF7e4CwwdtZoaof-IMLHuaLnFCd05CPY2zAxZLiMDD-RAosFfxZehGoVOK2wj_DGSY2nJ6f7OLngP9_Vaxjv7nz_she1NRyiUsaq8VSlOralznVp48pJGaeJIKFVycogE0XsnCdVXsYisyon6YzNTMy9K2m0JSPfwKCe1rQOqJw0nv3eploqSqQVNpbECKUSqUmVHsKnTnLFbEHVUfSkzGEpC17KIixlkQ9hoxNu0W7bq0Lw8Owfs2UfwmYnn7vmv4222SvFP7z87eO6v4NnwmtBiCHcgEFzOaf3jIUa-6FV9V9Wzv8b | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+ternary+pattern+and+singular+value+decomposition+for+the+efficient+mining+of+sequences+in+SRSI+images&rft.jtitle=SN+applied+sciences&rft.au=Preethi%2C+R.+Angelin&rft.au=Anandharaj%2C+G.&rft.date=2020-10-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-020-03474-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_020_03474_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |