Automatic hyperparameter tuning of topology optimization algorithms using surrogate optimization

This paper presents a new approach that automates the tuning process in topology optimization of parameters that are traditionally defined by the user. The new method draws inspiration from hyperparameter optimization in machine learning. A new design problem is formulated where the topology optimiz...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 67; no. 9; p. 157
Main Authors Ha, Dat, Carstensen, Josephine
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-147X
1615-1488
1615-1488
DOI10.1007/s00158-024-03850-7

Cover

Abstract This paper presents a new approach that automates the tuning process in topology optimization of parameters that are traditionally defined by the user. The new method draws inspiration from hyperparameter optimization in machine learning. A new design problem is formulated where the topology optimization hyperparameters are defined as design variables and the problem is solved by surrogate optimization. The new design problem is nested, such that a topology optimization problem is solved as an inner problem. To encourage the identification of high-performing solutions while limiting the computational resource requirements, the outer objective function is defined as the original objective combined with penalization for intermediate densities and deviations from the prescribed material consumption. The contribution is demonstrated on density-based topology optimization with various hyperparameters and objectives, including compliance minimization, compliant mechanism design, and buckling load factor maximization. Consistent performance is observed across all tested examples. For a simple two hyperparameter case, the new framework is shown to reduce amount of times a topology optimization algorithm is executed by 90% without notably sacrificing the objective compared to a rigorous manual grid search.
AbstractList This paper presents a new approach that automates the tuning process in topology optimization of parameters that are traditionally defined by the user. The new method draws inspiration from hyperparameter optimization in machine learning. A new design problem is formulated where the topology optimization hyperparameters are defined as design variables and the problem is solved by surrogate optimization. The new design problem is nested, such that a topology optimization problem is solved as an inner problem. To encourage the identification of high-performing solutions while limiting the computational resource requirements, the outer objective function is defined as the original objective combined with penalization for intermediate densities and deviations from the prescribed material consumption. The contribution is demonstrated on density-based topology optimization with various hyperparameters and objectives, including compliance minimization, compliant mechanism design, and buckling load factor maximization. Consistent performance is observed across all tested examples. For a simple two hyperparameter case, the new framework is shown to reduce amount of times a topology optimization algorithm is executed by 90% without notably sacrificing the objective compared to a rigorous manual grid search.
ArticleNumber 157
Author Ha, Dat
Carstensen, Josephine
Author_xml – sequence: 1
  givenname: Dat
  orcidid: 0000-0002-7936-0759
  surname: Ha
  fullname: Ha, Dat
  email: datha@mit.edu
  organization: Civil and Environmental Engineering, Massachusetts Institute of Technology
– sequence: 2
  givenname: Josephine
  surname: Carstensen
  fullname: Carstensen, Josephine
  organization: Civil and Environmental Engineering, Massachusetts Institute of Technology
BookMark eNqNkM1KxDAYRYOM4Iz6Aq4Krqv5aZJ2OQz-wYAbBXcxk6adDm0SkxSpT2_HDoobcfV9i3Mul7sAM2ONBuACwSsEIb8OECKapxBnKSQ5hSk_AnPEEE1Rluez75-_nIBFCDsIYQ6zYg5el320nYyNSraD095JLzsdtU9ibxpTJ7ZKonW2tfWQWBebrvkYaWsS2dbWN3HbhaQPezL03ttaRv2LOwPHlWyDPj_cU_B8e_O0uk_Xj3cPq-U6VQRlMaVZoTalRpToiqsN4wxjzFVZ8opyiqqs0JqyUimmGSsxyXBOkC45R7SUmGFyCsiU2xsnh3fZtsL5ppN-EAiK_UhiGkmMI4mvkQQfrcvJct6-9TpEsbO9N2NRQUaHUUYLOFJ4opS3IXhd_S_6UCiMsKm1_4n-w_oEEzuK8A
Cites_doi 10.1109/CEC45853.2021.9504761
10.1007/s00158-015-1265-5
10.1007/s00158-011-0638-7
10.1007/s00158-022-03427-2
10.1016/j.advengsoft.2020.102841
10.1016/j.paerosci.2005.02.001
10.1115/1.4044228
10.1080/08905459708945415
10.1007/s00158-016-1551-x
10.1109/JPROC.2015.2494218
10.1007/s001580050176
10.1007/s00158-010-0602-y
10.1007/BF01743693
10.1016/j.cma.2012.09.005
10.1007/s00158-018-1994-3
10.1002/nme.2536
10.1007/BF01214002
10.1007/s00158-009-0452-7
10.1609/aaai.v29i1.9354
10.1016/j.neucom.2020.07.061
10.1007/BF02743737
10.1007/s00158-010-0594-7
10.1023/A:1011255519438
10.1007/978-3-030-05318-5_1
10.1007/BF01650949
10.1007/s001580100129
10.1007/s00158-015-1277-1
10.1007/s00158-006-0087-x
10.1137/S1052623499362822
10.1016/j.cma.2023.116424
10.1145/3071178.3071208
10.1002/nme.1620240207
10.1371/journal.pone.0145041
10.1007/978-1-4614-6849-3
10.1007/s00158-013-0978-6
10.1007/BF01742754
10.1109/ACCESS.2020.2981072
10.1002/nme.1064
10.1007/s10409-009-0240-z
10.1002/nme.116
10.1007/s00158-022-03347-1
10.1007/s00158-021-02854-x
10.1016/S0045-7825(00)00278-4
10.1007/s00158-020-02629-w
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1007/s00158-024-03850-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection (ProQuest)
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10.1007/s00158-024-03850-7
10_1007_s00158_024_03850_7
GrantInformation_xml – fundername: MathWorks
  funderid: http://dx.doi.org/10.13039/100014600
– fundername: Massachusetts Institute of Technology (MIT)
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-549cbde153ef7cb6762227cdd7f5751f49ee56dcc6e66d2342831ed7715da2623
IEDL.DBID UNPAY
ISSN 1615-147X
1615-1488
IngestDate Sun Sep 07 11:26:24 EDT 2025
Sat Oct 25 08:18:12 EDT 2025
Wed Oct 01 02:17:30 EDT 2025
Fri Feb 21 02:37:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Topology optimization
Hyperparameter optimization
Surrogate optimization
Parameter tuning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-549cbde153ef7cb6762227cdd7f5751f49ee56dcc6e66d2342831ed7715da2623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7936-0759
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s00158-024-03850-7
PQID 3100656590
PQPubID 2043658
ParticipantIDs unpaywall_primary_10_1007_s00158_024_03850_7
proquest_journals_3100656590
crossref_primary_10_1007_s00158_024_03850_7
springer_journals_10_1007_s00158_024_03850_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SvanbergKThe method of moving asymptotes: a new method for structural optimizationInt J Numer Methods Eng1987242359373875307
DiazASigmundOCheckerboard patterns in layout optimizationStruct Multidiscip Optim19951014045
Rojas-LabandaSStolpeMAutomatic penalty continuation in structural topology optimizationStruct Multidiscip Optim201552120512213433329
GuoXZhangWZhangLRobust structural topology optimization considering boundary uncertaintiesComput Methods Appl Mech Eng20132533563683002798
AndreassenEClausenASchevenelsMLazarovBSSigmundOEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscip Optim2011431116
Frazier PI (2018) A tutorial on Bayesian optimization. Statistics and Machine Learning. arXiv:1807.02811
WuJChenX-YZhangHXiongL-DLeiHDengS-HHyperparameter optimization for machine learning models based on Bayesian optimizationJ Electron Sci Technol20191712640
Feurer M, Hutter F (2019) Hyperparameter optimization. In: Automated machine learning: methods, systems, challenges, pp 3–33 (2019)
QueipoNVHaftkaRTShyyWGoelTVaidyanathanRTuckerPKSurrogate-based analysis and optimizationProg Aerosp Sci2005411128
XuSCaiYChengGVolume preserving nonlinear density filter based on heaviside functionsStruct Multidiscip Optim20104144955052601469
KuhnMJohnsonKApplied predictive modeling20131New YorkSpringer
BorrvallTTopology optimization of elastic continua using restrictionArch Comput Methods Eng2001843513851876438
Alibrahim H, Ludwig SA (2021) Hyperparameter optimization: comparing genetic algorithm against grid search and Bayesian optimization. In: 2021 IEEE congress on evolutionary computation (CEC), pp 1551–1559
SigmundOOn the usefulness of non-gradient approaches in topology optimizationStruct Multidiscip Optim20114355895962795757
Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems 25 (NIPS 2012), vol 25
StolpeMSvanbergKAn alternative interpolation scheme for minimum compliance topology optimizationStruct Multidiscip Optim2001222116124
SvanbergKA class of globally convergent optimization methods based on conservative convex separable approximationsSIAM J Optim20021225555731885575
ShinSShinDKangNTopology optimization via machine learning and deep learning: a reviewJ Comput Des Eng202310417361766
SigmundOA 99 line topology optimization code written in MATLABStruct Multidiscip Optim200121120127
BendsøeMPSigmundOTopology optimization: theory, methods and applications20031BerlinSpringer
Müller J (2014) MATSuMoTo: the MATLAB surrogate model toolbox for computationally expensive black-box global optimization problems. Optimization and Control. arXiv:1404.4261
BourdinBFilters in topology optimizationInt J Numer Methods Eng2001509214321581818051
ChristiansenRELazarovBSJensenJSSigmundOCreating geometrically robust designs for highly sensitive problems using topology optimizationStruct Multidiscip Optim2015527377543406629
LiuJGaynorATChenSKangZSureshKTakezawaALiLKatoJTangJWangCCLChengLLiangXToACCurrent and future trends in topology optimization for additive manufacturingStruct Multidiscip Optim201857224572483
Sigmund O (2022) On benchmarking and good scientific practise in topology optimization. Struct Multidiscip Optim 65(315)
ZhuBZhangXZhangHLiangJZangHLiHWangRDesign of compliant mechanisms using continuum topology optimization: a reviewMech Mach Theory2020143
Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, The Technical University of Denmark, Lyngby, Denmark
FerrariFSigmundOA new generation 99 line MATLAB code for compliance topology optimization and its extension to 3dStruct Multidiscip Optim202062221122284156382
Lessmann S, Stahlbock R, Crone SF (2018) Optimizing hyperparameters of support vector machines by genetic algorithms. In: Proceedings of the 2005 international conference on artificial intelligence, ICAI 2005, vol 1, pp 74–80
Jiang X, Wang H, Li Y, Mo K (2020) Machine learning based parameter tuning strategy for mmc based topology optimization. Adv Eng Softw 149
AmirOBendsøeMPSigmundOApproximate reanalysis in topology optimizationInt J Numer Methods Eng20087812147414912527186
SigmundOMorphology-based black and white filters for topology optimizationStruct Multidiscip Optim2007334–5401424
MATLAB: Version (2022) The MathWorks Inc., Natick, Massachusetts
Dalklint A, Sjöall F, Wallin M, Watts S, Tortorelli D (2023) Computational design of metamaterials with self contact. Comput Methods Appl Mech Eng 417 Part A(116424)
ShahriariBSwerskyKWangZAdamsRPFreitasNTaking the human out of the loop: a review of Bayesian optimizationProc IEEE20161041148175
BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res2012132813052913701
GuestJKPrévostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variables and projection functionsInt J Numer Methods Eng20046122382542081218
BendsøeMPOptimal shape design as a material distribution problemStruct Optim198914193202
BendsøeMPSigmundOMaterial interpolation schemes in topology optimizationArch Appl Mech1999699–10635654
Lynch ME, Sarkar S, Maute K (2019) Machine learning to aid tuning of numerical parameters in topology optimization. J Mech Des 141(11)
WoldsethRVAageNBærentzenJASigmundOOn the use of artificial neural networks in topology optimisationStruct Multidiscip Optim20226510294
GaynorATGuestJKTopology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through designStruct Multidiscip Optim201654115711723571166
GutmannH-MA radial basis function method for global optimizationJ Global Optim2001132012271833217
WangFLazarovBSSigmundOOn projection methods, convergence and robust formulations in topology optimizationStruct Multidiscip Optim2011436767784
BrunsTETortorelliDATopology optimization of non-linear elastic structures and compliant mechanismsComput Methods Appl Mech Eng20011902634433459
SigmundOMauteKTopology optimization approachesStruct Multidiscip Optim2013486103110553138124
Feurer M, Springenberg J, Hutter F (2015) Initializing Bayesian hyperparameter optimization via meta-learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 29
ChoHKimYLeeEChoiDLeeYRheeWBasic enhancement strategies when using Bayesian optimization for hyperparameter tuning of deep neural networksIEEE Access202085258852608
SigmundOManufacturing tolerant topology optimizationActa Mech Sin2009252227239
SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Multidiscip Optim19981616875
Bardenet R, Brendel M, Kégl B, Sebag M (2013) Collaborative hyperparameter tuning. In: International conference on machine learning. PMLR, pp 199–207
Lorenzo PR, Nalepa J, Kawulok M, Sanchez L, Ranilla J (2017) Particle swarm optimization for hyper-parameter selection in deep neural networks. In: Proceedings of the genetic and evolutionary computation conference
Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: NIPS’11: Proceedings of the 24th international conference on neural information processing systems, pp 2546–2554
RozvanyGINZhouMBirkerTGeneralized shape optimization without homogenizationStruct Optim199243–4250252
SigmundOOn the design of compliant mechanisms using topology optimizationMech Struct Mach1997254493524
YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing2020415295316
Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLOS ONE 10(12)
FerrariFSigmundOGuestJKTopology optimization with linearized buckling criteria in 250 lines of MATLABStruct Multidiscip Optim2021636304530664268366
O Sigmund (3850_CR44) 2009; 25
3850_CR46
3850_CR49
J Bergstra (3850_CR8) 2012; 13
F Ferrari (3850_CR19) 2021; 63
MP Bendsøe (3850_CR6) 1999; 69
O Sigmund (3850_CR45) 2011; 43
T Borrvall (3850_CR11) 2001; 8
3850_CR40
L Yang (3850_CR57) 2020; 415
O Sigmund (3850_CR41) 1997; 25
3850_CR16
B Shahriari (3850_CR38) 2016; 104
F Wang (3850_CR53) 2011; 43
O Sigmund (3850_CR43) 2007; 33
B Zhu (3850_CR58) 2020; 143
JK Guest (3850_CR24) 2004; 61
O Amir (3850_CR2) 2008; 78
J Liu (3850_CR30) 2018; 57
AT Gaynor (3850_CR23) 2016; 54
J Wu (3850_CR55) 2019; 17
3850_CR10
M Stolpe (3850_CR50) 2001; 22
TE Bruns (3850_CR13) 2001; 190
E Andreassen (3850_CR3) 2011; 43
3850_CR27
3850_CR29
S Xu (3850_CR56) 2010; 41
B Bourdin (3850_CR12) 2001; 50
M Kuhn (3850_CR28) 2013
F Ferrari (3850_CR18) 2020; 62
H-M Gutmann (3850_CR26) 2001; 13
3850_CR9
X Guo (3850_CR25) 2013; 253
O Sigmund (3850_CR48) 1998; 16
O Sigmund (3850_CR42) 2001; 21
MP Bendsøe (3850_CR5) 1989; 1
3850_CR1
3850_CR4
H Cho (3850_CR14) 2020; 8
3850_CR21
3850_CR20
RE Christiansen (3850_CR15) 2015; 52
3850_CR22
S Rojas-Labanda (3850_CR36) 2015; 52
GIN Rozvany (3850_CR37) 1992; 4
K Svanberg (3850_CR52) 2002; 12
MP Bendsøe (3850_CR7) 2003
NV Queipo (3850_CR35) 2005; 41
K Svanberg (3850_CR51) 1987; 24
O Sigmund (3850_CR47) 2013; 48
S Shin (3850_CR39) 2023; 10
3850_CR32
3850_CR31
A Diaz (3850_CR17) 1995; 10
3850_CR34
3850_CR33
RV Woldseth (3850_CR54) 2022; 65
References_xml – reference: BorrvallTTopology optimization of elastic continua using restrictionArch Comput Methods Eng2001843513851876438
– reference: SigmundOMauteKTopology optimization approachesStruct Multidiscip Optim2013486103110553138124
– reference: Müller J (2014) MATSuMoTo: the MATLAB surrogate model toolbox for computationally expensive black-box global optimization problems. Optimization and Control. arXiv:1404.4261
– reference: WuJChenX-YZhangHXiongL-DLeiHDengS-HHyperparameter optimization for machine learning models based on Bayesian optimizationJ Electron Sci Technol20191712640
– reference: KuhnMJohnsonKApplied predictive modeling20131New YorkSpringer
– reference: SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Multidiscip Optim19981616875
– reference: SvanbergKA class of globally convergent optimization methods based on conservative convex separable approximationsSIAM J Optim20021225555731885575
– reference: WoldsethRVAageNBærentzenJASigmundOOn the use of artificial neural networks in topology optimisationStruct Multidiscip Optim20226510294
– reference: BendsøeMPSigmundOMaterial interpolation schemes in topology optimizationArch Appl Mech1999699–10635654
– reference: GutmannH-MA radial basis function method for global optimizationJ Global Optim2001132012271833217
– reference: RozvanyGINZhouMBirkerTGeneralized shape optimization without homogenizationStruct Optim199243–4250252
– reference: SigmundOOn the usefulness of non-gradient approaches in topology optimizationStruct Multidiscip Optim20114355895962795757
– reference: Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, The Technical University of Denmark, Lyngby, Denmark
– reference: GuoXZhangWZhangLRobust structural topology optimization considering boundary uncertaintiesComput Methods Appl Mech Eng20132533563683002798
– reference: Bardenet R, Brendel M, Kégl B, Sebag M (2013) Collaborative hyperparameter tuning. In: International conference on machine learning. PMLR, pp 199–207
– reference: SigmundOMorphology-based black and white filters for topology optimizationStruct Multidiscip Optim2007334–5401424
– reference: BourdinBFilters in topology optimizationInt J Numer Methods Eng2001509214321581818051
– reference: ChoHKimYLeeEChoiDLeeYRheeWBasic enhancement strategies when using Bayesian optimization for hyperparameter tuning of deep neural networksIEEE Access202085258852608
– reference: Feurer M, Springenberg J, Hutter F (2015) Initializing Bayesian hyperparameter optimization via meta-learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 29
– reference: Sigmund O (2022) On benchmarking and good scientific practise in topology optimization. Struct Multidiscip Optim 65(315)
– reference: ChristiansenRELazarovBSJensenJSSigmundOCreating geometrically robust designs for highly sensitive problems using topology optimizationStruct Multidiscip Optim2015527377543406629
– reference: SigmundOOn the design of compliant mechanisms using topology optimizationMech Struct Mach1997254493524
– reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res2012132813052913701
– reference: Alibrahim H, Ludwig SA (2021) Hyperparameter optimization: comparing genetic algorithm against grid search and Bayesian optimization. In: 2021 IEEE congress on evolutionary computation (CEC), pp 1551–1559
– reference: Lorenzo PR, Nalepa J, Kawulok M, Sanchez L, Ranilla J (2017) Particle swarm optimization for hyper-parameter selection in deep neural networks. In: Proceedings of the genetic and evolutionary computation conference
– reference: BrunsTETortorelliDATopology optimization of non-linear elastic structures and compliant mechanismsComput Methods Appl Mech Eng20011902634433459
– reference: WangFLazarovBSSigmundOOn projection methods, convergence and robust formulations in topology optimizationStruct Multidiscip Optim2011436767784
– reference: Jiang X, Wang H, Li Y, Mo K (2020) Machine learning based parameter tuning strategy for mmc based topology optimization. Adv Eng Softw 149
– reference: DiazASigmundOCheckerboard patterns in layout optimizationStruct Multidiscip Optim19951014045
– reference: QueipoNVHaftkaRTShyyWGoelTVaidyanathanRTuckerPKSurrogate-based analysis and optimizationProg Aerosp Sci2005411128
– reference: YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing2020415295316
– reference: LiuJGaynorATChenSKangZSureshKTakezawaALiLKatoJTangJWangCCLChengLLiangXToACCurrent and future trends in topology optimization for additive manufacturingStruct Multidiscip Optim201857224572483
– reference: FerrariFSigmundOA new generation 99 line MATLAB code for compliance topology optimization and its extension to 3dStruct Multidiscip Optim202062221122284156382
– reference: SigmundOA 99 line topology optimization code written in MATLABStruct Multidiscip Optim200121120127
– reference: Frazier PI (2018) A tutorial on Bayesian optimization. Statistics and Machine Learning. arXiv:1807.02811
– reference: GaynorATGuestJKTopology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through designStruct Multidiscip Optim201654115711723571166
– reference: SigmundOManufacturing tolerant topology optimizationActa Mech Sin2009252227239
– reference: Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLOS ONE 10(12)
– reference: Lessmann S, Stahlbock R, Crone SF (2018) Optimizing hyperparameters of support vector machines by genetic algorithms. In: Proceedings of the 2005 international conference on artificial intelligence, ICAI 2005, vol 1, pp 74–80
– reference: MATLAB: Version (2022) The MathWorks Inc., Natick, Massachusetts
– reference: Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: NIPS’11: Proceedings of the 24th international conference on neural information processing systems, pp 2546–2554
– reference: Dalklint A, Sjöall F, Wallin M, Watts S, Tortorelli D (2023) Computational design of metamaterials with self contact. Comput Methods Appl Mech Eng 417 Part A(116424)
– reference: BendsøeMPOptimal shape design as a material distribution problemStruct Optim198914193202
– reference: ShinSShinDKangNTopology optimization via machine learning and deep learning: a reviewJ Comput Des Eng202310417361766
– reference: FerrariFSigmundOGuestJKTopology optimization with linearized buckling criteria in 250 lines of MATLABStruct Multidiscip Optim2021636304530664268366
– reference: GuestJKPrévostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variables and projection functionsInt J Numer Methods Eng20046122382542081218
– reference: StolpeMSvanbergKAn alternative interpolation scheme for minimum compliance topology optimizationStruct Multidiscip Optim2001222116124
– reference: Feurer M, Hutter F (2019) Hyperparameter optimization. In: Automated machine learning: methods, systems, challenges, pp 3–33 (2019)
– reference: Lynch ME, Sarkar S, Maute K (2019) Machine learning to aid tuning of numerical parameters in topology optimization. J Mech Des 141(11)
– reference: Rojas-LabandaSStolpeMAutomatic penalty continuation in structural topology optimizationStruct Multidiscip Optim201552120512213433329
– reference: AmirOBendsøeMPSigmundOApproximate reanalysis in topology optimizationInt J Numer Methods Eng20087812147414912527186
– reference: XuSCaiYChengGVolume preserving nonlinear density filter based on heaviside functionsStruct Multidiscip Optim20104144955052601469
– reference: SvanbergKThe method of moving asymptotes: a new method for structural optimizationInt J Numer Methods Eng1987242359373875307
– reference: ZhuBZhangXZhangHLiangJZangHLiHWangRDesign of compliant mechanisms using continuum topology optimization: a reviewMech Mach Theory2020143
– reference: Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems 25 (NIPS 2012), vol 25
– reference: AndreassenEClausenASchevenelsMLazarovBSSigmundOEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscip Optim2011431116
– reference: BendsøeMPSigmundOTopology optimization: theory, methods and applications20031BerlinSpringer
– reference: ShahriariBSwerskyKWangZAdamsRPFreitasNTaking the human out of the loop: a review of Bayesian optimizationProc IEEE20161041148175
– ident: 3850_CR1
  doi: 10.1109/CEC45853.2021.9504761
– volume: 52
  start-page: 737
  year: 2015
  ident: 3850_CR15
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1265-5
– volume: 43
  start-page: 589
  issue: 5
  year: 2011
  ident: 3850_CR45
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0638-7
– ident: 3850_CR46
  doi: 10.1007/s00158-022-03427-2
– ident: 3850_CR27
  doi: 10.1016/j.advengsoft.2020.102841
– volume: 41
  start-page: 1
  issue: 1
  year: 2005
  ident: 3850_CR35
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2005.02.001
– ident: 3850_CR32
  doi: 10.1115/1.4044228
– volume: 25
  start-page: 493
  issue: 4
  year: 1997
  ident: 3850_CR41
  publication-title: Mech Struct Mach
  doi: 10.1080/08905459708945415
– volume: 54
  start-page: 1157
  year: 2016
  ident: 3850_CR23
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1551-x
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 3850_CR38
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 21
  start-page: 120
  year: 2001
  ident: 3850_CR42
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580050176
– volume: 43
  start-page: 767
  issue: 6
  year: 2011
  ident: 3850_CR53
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0602-y
– ident: 3850_CR9
– volume: 10
  start-page: 1736
  issue: 4
  year: 2023
  ident: 3850_CR39
  publication-title: J Comput Des Eng
– ident: 3850_CR33
– volume-title: Topology optimization: theory, methods and applications
  year: 2003
  ident: 3850_CR7
– volume: 10
  start-page: 40
  issue: 1
  year: 1995
  ident: 3850_CR17
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/BF01743693
– volume: 253
  start-page: 356
  year: 2013
  ident: 3850_CR25
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.09.005
– volume: 57
  start-page: 2457
  issue: 2
  year: 2018
  ident: 3850_CR30
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-1994-3
– volume: 78
  start-page: 1474
  issue: 12
  year: 2008
  ident: 3850_CR2
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2536
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  ident: 3850_CR48
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/BF01214002
– volume: 41
  start-page: 495
  issue: 4
  year: 2010
  ident: 3850_CR56
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0452-7
– ident: 3850_CR21
  doi: 10.1609/aaai.v29i1.9354
– volume: 415
  start-page: 295
  year: 2020
  ident: 3850_CR57
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 8
  start-page: 351
  issue: 4
  year: 2001
  ident: 3850_CR11
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/BF02743737
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: 3850_CR3
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0594-7
– ident: 3850_CR22
– volume: 13
  start-page: 201
  year: 2001
  ident: 3850_CR26
  publication-title: J Global Optim
  doi: 10.1023/A:1011255519438
– ident: 3850_CR20
  doi: 10.1007/978-3-030-05318-5_1
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 3850_CR5
  publication-title: Struct Optim
  doi: 10.1007/BF01650949
– volume: 22
  start-page: 116
  issue: 2
  year: 2001
  ident: 3850_CR50
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580100129
– volume: 13
  start-page: 281
  year: 2012
  ident: 3850_CR8
  publication-title: J Mach Learn Res
– ident: 3850_CR40
– volume: 52
  start-page: 1205
  year: 2015
  ident: 3850_CR36
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1277-1
– volume: 33
  start-page: 401
  issue: 4–5
  year: 2007
  ident: 3850_CR43
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-006-0087-x
– volume: 12
  start-page: 555
  issue: 2
  year: 2002
  ident: 3850_CR52
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623499362822
– ident: 3850_CR16
  doi: 10.1016/j.cma.2023.116424
– ident: 3850_CR31
  doi: 10.1145/3071178.3071208
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 3850_CR51
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620240207
– ident: 3850_CR29
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  ident: 3850_CR55
  publication-title: J Electron Sci Technol
– volume: 69
  start-page: 635
  issue: 9–10
  year: 1999
  ident: 3850_CR6
  publication-title: Arch Appl Mech
– ident: 3850_CR10
  doi: 10.1371/journal.pone.0145041
– volume-title: Applied predictive modeling
  year: 2013
  ident: 3850_CR28
  doi: 10.1007/978-1-4614-6849-3
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  ident: 3850_CR47
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0978-6
– volume: 4
  start-page: 250
  issue: 3–4
  year: 1992
  ident: 3850_CR37
  publication-title: Struct Optim
  doi: 10.1007/BF01742754
– volume: 143
  year: 2020
  ident: 3850_CR58
  publication-title: Mech Mach Theory
– ident: 3850_CR4
– volume: 8
  start-page: 52588
  year: 2020
  ident: 3850_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981072
– volume: 61
  start-page: 238
  issue: 2
  year: 2004
  ident: 3850_CR24
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1064
– ident: 3850_CR49
– volume: 25
  start-page: 227
  issue: 2
  year: 2009
  ident: 3850_CR44
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-009-0240-z
– volume: 50
  start-page: 2143
  issue: 9
  year: 2001
  ident: 3850_CR12
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.116
– volume: 65
  start-page: 294
  issue: 10
  year: 2022
  ident: 3850_CR54
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-022-03347-1
– volume: 63
  start-page: 3045
  issue: 6
  year: 2021
  ident: 3850_CR19
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-021-02854-x
– volume: 190
  start-page: 3443
  issue: 26
  year: 2001
  ident: 3850_CR13
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00278-4
– ident: 3850_CR34
– volume: 62
  start-page: 2211
  year: 2020
  ident: 3850_CR18
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-020-02629-w
SSID ssj0008049
Score 2.4591794
Snippet This paper presents a new approach that automates the tuning process in topology optimization of parameters that are traditionally defined by the user. The new...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 157
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Design factors
Design optimization
Engineering
Engineering Design
Machine learning
Optimization
Parameter identification
Research Paper
Theoretical and Applied Mechanics
Topology optimization
Tuning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oPKgH8ROnU3LwpsE2y5L2IKKiiOAQUditJk2ih22dW4vsvzevaze9iOd-BF6SX355H78HcOJ4pLXUnDIVC39BiWOqjGhTG0gmojSy0mFE97Er7l_5Q6_TW4JuXQuDaZU1JpZAbbIUfeTn6Ij23KMTB5ejT4pdozC6WrfQUFVrBXNRSowtwwpDZawGrFzfdp-e59gczQgx0hwactmrymjKYjqkDxH1ZxbFaFlA5e-jasE_5yHTdVgthiM1_VL9_o9T6W4TNio6Sa5m878FS3a4Des_RAZ34O2qyLNSmJV8-EvnGMW-B5gEQ_ICnSIkcySftUqYkswjyKAqzSSq_-4tkH8MJgTT49_JpBiPM_S7_XpvF17vbl9u7mnVV4Gm7ZDn1F8JU22sxzrrZKqFx0PGZGqMdBiFcTy2tiNMmgorhGFt1GQLrZEy7BjFPF_ag8YwG9p9IM5I4SFTc6cCri3XMvDfWxVELuSKBU04rU2YjGbyGclcKLk0eOINnpQGT2QTWrWVk2orTZLFxDfhrLb84vFffzubz84_Bj_4e_BDWGPl2sD0shY08nFhjzwfyfVxtci-Afkg3Q4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD8rB-DOgaHrwJk220rXbkRAJMdGTJNxmu7ZgAhsZWwz_ve02Bhhj9LztLXlt3_tev9evADxo4gvBBEGYB9QUKEGAuKQ9pByGqR_5imnL6L680tGYPE-8SSWTY8_CfOPvrdin6_nIZBJkOSwHsUNwZJIULYhZOqijrl9CXQtgkEvYpDog87ON_SS0RZY1GdoEx3m85OtPPp_v5JvhGTitgCLslyN7Dg5UfAGaO_KBl-C9n2dJIbkKZ6acTK2M98K2t8Ast9sdMNEwKy9BWMPExIZFdegS8vk0ST-y2WIFbeP7FK7yNE3sjtree1dgPHx6G4xQdWMCinouyZAp9iIhlYliSrNIUBPpMGaRlExbfkWTQCmPyiiiilKJe1ZtzVWSMdeTHBskdA0acRKrFoBaMmqCoSCaO0QoIphjvlfc8bVLOHba4HHjwnBZCmOEtQRy4fDQODwsHB6yNuhsvBxWi2QVWm7BwEkvMMa6G89vH_9mrVuPzh9-fvM_67fgBBdzxTaSdUAjS3N1Z5BHJu6LKfcF6ZnPWA
  priority: 102
  providerName: Springer Nature
Title Automatic hyperparameter tuning of topology optimization algorithms using surrogate optimization
URI https://link.springer.com/article/10.1007/s00158-024-03850-7
https://www.proquest.com/docview/3100656590
https://doi.org/10.1007/s00158-024-03850-7
UnpaywallVersion publishedVersion
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AFBBN
  dateStart: 19890301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1615-1488
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9B-zDxsMHYBBNUftgbGCWpYyePadWChlYhtErlKbNjGxBtg9JECP76ndu0BTQheIkj2XGUO-c-fOffAfy0LFJKKEYDGXN0UOKYSs3b1Hgi4FEWGWFdRPf3gJ8N2a9ROKphctxZmFfxewf26YcRRU1CXQzLo2ITmjxEu7sBzeHgIrlyHhWqZeozMVrfR1F9Qub_k7zUQmvTchUN3YJP1fRePj7I8fiZwul_WVQums1xCl2eyd1JVaqT7OkViuP7vmUbPtd2J0kWC2UHNsz0K2w9QyPchb9JVeZzBFdyg95p4VDBJy5bhpSV2z0huSXloqbCI8lR1EzqM5xEjq_z4ra8mcyIy6O_JrOqKHK3Qfdi3DcY9nt_ume0LsBAs7bPSoq-Y6a0QaForMgUR8EZBCLTWlgXrrEsNibkOsu44VwHbQfe5hsthB9qGaBh9R0a03xq9oBYLTjKVsWs9JgyTAkPnzfSi6zPZODtw9GSIen9AmcjXSEqz-mWIt3SOd1SsQ8HS56l9T83S12oAq3TMMbJjpd8XHe_NdvxitfvePmPjw0_gEZZVOYQbZdStWAz6p-2oJn0O52Ba0-vznvYdnqDi0vs7fIuXodB0qqX9z9aCu0C
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hOFAOVZ9qKG19aE_F6q7j2LsHVNEWFApEVQVSbou9tuGQZNNkVyh_rr-tM5vdBC6oF877sPR5PA_PzDcAH4NMrNVWcmFShQFKmnLjVJf7SAuV5InXgTK65wPVv5Q_h73hBvxte2GorLLVibWidkVOd-Rf6CIafY9eGn2d_uE0NYqyq-0IDdOMVnAHNcVY09hx6he3GMLND05-4H5_EuL46OJ7nzdTBnjejWXJMUDKrfN48n3QuVWoHYTQuXM6UE4iyNT7nnJ5rrxSTnSJoSz2Tuu454xQRHyAJmBLdmWKwd_Wt6PBr98rW5AsHXByq3gs9bBp26mb98hdSTjaSE7ZuYjr-6Zx7e-uUrQ7sF1NpmZxa0ajO1bw-Bk8bdxXdriUt-ew4ScvYOcOqeFLuDqsyqImgmU3GOTOiFx8TEU3rKzoEoYVgZXL0QwLVqDGGjetoMyMrhHx8mY8Z1SOf83m1WxW0D3fvfdeweWjIPwaNifFxL8BFpxWqKKtDCaS1kurI_zemygJsTQi6sDnFsJsuqTryFbEzDXgGQKe1YBnugN7LcpZc3Tn2VrQOrDfIr9-_NDf9le78x-L7z68-AfY7l-cn2VnJ4PTt_BE1HJCpW17sFnOKv8OfaHSvm8EjsHVY8v4Pw0fGf0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSDwOiKcYzxy4sWhtlyXtEQ2m8Zo4MGm3kjTJhrS1U9cK7d-T9MUmIQTntq7kJPbn2P4MwLXCLueUY-Qwj-gAxfMQE6SFpEUd4gaupMpkdF_6pDfAj8P2cKmLP6t2L1OSeU-DYWkKk-ZMqGbV-GZcvYu0f0Ems2Uhug42sPZuZoZBh3QqW-zmANjAGmRjOizaZn6WseqavvFmlSLdAVtpOGOLTzaZLHmh7h7YLeAjvM3Xex-syfAA7CyRCh6C99s0iTIiVjjWQWZsyL2npugFJqm5BIGRgkk-GmEBI20xpkUrJmSTURR_JOPpHJpy-BGcp3EcmXu2lfeOwKB7_9bpoWKOAgpaNk6QDgEDLqS2bVLRgBNt_xyHBkJQZbIuCntStokIAiIJEU7LcLDZUlBqtwVzND46BrUwCuUJgEpQok0kx4pZmEvMqaW_l8xylY2ZY9XBTalCf5bTZfgVMXKmcF8r3M8U7tM6OC-17BdHZ-6bjIMGmW1PC2uUmv9-_Ju0RrU6f_j56f-kX4HN17uu__zQfzoD2062bUyl2TmoJXEqLzQ0Sfhltvu-ANgl2o4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HWQHv8XJlBy8uYy2S5P2OMQxBIcHB_NUkybZxK0d_UDmX2_SdZ-I6K3Q9JW-l76PvPd-D4BbhT3OKcfIYT7RAYrvIyZIG0mLOsQLPUmVyeg-9UlvgB-H7rCEyTG9MDv5ewP2abse0pYEmRyWheg-qBJX-90VUB30nzuvJqLSZhnZmA7X155Xdsj8TGTbCq1dy1U2tAYO8mjG5p9sMtkwON2jxeSitMApNHUmH608463wawfF8W_fcgwOS78TdhYb5QTsyegU1DbQCM_AWyfP4gLBFY51dJoYVPCpqZaBWW5OT2CsYLaYqTCHsVY107KHE7LJKE7es_E0haaOfgTTPElic0C3te4cDLoPL_c9VA5gQGHbxhnSsWPIhdRKUSoacqIVp-PQUAiqTLpGYV9Kl4gwJJIQ4bQNeJstBaW2K5ijHasLUIniSF4CqAQlWrdyrJiFucScWvp5ySxP2Zg5Vh3cLQUSzBY4G8EKUbngW6D5FhR8C2gdNJYyC8p_Lg1MqkJ7p66viTWXclzf_o1acyXrP7z86n_LG6CSJbm81r5Lxm_KTfsNHXPlrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+hyperparameter+tuning+of+topology+optimization+algorithms+using+surrogate+optimization&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Ha%2C+Dat&rft.au=Carstensen%2C+Josephine&rft.date=2024-09-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=67&rft.issue=9&rft_id=info:doi/10.1007%2Fs00158-024-03850-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_024_03850_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon